
Outline Properties Hash Constructions

CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 15
March 7, 2019

CPSC 367, Lecture 15 1/30

Outline Properties Hash Constructions

Properties of Hash Functions
Hash functions do not always look random
Relations among hash function properties

Constructing New Hash Functions from Old
Extending a hash function
A general chaining method

CPSC 367, Lecture 15 2/30

Outline Properties Hash Constructions

Properties of Hash Functions

CPSC 367, Lecture 15 3/30

Outline Properties Hash Constructions

Collision-resistance

Recall the three collision-resistance properties for a hash function
H from lecture 14:

I One-way: Given y ∈ H, it is hard to find m ∈M such that
h(m) = y . 1

I Weakly collision-free: Given m ∈M, it is hard to find
m′ ∈M such that m′ 6= m and h(m′) = h(m).

I Strongly collision-free: It is hard to find colliding pairs (m,m′).

1More precisely, no probabilistic polynomial-time algorithm A(y) succeeds
with non-negligible probability at finding a pre-image m ∈ h−1(y), where y is
chosen at random from H with probability proportional to |h−1(y)|.

CPSC 367, Lecture 15 4/30

http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln14.pdf

Outline Properties Hash Constructions

Non-random

Hash values can look non-random

Intuitively, we like to think of h(m) as being “random-looking”,
with no obvious pattern.

Indeed, it would seem that obvious patterns and structure in h
would provide a means of finding collisions, violating the property
of being strong collision-free.

However, hash functions don’t necessarily look random or share
other properties of random functions, as I now show.

CPSC 367, Lecture 15 5/30

Outline Properties Hash Constructions

Non-random

Example of a non-random-looking hash function

Suppose h is a strong collision-free hash function.

Define H(m) = 0 · h(m).

If (m,m′) is a colliding pair for H, then (m,m′) is also a colliding
pair for h.

Hence, if we could find colliding pairs for H, we could find colliding
pairs for h, contradicting the assumption that h is strong
collision-free.

We conclude that H is strong collision-free, despite the fact that
H(m) always begins with 0.

CPSC 367, Lecture 15 6/30

Outline Properties Hash Constructions

Non-random

A one-way function that is sometimes easy to invert

Let h(m) be a cryptographic hash function that produces hash
values of length n. Define a new hash function H(m) as follows:

H(m) =

{
0 ·m if |m| = n
1 · h(m) otherwise.

Thus, H produces hash values of length n + 1.

I H(m) is clearly collision-free since the only possible collisions
are for m’s of lengths different from n.

I Any colliding pair (m,m′) for H is also a colliding pair for h.

I Since h is collision-free, then so is H.

CPSC 367, Lecture 15 7/30

Outline Properties Hash Constructions

Non-random

H is one-way

H is one-way, assuming uniformly distributed messages.

This is true, even though H can be inverted for 1/2 of all possible
hash values y , namely, those that begin with 0.

The reason this doesn’t violate the definition of one-wayness is
that only 2n values of m map to hash values that begin with 0,
and all the rest map to values that begin with 1.

Since we are assuming |M| � |H|, the probability is small that a
uniformly sampled m ∈M has length exactly n.

We see that H is a cryptographic hash function, even though H
does not look random.

CPSC 367, Lecture 15 8/30

Outline Properties Hash Constructions

Relations among hash function properties

Strong implies weak collision-free

There are some obvious relationships between properties of hash
functions that can be made precise once the underlying definitions
are made similarly precise.

Fact
If h is strong collision-free, then h is weak collision-free, assuming
uniformly distributed messages.

CPSC 367, Lecture 15 9/30

Outline Properties Hash Constructions

Relations among hash function properties

Proof that strong ⇒ weak collision-free

Proof (Sketch).

Suppose h is not weak collision-free. We show that it is not strong
collision-free by showing how to enumerate colliding message pairs.

The method is straightforward:

I Pick a random message m ∈M.

I Try to find a colliding message m′.

I If we succeed, then output the colliding pair (m,m′).

I If not, try again with another randomly-chosen message.

Since h is not weak collision-free, we will succeed in finding m′ for
a significant number of m. Each success yields a colliding pair
(m,m′).

CPSC 367, Lecture 15 10/30

Outline Properties Hash Constructions

Relations among hash function properties

Speed of finding colliding pairs
How fast the pairs are enumerated depends on how often the
algorithm succeeds and how fast it is.

These parameters in turn may depend on how large M is relative
to H.

It is always possible that h is one-to-one on some subset U of
elements in M, so it is not necessarily true that every message has
a colliding partner.

However, an easy counting argument shows that U has size at
most |H| − 1.

Since we assume |M| � |H|, the probability that a
randomly-chosen message from M lies in U is correspondingly
small.

