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Quadratic Residues Revisited
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QR reprise

Quadratic residues play a key role in the Feige-Fiat-Shamir zero
knowledge authentication protocol.

They can also be used to produce a secure probabilistic
cryptosystem and a cryptographically strong pseudorandom bit
generator.

Before we can proceed to these protocols, we need some more
number-theoretic properties of quadratic residues.
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Euler criterion

Euler criterion

The Euler criterion gives a feasible method for testing membership
in QRp when p is an odd prime.

Theorem (Euler Criterion)

An integer a is a non-trivial1 quadratic residue modulo an odd
prime p iff

a(p−1)/2 ≡ 1 (mod p).

1A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).

CPSC 367, Lecture 21 6/72



Outline QR QR encryption Secure PRSG BBS Finding sqrt Distributions Legendre/Jacobi BBS Security

Euler criterion

Proof of Euler Criterion

Proof in forward direction.
Let a ≡ b2 (mod p) for some b 6≡ 0 (mod p). Then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

by Euler’s theorem, as desired.
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Euler criterion

Proof of Euler Criterion (continued)

Proof in reverse direction.
Suppose a(p−1)/2 ≡ 1 (mod p). Clearly a 6≡ 0 (mod p). We find a
square root b of a modulo p.

Let g be a primitive root of p. Choose k so that a ≡ gk (mod p),
and let ` = (p − 1)k/2. Then

g ` ≡ g (p−1)k/2 ≡ (gk)(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p).

Since g is a primitive root and g ` ≡ 1 (mod p), then φ(p) |`.
Hence, `/φ(p) = `/(p − 1) = k/2 is an integer.

Let b = gk/2. Then b2 ≡ gk ≡ a (mod p), so b is a non-trivial
square root of a modulo p, as desired.

CPSC 367, Lecture 21 8/72



Outline QR QR encryption Secure PRSG BBS Finding sqrt Distributions Legendre/Jacobi BBS Security

Distinguishing Residues from Non-Residues

A hard problem associated with quadratic residues

Let n = pq, where p and q are distinct odd primes.

Recall that each a ∈ QRn has 4 square roots, and 1/4 of the
elements in Z∗n are quadratic residues.

Some elements of Z∗n are easily recognized as non-residues, but
there is a subset of non-residues (which we denote by Q00

n ) that
are hard to distinguish from quadratic residues without knowing p
and q.
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Distinguishing Residues from Non-Residues

Quadratic residues modulo n = pq
Let n = pq, p, q distinct odd primes.

We divide the numbers in Z∗n into four classes depending on their
membership in QRp and QRq.2

I Let Q11
n = {a ∈ Z∗n | a ∈ QRp ∩QRq}.

I Let Q10
n = {a ∈ Z∗n | a ∈ QRp ∩QNRq}.

I Let Q01
n = {a ∈ Z∗n | a ∈ QNRp ∩QRq}.

I Let Q00
n = {a ∈ Z∗n | a ∈ QNRp ∩QNRq}.

Under these definitions, QRn = Q11
n

QNRn = Q00
n ∪ Q01

n ∪ Q10
n

2To be strictly formal, we classify a ∈ Z∗
n according to whether or not

(a mod p) ∈ QRp and whether or not (a mod q) ∈ QRq.
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Distinguishing Residues from Non-Residues

Quadratic residuosity problem

Definition (Quadratic residuosity problem)

The quadratic residuosity problem is to decide, given
a ∈ Q00

n ∪ Q11
n , whether or not a ∈ Q11

n .

Fact
There is no known feasible algorithm for solving the quadratic
residuosity problem that gives the correct answer significantly more
than 1/2 the time for uniformly distributed random a ∈ Q00

n ∪Q11
n ,

unless the factorization of n is known.

The quadratic residuosity assumption is that there is not feasible
algorithm for solving the quadradic residuosity problem that gives
the correct answer with probability significantly better than 1/2.
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Encryption Based on Quadratic Residues
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Securely encrypting single bits

Goldwasser and Micali devised a probabilistic public key
cryptosystem based on the assumed hardness of the quadratic
residuosity problem that allows one to securely encrypt single bits.

