
Outline Common Hash Functions Hashed Data Structures Appendix

CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 16
March 26, 2019

CPSC 367, Lecture 16 1/37



Outline Common Hash Functions Hashed Data Structures Appendix

Common Hash Functions
SHA-2
SHA-3
MD5

Hashed Data Structures
Motivation: Peer-to-peer file sharing networks
Hash lists
Hash Trees

Appendix: Birthday Attack Revisited

CPSC 367, Lecture 16 2/37



Outline Common Hash Functions Hashed Data Structures Appendix

Common Hash Functions

CPSC 367, Lecture 16 3/37



Outline Common Hash Functions Hashed Data Structures Appendix

Popular hash functions

Many cryptographic hash functions are currently in use.

For example, the openssl library includes implementations of MD2,
MD4, MD5, MDC2, RIPEMD, SHA, SHA-1, SHA-256, SHA-384,
and SHA-512.

The SHA-xxx methods (otherwise known as SHA-2) are
recommended for new applications, but these other functions are
also in widespread use.

CPSC 367, Lecture 16 4/37



Outline Common Hash Functions Hashed Data Structures Appendix

SHA-2

SHA-2

SHA-2 is a family of hash algorithms designed by NSA known as
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256.

They produce message digests of lengths 224, 256, 384, or 512
bits.

They comprise the current Secure Hash Standard (SHS) and are
described in FIPS 180–4. It states,

“Secure hash algorithms are typically used with other cryp-
tographic algorithms, such as digital signature algorithms
and keyed-hash message authentication codes, or in the
generation of random numbers (bits).”

CPSC 367, Lecture 16 5/37

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf


Outline Common Hash Functions Hashed Data Structures Appendix

SHA-2

SHA-1 broken

SHA-1 was first described in 1995. It produces a 160-bit message
digest.

It was broken in 2005 by Xiaoyun Wang, Yiqun Lisa Yin, and
Hongbo Yu: “Finding Collisions in the Full SHA-1”. CRYPTO
2005: 17-36.

Wang and Yu did their work at Shandong University; Yin is listed
on the paper as an independent security consultant in Greenwich,
CT.

CPSC 367, Lecture 16 6/37

http://www.springerlink.com/content/26vljj3xhc28ux5m/


Outline Common Hash Functions Hashed Data Structures Appendix

SHA-2

SHA-1 still in use

SHA-1 is still in widespread use despite its known vulnerabilities.

Google is taking steps in its Chrome browser to alert users to web
sites still using SHA-1 based certificates.

See “Gradually sunsetting SHA-1”.

CPSC 367, Lecture 16 7/37

http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html


Outline Common Hash Functions Hashed Data Structures Appendix

SHA-3

A new secure hash algorithm

On Nov. 2, 2007, NIST announced a public competition for a
replacement algorithm to be known as SHA-3.

The winner, an algorithm named Keccak, was announced on
October 2, 2012 and standardized in August 2015. See
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

CPSC 367, Lecture 16 8/37

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf


Outline Common Hash Functions Hashed Data Structures Appendix

SHA-3

From the SHA-3 standard

Now that the standards document is out, it seems that SHA-3 is
considered to be a supplement to the previous standard, not a
replacement for it. The quote below is from the abstract of FIPS
PUB 202.

“Hash functions are components for many important in-
formation security applications, including 1) the generation
and verification of digital signatures, 2) key derivation, and
3) pseudorandom bit generation. The hash functions spec-
ified in this Standard supplement the SHA-1 hash function
and the SHA-2 family of hash functions that are specified
in FIPS 180-4, the Secure Hash Standard.”

CPSC 367, Lecture 16 9/37



Outline Common Hash Functions Hashed Data Structures Appendix

MD5

MD5

MD5 is an older algorithm (1992) devised by Rivest.

Weaknesses were found as early as 1996. It was shown not to be
collision resistant in 2004.1

Subsequent papers show that MD5 has more serious weaknesses
that make it no longer suitable for most cryptographic uses.

We present an overview of MD5 here because it is relatively simple
and it illustrates the principles used in many hash algorithms.

1How to Break MD5 and Other Hash Functions by Xiaoyun Wang and
Hongbo Yu.

CPSC 367, Lecture 16 10/37

http://link.springer.com/content/pdf/10.1007%2F11426639_2.pdf


Outline Common Hash Functions Hashed Data Structures Appendix

MD5

MD5 algorithm overview

MD5 generates a 128-bit message digest from an input message of
any length. It is built from a basic block function

g : 128-bit× 512-bit→ 128-bit.