CPSC 367, Lecture 15 11/30

Outline Properties Hash Constructions

Relations among hash function properties

Strong implies one-way

In a similar vein, we argue that strong collision-free implies
one-way.

Fact
If h is strong collision-free, then h is one-way.

CPSC 367, Lecture 15 12/30

Outline Properties Hash Constructions

Relations among hash function properties

Proof that strong ⇒ one-way

Proof (Sketch).

Suppose h is not one-way. Then there is an algorithm A(y) for
finding m such that h(m) = y , and A(y) succeeds with
non-negligible probability when y is chosen randomly with
probability proportional to the size of its preimage. Assume that
A(y) returns ⊥ to indicate failure.

A randomized algorithm to enumerate colliding pairs:

1. Choose random m.
2. Compute y = h(m).
3. Compute m′ = A(y).
4. If m′ 6∈ {⊥,m} then output (m,m′).
5. Start over at step 1.

CPSC 367, Lecture 15 13/30

Outline Properties Hash Constructions

Relations among hash function properties

Proof (cont.)

Proof (continued).

Each iteration of this algorithm succeeds with significant
probability ε that is the product of the probability that A(y)
succeeds on y and the probability that m′ 6= m.

The latter probability is at least 1/2 except for those values m
which lie in the set of U of messages on which h is one-to-one
(defined in the previous proof).

Thus, assuming |M| � |H|, the algorithm outputs each colliding
pair in expected number of iterations that is only slightly larger
than 1/ε.

CPSC 367, Lecture 15 14/30

Outline Properties Hash Constructions

Relations among hash function properties

Weak implies one-way

These same ideas can be used to show that weak collision-free
implies one-way, but now one has to be more careful with the
precise definitions.

Fact
If h is weak collision-free, then h is one-way.

CPSC 367, Lecture 15 15/30

Outline Properties Hash Constructions

Relations among hash function properties

Proof that weak ⇒ one-way

Proof (Sketch).

Suppose as before that h is not one-way, so there is an algorithm
A(y) for finding m such that h(m) = y , and A(y) succeeds with
significant probability when y is chosen randomly with probability
proportional to the size of its preimage.

Assume that A(y) returns ⊥ to indicate failure. We want to show
this implies that the weak collision-free property does not hold, that
is, there is an algorithm that, for a significant number of m ∈M,
succeeds with non-negligible probability in finding a colliding m′.

CPSC 367, Lecture 15 16/30

Outline Properties Hash Constructions

Relations among hash function properties

Proof that weak ⇒ one-way (cont.)

We claim the following algorithm works:

Given input m:
1. Compute y = h(m).
2. Compute m′ = A(y).
3. If m′ 6∈ {⊥,m} then output (m,m′) and halt.
4. Otherwise, start over at step 1.

This algorithm fails to halt for m ∈ U, but the number of such m
is small (= insignificant) when |M| � |H|.

CPSC 367, Lecture 15 17/30

Outline Properties Hash Constructions

Relations among hash function properties

Proof that weak ⇒ one-way (cont.)

It may also fail even when a colliding partner m′ exists if it
happens that the value returned by A(y) is m. (Remember, A(y)
is only required to return some preimage of y ; we can’t say which.)

However, corresponding to each such bad case is another one in
which the input to the algorithm is m′ instead of m. In this latter
case, the algorithm succeeds, since y is the same in both cases.
With this idea, we can show that the algorithm succeeds in finding
a colliding partner on at least half of the messages in M− U.

CPSC 367, Lecture 15 18/30

Outline Properties Hash Constructions

Constructing New Hash Functions from Old

CPSC 367, Lecture 15 19/30

Outline Properties Hash Constructions

Extension

Extending a hash function

Suppose we are given a strong collision-free hash function

h : 256-bits→ 128-bits.

How can we use h to build a strong collision-free hash function

H : 512-bits→ 128-bits?

We consider several methods.

In the following, M is 512 bits long.
We write M = m1m2, where m1 and m2 are 256 bits each.

CPSC 367, Lecture 15 20/30

Outline Properties Hash Constructions

Extension

Method 1

First idea. Define

H(M) = H(m1m2) = h(m1)⊕ h(m2).

Unfortunately, this fails to be either strong or weak collision-free.

Let M ′ = m2m1. (M,M ′) is always a colliding pair for H except in
the special case that m1 = m2.

Recall that (M,M ′) is a colliding pair iff H(M) = H(M ′) and
M 6= M ′.

CPSC 367, Lecture 15 21/30

Outline Properties Hash Constructions

Extension

Method 2

Second idea. Define

H(M) = H(m1m2) = h(h(m1)h(m2)).

m1 and m2 are suitable arguments for h() since |m1| = |m2| = 256.