The idea is to encrypt a “0” by a random residue of QRn and a
“1” by a random non-residue in Q00

n . Any ability to decrypt the bit
is tantamount to solving the quadratic residuosity problem.
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Goldwasser-Micali probabilistic cryptosystem

Key Generation

The public key consists of a pair e = (n, y), where n = pq for
distinct odd primes p, q, and y is any member of Q00

n .

The private key consists of the triple d = (n, y , p).

The message space is M = {0, 1}. (Single bits!)

The ciphertext space is C = Q00
n ∪ Q11

n .
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Goldwasser-Micali probabilistic cryptosystem (cont.)

Encryption
To encrypt m ∈M, Alice chooses a random r ∈ Z∗n and sets
a = r2 mod n. The result a is a random element of QRn = Q11

n .

If m = 0, set c = a (which is in Q11
n ).

If m = 1, set c = ay mod n (which is in Q00
n ).

Decryption
Bob, knowing the private key p, can use the Euler Criterion to
quickly determine whether or not c ∈ QRp and hence whether
c ∈ Q11

n or c ∈ Q00
n , thereby determining m.
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Goldwasser-Micali probabilistic cryptosystem (cont.)

Security
Eve’s problem of finding m given c is equivalent to the problem of
testing if c ∈ Q11

n , given that c ∈ Q00
n ∪ Q11

n .

This is just the quadratic residuosity problem, assuming the
ciphertexts are uniformly distributed. One can show:

I Every element of Q11
n is equally likely to be chosen as the

ciphertext c in case m = 0;

I Every element of Q00
n is equally likely to be chosen as the

ciphertext c in case m = 1.

If the messages are also uniformly distributed, then any element of
Q00

n ∪ Q11
n is equally likely to be the ciphertext.
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Summary

Important facts about quadratic residues

1. If p is odd prime, then |QRp| = |Z∗p|/2, and for each
a ∈ QRp, |

√
a| = 2.

2. If n = pq, p 6= q odd primes, then |QRn| = |Z∗n|/4, and for
each a ∈ QRn, |

√
a| = 4.

3. Euler criterion: a ∈ QRp iff a(p−1)/2 ≡ 1 (mod p), p odd
prime.

4. If p is odd prime, a ∈ QRp, can feasibly find y ∈
√
a. (See

appendix.)

5. If n = pq, p 6= q odd primes, then distinguishing Q00
n from

Q11
n is believed to be infeasible. Hence, infeasible to find

y ∈
√
a. Why?

If not, one could attempt to find y ∈
√
a, check that y2 ≡ a

(mod n), and conclude that a ∈ Q11 if successful.
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Secure Random Sequence Generators
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Pseudorandom sequence generators

Pseudorandom sequence generators

A pseudorandom sequence generator (PRSG) is a function that
maps a short seed to a long “random-looking” output sequence.

The seed typically has length between 32 and a few thousand bits.

The output is typically much longer, ranging from thousands or
millions of bits or more, but polynomially related to the seed
length.

The output of a PRSG is a sequence that is supposed to “look
random”.
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Pseudorandom sequence generators

Incremental generators

In practice, a PRSG is implemented as a co-routine that outputs
the next block of bits in the sequence each time it is called. For
example, the linux function

void srandom(unsigned int seed)
sets

the 32-bit seed. Each subsequent call on

long int random(void)

returns an integer in the range [0, . . . ,RAND MAX ].

On my machine, the return value is 31 bits long (even though
sizeof(long int) is 64).
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Pseudorandom sequence generators

Limits on incremental generators

Incremental generators typically are based on state machines with a
finite number of states, so the output eventually becomes periodic.

The period of random() is said to be approximately 16 ∗ (231 − 1).

The output of a PRSG becomes predictable from past outputs
once the generator starts to repeat. The point of repetition defines
the maximum usable output length, even if the implementation
allows bits to continue to be produced.
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Looking random

What does it mean for a string to look random?

For the output of a PRSG to look random:

I It must pass common statistical tests of randomness. For
example, the frequencies of 0’s and 1’s in the output sequence
must be approximately equal.

