
Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 13
February 28, 2019

CPSC 367, Lecture 13 1/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Combining Encryption and Signatures

Practical Signature Algorithms
ElGamal digital signature scheme
Digital signature algorithm (DSA)

Primitive Roots
Properties of primitive roots

CPSC 367, Lecture 13 2/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Combining Encryption and Signatures

CPSC 367, Lecture 13 3/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Signed encrypted messages
One often wants to encrypt messages for privacy and sign them for
integrity and authenticity.

Let Alice have cryptosystem (E ,D) and signature system (S ,V ).
Some possibilities for encrypting and signing a message m:

1. Alice separately encrypts and signs the message and sends the
pair E (m) ◦ S(m).

2. Alice signs the encrypted message and sends the pair
E (m) ◦ S(E (m)).

3. Alice encrypts the signed message and sends the result
E (m ◦ S(m)).

Here we assume a standard way of representing the ordered pair
(x , y) as a string, which we denote by x ◦ y .

CPSC 367, Lecture 13 4/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Weakness of encrypt-and-sign

Method 1, sending the pair E (m) ◦ S(m), is quite problematic
since signature functions make no guarantee of privacy.

We can construct a signature scheme (S ′,V ′) in which the
plaintext message is part of the signature itself.

If (S ′,V ′) is used as the signature scheme in method 1, there is no
privacy, for the plaintext message can be read directly from the
signature.

CPSC 367, Lecture 13 5/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

A forgery-resistant signature scheme with no privacy
We construct a contrived but valid signature scheme in order to
prove that not all signature schemes hide the message.

Let (S ,V ) be an RSA signature scheme. Define

S ′(m) = m ◦ S(m) ;

V ′(m, s) = ∃t(s = m ◦ t ∧ V (m, t)) .

Facts

I (S ′,V ′) is at least as secure as (S ,V ).

I S ′ leaks m.

Why? Suppose a forger produces a valid signed message (m, s) in
(S ′,V ′). Then s = m ◦ t for some t and V (m, t) holds.

Hence, (m, t) is a valid signed message in (S ,V ), and s leaks m.

CPSC 367, Lecture 13 6/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Why it works?

To conclude that (S ′,V ′) is at least as secure against existential
forgery as (S ,V ), we used a proof by reduction: Namely, we
reduced the security of (S ′,V ′) to the security of (S ,V ).

Turned around,, if (S ′,V ′) can be “broken”, then so can (S ,V ).

Presuming that (S ,V ) is secure against existential forgery, we
conclude that (S ′,V ′) is also secure.

CPSC 367, Lecture 13 7/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Encrypt first

Recall method 2 (encrypt first): (E(m), S(E(m))).

This allows Eve to verify that the signed message was sent by
Alice, even though Eve cannot read it.

Whether or not this property is desirable is application-dependent.

This method should only be used with signature schemes that
resist existential forgery.

If not, Mallory can forge a valid signed random ciphertext (c , s).

Bob, seeing that c is valid, will proceed to decrypt c and act on
the resulting message m.

CPSC 367, Lecture 13 8/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Sign first

Recall method 3 (sign first): E (m ◦ S(m)).

This forces Bob to decrypt a bogus message before discovering
that it wasn’t sent by Alice.

This method should only be used with signature schemes that
resist existential forgery.

If not, Mallory can forge a valid signed random message (m, s).
Then she can use Bob’s public encryption key to encrypt m ◦ s and
the result looks like it was produced by Alice.

CPSC 367, Lecture 13 9/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Combining protocols

Subtleties emerge when cryptographic protocols are combined,
even in a simple case like this where it is only desired to combine
privacy with authenticity.

Think about the pros and cons of other possibilities, such as
sign-encrypt-sign, i.e., (E (m ◦ S(m)),S(E (m ◦ S(m)))).

Does it also fail with forged random signed messages?