Also, h(m1)h(m2) is a suitable argument for h() since
|h(m1)| = |h(m2)| = 128.

Theorem
If h is strong collision-free, then so is H.

CPSC 367, Lecture 15 22/30

Outline Properties Hash Constructions

Extension

Correctness proof for Method 2

Assume H has a colliding pair (M = m1m2, M
′ = m′1m

′
2).

Then H(M) = H(M ′) but M 6= M ′.

Case 1: h(m1) 6= h(m′1) or h(m2) 6= h(m′2).
Let u = h(m1)h(m2) and u′ = h(m′1)h(m′2).
Then h(u) = H(M) = H(M ′) = h(u′), but u 6= u′.
Hence, (u, u′) is a colliding pair for h.

Case 2: h(m1) = h(m′1) and h(m2) = h(m′2).
Since M 6= M ′, then m1 6= m′1 or m2 6= m′2 (or both).
Whichever pair is unequal is a colliding pair for h.

In each case, we have found a colliding pair for h.

Hence, H not strong collision-free ⇒ h not strong collision-free.
Equivalently, h strong collision-free ⇒ H strong collision-free.

CPSC 367, Lecture 15 23/30

Outline Properties Hash Constructions

Chaining

A general chaining method

Let h : r -bits→ t-bits be a hash function, where r ≥ t + 2.
(In the above example, r = 256 and t = 128.)
Define H(m) for m of arbitrary length.

I Divide m after appropriate padding into blocks m1m2 . . .mk ,
each of length r − t − 1.

I Compute a sequence of t-bit states:

s1 = h(0t0m1)
s2 = h(s11m2)

...
sk = h(sk−11mk).

Then H(m) = sk .

CPSC 367, Lecture 15 24/30

Outline Properties Hash Constructions

Chaining

Chaining construction gives strong collision-free hash

Theorem
Let h be a strong collision-free hash function. Then the hash
function H constructed from h by chaining is also strong
collision-free.

CPSC 367, Lecture 15 25/30

Outline Properties Hash Constructions

Chaining

Correctness proof

Assume H has a colliding pair (m,m′).
We find a colliding pair for h.

I Let m = m1m2 . . .mk give state sequence s1, . . . , sk .

I Let m′ = m′1m
′
2 . . .m

′
k ′ give state sequence s ′1, . . . , s

′
k ′ .

Assume without loss of generality that k ≤ k ′.

Because m and m′ collide under H, we have sk = s ′k ′ .
Let r be the largest value for which sk−r = s ′k ′−r .

Let i = k − r , the index of the first such equal pair si = s ′k ′−k+i .

We proceed by cases.
(continued. . .)

CPSC 367, Lecture 15 26/30

Outline Properties Hash Constructions

Chaining

Correctness proof (case 1)

Case 1: i = 1 and k = k ′.

Then sj = s ′j for all j = 1, . . . , k .

Because m 6= m′, there must be some ` such that m` 6= m′`.

If ` = 1, then (0t0m1, 0t0m′1) is a colliding pair for h.

If ` > 1, then (s`−11m`, s
′
`−11m′`) is a colliding pair for h.

(continued. . .)

CPSC 367, Lecture 15 27/30

Outline Properties Hash Constructions

Chaining

Correctness proof (case 2)

Case 2: i = 1 and k < k ′.

Let u = k ′ − k + 1.

Then s1 = s ′u.

Since u > 1 we have that

h(0t0m1) = s1 = s ′u = h(s ′u−11m′u),

so (0t0m1, s
′
u−11m′u) is a colliding pair for h.

Note that this is true even if 0t = s ′u−1 and m1 = m′u, a possibility
that we have not ruled out.

(continued. . .)

CPSC 367, Lecture 15 28/30

Outline Properties Hash Constructions

Chaining

Correctness proof (case 3)

Case 3: i > 1.

Then u = k ′ − k + i > 1.

By choice of i , we have si = s ′u, but si−1 6= s ′u−1.

Hence,
h(si−11mi) = si = s ′u = h(s ′u−11m′u),

so (si−11mi , s
′
u−11m′u) is a colliding pair for h.

(continued. . .)

CPSC 367, Lecture 15 29/30

Outline Properties Hash Constructions

Chaining

Correctness proof (conclusion)

In each case, we found a colliding pair for h.

The contradicts the assumption that h is strong collision-free.

Hence, H is also strong collision-free.

CPSC 367, Lecture 15 30/30

	Outline
	Properties of Hash Functions
	Hash functions do not always look random
	Relations among hash function properties

	Constructing New Hash Functions from Old
	Extending a hash function
	A general chaining method