I It must lack obvious structure, such as having all 1’s occur in
pairs.

I It must be difficult to find the seed given the output sequence,
since otherwise the whole sequence is easily generated.

I It must be difficult to correctly predict any generated bit, even
knowing all of the other bits of the output sequence.

I It must be difficult to distinguish its output from truly random
bits.
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Looking random

Chaitin/Kolmogorov randomness

Chaitin and Kolmogorov defined a string to be “random” if its
shortest description is almost as long as the string itself.

By this definition, most strings are random by a simple counting
argument.

For example, 011011011011011011011011011 is easily described as
the pattern 011 repeated 9 times. On the other hand,
101110100010100101001000001 has no obvious short description.

While philosophically very interesting, these notions are somewhat
different than the statistical notions that most people mean by
randomness and do not seem to be useful for cryptography.
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Looking random

Cryptographically secure PRSG

A PRSG is said to be cryptographically secure if its output cannot
be feasibly distinguished from truly random bits.

In other words, no feasible probabilistic algorithm behaves
significantly differently when presented with an output from the
PRSG as it does when presented with a truly random string of the
same length.

We argue that this definition encompasses all of the desired
properties for “looking random” discussed earlier,
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Looking random

The BBS secure PRSG

In the rest of this lecture, we show how to build a PRSG that is
provably secure. It is based on the quadratic residuosity
assumption.
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BBS Pseudorandom Sequence Generator
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Blum primes and integers

A Blum prime is a prime p such that p ≡ 3 (mod 4).

A Blum integer is a number n = pq, where p and q are distinct
Blum primes.

If p is a Blum prime, then −1 ∈ QNRp. This follows from the

Euler criterion, since p−1
2 is odd. By definition of the Legendre

symbol,
(
−1
p

)
= −1. (See appendix.)

If n is a Blum integer, then −1 ∈ QNRn, but now(
−1

n

)
=

(
−1

p

) (
−1

q

)
= (−1)(−1) = 1.

CPSC 367, Lecture 21 27/72



Outline QR QR encryption Secure PRSG BBS Finding sqrt Distributions Legendre/Jacobi BBS Security

Square roots of Blum primes

Theorem
Let p be a Blum prime, a ∈ QRp, and {b,−b} =

√
a be the two

square roots of a. Then exactly one of b and −b is itself a
quadratic residue.

Proof.
(−b)(p−1)/2 6= b(p−1)/2 since

(−b)(p−1)/2 = (−1)(p−1)/2b(p−1)/2 = (−1)b(p−1)/2.

Both (−b)(p−1)/2 and b(p−1)/2 are in
√

1 = {±1}, so it follows
from the Euler criterion that one of b, −b is a quadratic residue
and the other is not.
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Square roots of Blum integers

Theorem (QR square root)

Let n = pq be a Blum integer and a ∈ QRn. Exactly one of a’s
four square roots modulo n is a quadratic residue.
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Proof of QR square root theorem

Consider Z∗p and Z∗q. a ∈ QRp and a ∈ QRq.

Let {b,−b} ∈
√
a (mod p). By the previous theorem, exactly one

of these numbers is in QRp. Call that number bp.

Similarly, one of the square roots of a (mod q) is in QRq, say bq.

Applying the Chinese Remainder Theorem, it follows that exactly
one of a’s four square roots modulo n is in QRn.
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A cryptographically secure PRSG

We present a cryptographically secure pseudorandom sequence
generator due to Blum, Blum, and Shub (BBS).

BBS is defined by a Blum integer n = pq and an integer `.

It maps strings in Z∗n to strings in {0, 1}`.

Given a seed s0 ∈ Z∗n, we define a sequence s1, s2, s3, . . . , s`, where
si = s2i−1 mod n for i = 1, . . . , `.

The `-bit output sequence BBS(s0) is b1, b2, b3, . . . , b` , where
bi = lsb(si ) is the least significant bit of si .