CPSC 367, Lecture 13 10/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Practical Signature Algorithms

CPSC 367, Lecture 13 11/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

ElGamal digital signature scheme

ElGamal signature scheme

The private signing key consists of a primitive root g of a prime p
and a random exponent x .

The public verification key consists of g , p, and a, where
a = g x mod p.

To sign m:
1. Choose random y ∈ Z∗φ(p) .

2. Compute b = g y mod p.
3. Compute c = (m − xb)y−1 mod φ(p).
4. Signature s = (b, c).

To verify (m, s), where s = (b, c):
1. Check that abbc ≡ gm (mod p).

CPSC 367, Lecture 13 12/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

ElGamal digital signature scheme

Why do ElGamal signatures work?

We have
a = g x mod p

b = g y mod p

c = (m − xb)y−1 mod φ(p).

Want that abbc ≡ gm (mod p). Substituting, we get

abbc ≡ (g x)b(g y )c ≡ g xb+yc ≡ gm (mod p)

since xb + yc ≡ m (mod φ(p)).1

1Note the use of the identity from lecture 10, slide 34:
u ≡ v (mod φ(p))⇔ gu ≡ g v (mod p).

CPSC 367, Lecture 13 13/25

http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln10.pdf


Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Digital signature algorithm (DSA)

Digital signature standard

The commonly-used Digital Signature Algorithm (DSA) is a
variant of ElGamal signatures. Also called the Digital Signature
Standard (DSS), it is described in U.S. Federal Information
Processing Standard FIPS 186–4.

It uses two primes: p, which is 1024 bits long,2 and q, which is 160
bits long and satisfies q |(p − 1). Here’s how to find them: Choose
q first, then search for z such that zq + 1 is prime and of the right
length. Choose p = zq + 1 for such a z .

2The original standard specified that the length L of p should be a multiple
of 64 lying between 512 and 1024, and the length N of q should be 160.
Revision 2, Change Notice 1 increased L to 1024. Revision 3 allows four (L,N)
pairs: (1024, 160), (2048, 224), (2048, 256), (3072, 256).

CPSC 367, Lecture 13 14/25

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf


Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Digital signature algorithm (DSA)

DSA key generation

Given primes p and q of the right lengths such that q |(p − 1),
here’s how to generate a DSA key.

I Let g = h(p−1)/q mod p for any h ∈ Z∗p for which g > 1.

This ensures that g ∈ Z∗p is a non-trivial qth root of unity
modulo p.

I Let x ∈ Z∗q.

I Let a = g x mod p.

Private signing key: (p, q, g , x).

Public verification key: (p, q, g , a).

CPSC 367, Lecture 13 15/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Digital signature algorithm (DSA)

DSA signing and verification
Here’s how signing and verification work:

To sign m:
1. Choose random y ∈ Z∗q.
2. Compute b = (g y mod p) mod q.
3. Compute c = (m + xb)y−1 mod q.
4. Output signature s = (b, c).

To verify (m, s), where s = (b, c):
1. Verify that b, c ∈ Z∗q; reject if not.
2. Compute u1 = mc−1 mod q.
3. Compute u2 = bc−1 mod q.
4. Compute v = (gu1au2 mod p) mod q.
5. Check v = b.

CPSC 367, Lecture 13 16/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Digital signature algorithm (DSA)

Why DSA works

To see why this works, note that since gq ≡ 1 (mod p), then

r ≡ s (mod q) implies g r ≡ g s (mod p).

This follows from the fact that g is a qth root of unity modulo p,
so g r+uq ≡ g r (gq)u ≡ g r (mod p) for any u.
Hence,

gu1au2 ≡ gmc−1+xbc−1 ≡ g y (mod p). (1)

gu1au2 mod p = g y mod p (2)

v = (gu1au2 mod p) mod q = (g y mod p) mod q = b

as desired. (Notice the shift between equivalence modulo p in
equation 1 and equality of remainders modulo p in equation 2.)

