
Outline Primitive Roots (continued) Cryptographic Hash Functions

CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 14
March 5, 2019

CPSC 367, Lecture 14 1/20



Outline Primitive Roots (continued) Cryptographic Hash Functions

Primitive Roots (continued)
Lucas test
Special form primes

Cryptographic Hash Functions
Properties of random functions
Message digest functions

CPSC 367, Lecture 14 2/20



Outline Primitive Roots (continued) Cryptographic Hash Functions

Primitive Roots (continued)

CPSC 367, Lecture 14 3/20



Outline Primitive Roots (continued) Cryptographic Hash Functions

Lucas test

Lucas test

Theorem (Lucas test)

g is a primitive root of a prime p if and only if

g (p−1)/d 6≡ 1 (mod p)

for all d > 1 such that d |(p − 1).
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Lucas test

Proof of correctness for Lucas test

Suppose the Lucas test fails for some d > 1, d |(p − 1). That
means g (p−1)/d ≡ 1 (mod p). It follows that

ord(g) ≤ p − 1

d
< p − 1 = φ(p),

so g is not a primitive root of p. Why?

Conversely, if g is not a primitive root of p, then ord(g) < p − 1,
or equivalently, (p − 1)/ord(g) > 1. Hence, the test will fail for
d = (p − 1)/ord(g) since then

g (p−1)/d = gord(g) ≡ 1 (mod p).
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Lucas test

Problems with the Lucas test

A drawback to the Lucas test is that one must try all the divisors
of p − 1, and there can be many.

Moreover, to find the divisors efficiently implies the ability to
factor. Thus, it does not lead to an efficient algorithm for finding a
primitive root of an arbitrary prime p.

However, there are some special cases which we can handle.
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Special form primes

Special form primes

Let p and q be odd primes such that p = 2q + 1.

Then, p − 1 = 2q, so p − 1 is easily factored and the Lucas test
easily employed.

There are lots of examples of such pairs, e.g., q = 41 and p = 83.
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Special form primes

Number of primitive roots of special form primes

Recall p = 2q + 1. We just saw that the number of primitive roots
of p is

φ(φ(p)) = φ(p − 1) = φ(2)φ(q) = q − 1.

Hence, the density of primitive roots in Z∗p is

(q − 1)/(p − 1) = (q − 1)/2q ≈ 1/2.

This makes it easy to find primitive roots of p probabilistically —
choose a random element a ∈ Z∗p and apply the Lucas test to it.
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Special form primes

Density of special form primes

How many special form primes are there?
We defer the question of the density of primes q such that 2q + 1
is also prime but remark that we can relax the requirements a bit.
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Special form primes

Relaxed requirements on special form primes

Here’s another way of generating a prime pair (p, q).

Let q be a prime. Generate numbers u = 2, 4, 6, . . . until we find u
for which p = uq + 1 is prime.

[Why do we skip odd u?]

Then p − 1 = uq for small u.

u can be factored by exhaustive search. At that point, we can
apply the Lucas test as before to find primitive roots.
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Special form primes

How many u must be tried?

By the prime number theorem, approximately one out of every
ln(q) numbers around the size of q will be prime.

While that applies to randomly chosen numbers, not to the
numbers in this particular sequence, there is at least some hope
that the density of primes will be similar.

If so, we can expect that u/2 will be about ln(q), so u is easily
factored for cryptographic-sized primes q.
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Cryptographic Hash Functions
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Properties of random functions

Cryptographic use of random functions

Let M be a message space and H a hash value space, and assume
|M| � |H|. A random function h chosen uniformly from M→H
gives a way to protect the integrity of messages.

Suppose Bob knows h(m) for Alice’s message m, and Bob receives
m′ from Alice. If h(m′) = h(m), then with very high probability,
m′ = m, and Bob can be assured of the integrity of m′.

One problem with this approach is that we have no succinct way of
describing random functions, so there is no way for Bob to compute
h(m′). The other problem is that h should be chosen anew for
each message. Otherwise, there is a small chance being stuck with
a bad h (for example a constant function) forever and ever.
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Message digest functions

Message digest functions

A message digest (also called a cryptographic hash or fingerprint)
function is a fixed (non-random) function that is designed to “look
like” a random function.

The goal is to preserve the integrity-checking property of random
functions: If Bob knows h(m) and he receives m′, then if
h(m′) = h(m), he can reasonably assume that m′ = m.

We now try to formalize what we require of a message digest
function in order to have this property.

We also show that message digest functions do not necessarily
“look random”, so one should not assume such functions share
other properties with random functions.
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Message digest functions

Formal definition of message digest functions

Let M be a message space and H a hash value space, and assume
|M| � |H|.

A message digest (or cryptographic one-way hash or fingerprint)
function h maps M→H.

A collision is a pair of messages m1,m2 such that h(m1) = h(m2),
and we say that m1 and m2 collide.

Because |M| � |H|, h is very far from being one-to-one, and there
are many colliding pairs. Nevertheless, it should be hard for an
adversary to find collisions.
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Message digest functions

Collision-avoidance properties

We consider three increasingly strong versions of what it means to
be hard to find collisions:

I One-way: Given y ∈ H, it is hard to find m ∈M such that
h(m) = y .

I Weakly collision-free: Given m ∈M, it is hard to find
m′ ∈M such that m′ 6= m and h(m′) = h(m).

I Strongly collision-free: It is hard to find colliding pairs (m,m′).

These definitions are rather vague, for they ignore issues of what
we mean by “hard” and “find”.
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Message digest functions

What does “hard” mean?

Intuitively, “hard” means that Mallory cannot carry out the
computation in a feasible amount of time on a realistic computer.
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Message digest functions

What does “find” mean?

The term “find” may mean

I “always produces a correct answer”, or

I “produces a correct answer with high probability”, or

I “produces a correct answer on a significant number of
possible inputs with non-negligible probability”.

The latter notion of “find” says that Mallory every now and then
can break the system. For any given application, there is a
maximum acceptable rate of error, and we must be sure that our
cryptographic system meets that requirement.
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Message digest functions

One-way function

What does it mean for h to be one-way?

It means that no probabilistic polynomial time algorithm Ah(y)
produces a message m such that h(m) = y with non-negligible
success probability.

(Such an m is called a pre-image of y under h.)

This is only required for random y chosen according to a particular
hash value distribution. There might be particular values of y on
which Ah does succeed with high probability.
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Message digest functions

Hash value distribution

The hash value distribution we have in mind is the one induced by
h applied to the assumed distribution on the message spaceM.

Thus, the probability of y is the probability that a message m
chosen according to the assumed message distribution satisfies
h(m) = y .

This means that h can be considered one-way even though
algorithms might exist that succeed on low-probability subsets
of H.
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