The MD5 hash function h is obtained as follows:

I The original message is padded to length a multiple of 512.

I The result m is split into a sequence of 512-bit blocks
m1,m2, . . . ,mk .

I h is computed by chaining g on the first argument.

We next look at these steps in greater detail.

CPSC 367, Lecture 16 11/37



Outline Common Hash Functions Hashed Data Structures Appendix

MD5

MD5 padding

As with block encryption, it is important that the padding function
be one-to-one, but for a different reason.

For encryption, the one-to-one property is what allows unique
decryption.

For a hash function, it prevents there from being trivial colliding
pairs.

For example, if the last partial block is simply padded with 0’s,
then all prefixes of the last message block will become the same
after padding and will therefore collide with each other.

CPSC 367, Lecture 16 12/37



Outline Common Hash Functions Hashed Data Structures Appendix

MD5

MD5 chaining

The function h can be regarded as a state machine, where the
states are 128-bit strings and the inputs to the machine are 512-bit
blocks.

The machine starts in state s0, specified by an initialization vector
IV.

Each input block mi takes the machine from state si−1 to new
state si = g(si−1,mi ).

The last state sk is the output of h, that is,

h(m1m2 . . .mk−1mk) = g(g(. . . g(g(IV ,m1),m2) . . . ,mk−1),mk).

CPSC 367, Lecture 16 13/37



Outline Common Hash Functions Hashed Data Structures Appendix

MD5

MD5 block function

The block function g(s, b) is built from a scrambling function
g ′(s, b) that regards s and b as sequences of 32-bit words and
returns four 32-bit words as its result.

Suppose s = s1s2s3s4 and g ′(s, b) = s ′1s
′
2s
′
3s
′
4.

We define

g(s, b) = (s1 + s ′1) · (s2 + s ′2) · (s3 + s ′3) · (s4 + s ′4),

where “+” means addition modulo 232 and “·” is concatenation of
the representations of integers as 32-bit binary strings.

CPSC 367, Lecture 16 14/37



Outline Common Hash Functions Hashed Data Structures Appendix

MD5

MD5 scrambling function

The computation of the scrambling function g ′(s, b) consists of 4
stages, each consisting of 16 substages.

We divide the 512-bit block b into 32-bit words b1b2 . . . b16.

Each of the 16 substages of stage i uses one of the 32-bit words of
b, but the order they are used is defined by a permutation πi that
depends on i .

In particular, substage j of stage i uses word b`, where ` = πi (j) to
update the state vector s.

The new state is fi ,j(s, b`), where fi ,j is a bit-scrambling function
that depends on i and j .

CPSC 367, Lecture 16 15/37



Outline Common Hash Functions Hashed Data Structures Appendix

MD5

Further remarks on MD5

We omit further details of the bit-scrambling functions fi ,j ,

However, note that the state s can be represented by four 32-bit
words, so the arguments to fi ,j occupy only 5 machine words.
These easily fit into the high-speed registers of modern processors.

The definitive specification for MD5 is RFC1321 and errata. A
general discussion of MD5 along with links to recent work and
security issues can be found on Wikipedia.

CPSC 367, Lecture 16 16/37

http://tools.ietf.org/html/rfc1321
http://en.wikipedia.org/wiki/MD5


Outline Common Hash Functions Hashed Data Structures Appendix

Hashed Data Structures

CPSC 367, Lecture 16 17/37



Outline Common Hash Functions Hashed Data Structures Appendix

P2P

Peer-to-peer networks

One real-world application of hash functions is to peer-to-peer
file-sharing networks.

The goal of a P2P network is to improve throughput when sending
large files to large numbers of clients.

It operates by splitting the file into blocks and sending each block
separately through the network along possibly different paths to
the client.

Rather than fetching each block from the master source, a block
can be received from any node (peer) that happens to have the
needed block.

The problem is to validate blocks received from untrusted peers.

CPSC 367, Lecture 16 18/37



Outline Common Hash Functions Hashed Data Structures Appendix

P2P

Integrity checking

An obvious approach is for a trusted master node to send each
client a hash of the entire file.

When all blocks have been received, the client reassembles the file,
computes its hash, and checks that it matches the hash received
from the master.

The problem with this approach is that if the hashes don’t match,
the client has no idea which block is bad.

What is needed is a way to send a “proof” with each block that
the client can use to verify the integrity of the block when it is
received.