CPSC 367, Lecture 13 17/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Digital signature algorithm (DSA)

Double remaindering

DSA uses the technique of computing a number modulo p and
then modulo q.

Call this function fp,q(n) = (n mod p) mod q.

fp,q(n) is not the same as n mod r for any modulus r , nor is it the
same as fq,p(n) = (n mod q) mod p.

CPSC 367, Lecture 13 18/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Digital signature algorithm (DSA)

Example mod 29 mod 7
To understand better what’s going on, let’s look at an example.
Take p = 29 and q = 7. Then 7|(29− 1), so this is a valid DSA
prime pair. The table below lists the first 29 values of y = f29,7(n):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
y 0 1 2 3 4 5 6 0 1 2 3 4 5 6

n 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

y 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0

The sequence of function values repeats after this point with a
period of length 29. Note that it both begins and ends with 0, so
there is a double 0 every 29 values. That behavior cannot occur
modulo any number r . That behavior is also different from
f7,29(n), which is equal to n mod 7 and has period 7. (Why?)

CPSC 367, Lecture 13 19/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Primitive Roots

CPSC 367, Lecture 13 20/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Properties of primitive roots

Using the ElGamal cryptosystem

To use the ElGamal cryptosystem, we must be able to generate
random pairs (p, g), where p is a large prime, and g is a primitive
root of p.

We now look at primitive roots and how to find them.

CPSC 367, Lecture 13 21/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Properties of primitive roots

Primitive root

We say g is a primitive root of n if g generates all of Z∗n, that is,
Z∗n = {g , g2, g3, . . . , gφ(n)}.

By definition, this holds if and only if ord(g) = φ(n).

Not every integer n has primitive roots.

By Gauss’s theorem, the numbers having primitive roots are
1, 2, 4, pk , 2pk , where p is an odd prime and k ≥ 1.

In particular, every prime has primitive roots.

CPSC 367, Lecture 13 22/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Properties of primitive roots

Number of primitive roots

Theorem
The number of primitive roots of a prime p is φ(φ(p)).

Gauss’s theorem shows that p has at least one primitive root. The
following lemma show that there are at least φ(φ(p)) primitive
roots. We omit the proof that there are no more than that number.

Lemma (powers of primitive roots)

If g is a primitive root of p and x ∈ Z∗φ(p), then g x is also a
primitive root of p.

CPSC 367, Lecture 13 23/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Properties of primitive roots

Proof of lemma

We need to argue that every element h in Z∗p can be expressed as
h = (g x)y for some y .

I Since g is a primitive root, we know that h ≡ g ` (mod p) for
some `.

I We wish to find y such that g xy ≡ g ` (mod p).

I By Euler’s theorem, this is possible if the congruence equation
xy ≡ ` (mod φ(p)) has a solution y .

I We know that a solution exists iff gcd(x , φ(p)) |`.
I But this is the case since x ∈ Z∗φ(p), so gcd(x , φ(p)) = 1.

CPSC 367, Lecture 13 24/25



Outline Combining Encryption and Signatures Practical Signatures Primitive Roots

Properties of primitive roots

Primitive root example

Let p = 19, so φ(p) = 18 and φ(φ(p)) = φ(2) · φ(9) = 6.

Consider g = 2 and g = 5. The subgroups Sg of Zp generated by
each g is given by the table:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2k 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

5k 5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1

We see that 2 is a primitive root since S2 = Z∗p but 5 is not.

Now let’s look at Z∗φ(p) = Z∗18 = {1, 5, 7, 11, 13, 17}.

The complete set of primitive roots of p (in Zp) is then

{2, 25, 27, 211, 213, 217} = {2, 13, 14, 15, 3, 10}.

CPSC 367, Lecture 13 25/25


	Outline
	Combining Encryption and Signatures
	Practical Signature Algorithms
	ElGamal digital signature scheme
	Digital signature algorithm (DSA)

	Primitive Roots
	Properties of primitive roots