CPSC 367, Lecture 16 19/37



Outline Common Hash Functions Hashed Data Structures Appendix

P2P

Block hashes

One idea is to compute a hash hk of each data block bk using a
cryptographic hash function H.

The client validates bk by checking that H(bk) = hk .

This allows a large untrusted data block to be validated against a
much shorter trusted block hashes.

Problem: How does the client obtain and validate the hashes?

We desire a scheme in which a small amount of trusted data can
be leveraged to validate the block hashes as well as the data blocks
themselves.

CPSC 367, Lecture 16 20/37



Outline Common Hash Functions Hashed Data Structures Appendix

Hash lists

Hash lists

A hash list is a two-level tree of
hash values.

The leaves of the tree are the
block hashes Hashk .

The concatenation of the Hashk

are hashed together to produce a
top hash.

From Wikipedia, “Hash List”

CPSC 367, Lecture 16 21/37

http://en.wikipedia.org/wiki/Hash_list


Outline Common Hash Functions Hashed Data Structures Appendix

Hash lists

Using a hash list

The client receives top hash from the trusted source.

The client receives the list of Hashk from any untrusted source.

The Hashk are validated by hashing their concatenation and
comparing the result with the stored top hash.

Each data block bk is validated using the corresponding Hashk .

CPSC 367, Lecture 16 22/37



Outline Common Hash Functions Hashed Data Structures Appendix

Hash lists

Weakness of hash list approach

The main drawback of hash lists is that the entire hash list must
be downloaded and verified before data blocks can be checked.

A bad Hashk would cause a good bk to be repeatedly rejected and
refetched.

BitTorrent places all of the hashes in a single file which is initially
downloaded from a trusted source.

CPSC 367, Lecture 16 23/37



Outline Common Hash Functions Hashed Data Structures Appendix

Hash Trees

Hash trees (Merkle trees)

Hash trees provide a way to at-
tach a small untrusted valida-
tion block to each data block
that allows the data block to be
validated directly against a sin-
gle trusted hash value top hash.

Neither the validation block nor
the data block need be trusted;
errors in either will be detected.

From Wikipedia, “Merkle tree”

Example: To validate L2, use Hash 0-0 and Hash 1 to compute Top
Hash. Compare with trusted Top Hash. If they agree, can trust L2,
Hash 0-0, and Hash 1.

CPSC 367, Lecture 16 24/37

http://en.wikipedia.org/wiki/Merkle_tree


Outline Common Hash Functions Hashed Data Structures Appendix

Hash Trees

Tree notation

A hash tree is a complete binary tree with N = 2n leaves.

Label the nodes by strings σ ∈ {0, 1}∗, where σ describes the path
from the root to the node.

The root is denoted by vε, where ε is the null string. Its two sons
are v0 and v1.

The two children of any internal node vj are denoted by vj0 and vj1.

Let σk be the path from the root to the kth leaf. Then vσk denotes
the leaf node corresponding to data block bk .

CPSC 367, Lecture 16 25/37



Outline Common Hash Functions Hashed Data Structures Appendix

Hash Trees

Node values in a hash tree

Let vτ be a node in a hash tree.

Define Hashτ , the hash value at node vτ :

I If vτ is a leaf, then τ = σk for some k, and

Hashτ = H(bk).

I If vτ is an internal node, then

Hashτ = H(Hashτ0 · Hashτ1).

CPSC 367, Lecture 16 26/37



Outline Common Hash Functions Hashed Data Structures Appendix

Hash Trees

Companion nodes

Let vτ be an internal node, and let vτ ′ be its sibling in the tree.
We say that τ ′ is the companion of τ . τ ′ is obtained from τ by
flipping the last bit.

Example: The companion of 1011 is 1010 since v1011 and v1010 are
the two children of v101.

CPSC 367, Lecture 16 27/37



Outline Common Hash Functions Hashed Data Structures Appendix

Hash Trees

Validation block

The validation block Bk for data block k consists of the sequence
of hash values Hashτ ′ for each companion τ ′ of each non-null
prefix τ of σk .

Example: Let σk = 1011.

I The non-null prefixes of σk are 1011, 101, 10, 1.

I The corresponding companions are 1010, 100, 11, 0.

I The validation block is

Bk = (Hash1010, Hash100, Hash11, Hash0).

CPSC 367, Lecture 16 28/37



Outline Common Hash Functions Hashed Data Structures Appendix

Hash Trees

Block validation using hash trees

Validating data block bk requires top hash and validation block Bk .

One proceeds by computing Hashτ for each τ that is a prefix of
σk , working in order from longer to shorter prefixes.

I If τ = σk , then Hashτ = H(bk).

I Let τ be a proper prefix of σk . Assume w.l.o.g. that τ0 is a
prefix of σk and τ1 is its companion. Then Hashτ0 has just
been computed, and Hashτ1 is available in the validation
block. We compute

Hashτ = H(Hashτ0 · Hashτ1).

Validation succeeds if Hashε = top hash.

CPSC 367, Lecture 16 29/37



Outline Common Hash Functions Hashed Data Structures Appendix

Appendix: Birthday Attack Revisited

CPSC 367, Lecture 16 30/37



Outline Common Hash Functions Hashed Data Structures Appendix

Bits of security for hash functions
MD5 hash function produces 128-bit values, whereas the SHA-xxx
family produces values of 160-bits or more.

How many bits do we need for security?

Both 128 and 160 are more than large enough to thwart a brute
force attack that simply searches randomly for colliding pairs.

However, the Birthday Attack reduces the size of the search space
to roughly the square root of the original size.

MD5’s effective security is at most 64 bits. (
√

2128 = 264.)

SHA-1’s effective security is at most 80-bits. (
√

2160 = 280.)

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu describe an attack
that reduces this number to only 69-bits (Crypto 2005).

CPSC 367, Lecture 16 31/37

http://www.springerlink.com/content/26vljj3xhc28ux5m/


Outline Common Hash Functions Hashed Data Structures Appendix

Birthday Paradox

We described a birthday attack in lecture 7, based on the birthday
paradox.

The problem is to find the probability that two people in a set of
randomly chosen people have the same birthday.

This probability is greater than 50% in any set of at least 23
randomly chosen people.2.

23 is far less than the 253 people that are needed for the
probability to exceed 50% that at least one of them was born on a
specific day, say January 1.

2See Wikipedia, “Birthday paradox”.

CPSC 367, Lecture 16 32/37

http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln07.pdf
http://en.wikipedia.org/wiki/Birthday_paradox


Outline Common Hash Functions Hashed Data Structures Appendix

Birthday Paradox (cont.)

Here’s why it works.

The probability of not having two people with the same birthday is
is

q =
365

365
· 364

365
· · · 343

365
= 0.492703

Hence, the probability that (at least) two people have the same
birthday is 1− q = 0.507297.

This probability grows quite rapidly with the number of people in
the room. For example, with 46 people, the probability that two
share a birthday is 0.948253.

CPSC 367, Lecture 16 33/37



Outline Common Hash Functions Hashed Data Structures Appendix

Birthday attack on hash functions

The birthday paradox gives a much faster way to find colliding
pairs of a hash function than simply choosing pairs at random.

Method: Choose a random set of k messages and see if any
two messages in the set collide.

Thus, with only k evaluations of the hash function, we can test(k
2

)
= k(k − 1)/2 different pairs of messages for collisions.

CPSC 367, Lecture 16 34/37



Outline Common Hash Functions Hashed Data Structures Appendix

Birthday attack analysis

Of course, these
(k
2

)
pairs are not uniformly distributed, so one

needs a birthday-paradox style analysis of the probability that a
colliding pair will be found.

The general result is that the probability of success is at least 1/2
when k ≈

√
n, where n is the size of the hash value space.

CPSC 367, Lecture 16 35/37



Outline Common Hash Functions Hashed Data Structures Appendix

Practical difficulties of birthday attack

Two problems make this attack difficult to use in practice.

1. One must find duplicates in the list of hash values.
This can be done in time O(k log k) by sorting.

2. The list of hash values must be stored and processed.

For MD5, k ≈ 264. To store k 128-bit hash values requires 268

bytes ≈ 250 exabytes = 250,000 petabytes of storage.

To sort would require log2(k) = 64 passes over the table, which
would process 16 million petabytes of data.

CPSC 367, Lecture 16 36/37



Outline Common Hash Functions Hashed Data Structures Appendix

A back-of-the-envelope calculation

Google was reportedly processing 20 petabytes of data per day in
2008. At this rate, it would take Google more than 800,000 days
or nearly 2200 years just to sort the data.

This attack is still infeasible for values of k needed to break hash
functions. Nevertheless, it is one of the more subtle ways that
cryptographic primitives can be compromised.

CPSC 367, Lecture 16 37/37


	Outline
	Common Hash Functions
	SHA-2
	SHA-3
	MD5

	Hashed Data Structures
	Motivation: Peer-to-peer file sharing networks
	Hash lists
	Hash Trees

	Appendix: Birthday Attack Revisited