CPSC 367, Lecture 21 31/72



Outline QR QR encryption Secure PRSG BBS Finding sqrt Distributions Legendre/Jacobi BBS Security

QR assumption and Blum integers

The security of BBS is based on the assumed difficulty of
determining, for a given a with Jacobi symbol 1, whether or not a is
a quadratic residue, i.e., whether or not a ∈ QRn. (See appendix.)

We just showed that Blum primes and Blum integers have the
important property that every quadratic residue a has exactly one
square root y which is itself a quadratic residue.

Call such a y the principal square root of a and denote it
(ambiguously) by

√
a (mod n) or simply by

√
a when it is clear

that mod n is intended.
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Security of BBS

We show in the appendix that BBS is cryptographically secure.

The proof reduces the problem of predicting the output of BBS to
the quadratic residuosity problem for numbers with Jacobi
symbol 1 over Blum integers.

To do this reduction, we show that if there is a judge J that
successfully distinguishes BBS(S) from U, then there is a feasible
algorithm A for distinguishing quadratic residues from non-residues
with Jacobi symbol 1, contradicting the above version of the QR
hardness assumption.
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Appendix: Finding Square Roots
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Special primes

Finding square roots modulo prime p ≡ 3 (mod 4)

The Euler criterion lets us test membership in QRp for prime p,
but it doesn’t tell us how to quickly find square roots. They are
easily found in the special case when p ≡ 3 (mod 4).

Theorem
Let p ≡ 3 (mod 4), a ∈ QRp. Then b = a(p+1)/4 ∈

√
a (mod p).

Proof.
p + 1 is divisible by 4, so (p + 1)/4 is an integer. Then

b2 ≡ (a(p+1)/4)2 ≡ a(p+1)/2 ≡ a1+(p−1)/2 ≡ a · 1 ≡ a (mod p)

by the Euler Criterion.
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General primes

Finding square roots for general primes

We now present an algorithm due to D. Shanks3 that finds square
roots of quadratic residues modulo any odd prime p.

3Shanks’s algorithm appeared in his paper, “Five number-theoretic
algorithms”, in Proceedings of the Second Manitoba Conference on Numerical
Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment
is taken from the paper by Jan-Christoph Schlage-Puchta”, “On Shank’s
Algorithm for Modular Square Roots”, Applied Mathematics E-Notes, 5
(2005), 84–88.
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General primes

Shank’s algorithm

Let p be an odd prime. Write φ(p) = p − 1 = 2st, where t is odd.
(Recall: s is # trailing 0’s in the binary expansion of p − 1.)

Because p is odd, p − 1 is even, so s ≥ 1.
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General primes

A special case

In the special case when s = 1, then p − 1 = 2t, so p = 2t + 1.

Writing the odd number t as 2`+ 1 for some integer `, we have

p = 2(2`+ 1) + 1 = 4`+ 3,

so p ≡ 3 (mod 4).

This is exactly the case that we handled above.
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General primes

Overall structure of Shank’s algorithm

Let p − 1 = 2st be as above, where p is an odd prime.

Assume a ∈ QRp is a quadratic residue and u ∈ QNRp is a
quadratic non-residue.

We can easily find u by choosing random elements of Z∗p and
applying the Euler Criterion.

The goal is to find x such that x2 ≡ a (mod p).

CPSC 367, Lecture 21 39/72



Outline QR QR encryption Secure PRSG BBS Finding sqrt Distributions Legendre/Jacobi BBS Security

General primes

Shanks’s algorithm

1. Let s, t satisfy p − 1 = 2st and t odd.
2. Let u ∈ QNRp.
3. k = s
4. z = ut mod p
5. x = a(t+1)/2 mod p
6. b = at mod p
7. while (b 6≡ 1 (mod p)) {
8. let m be the least integer with b2

m ≡ 1 (mod p)

9. y = z2
k−m−1

mod p
10. z = y2 mod p
11. b = bz mod p
12. x = xy mod p
13. k = m
14. }
15. return x
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General primes

Loop invariant

The congruence
x2 ≡ ab (mod p)

is easily shown to be a loop invariant.

It’s clearly true initially since x2 ≡ at+1 and b ≡ at (mod p).

Each time through the loop, a is unchanged, b gets multiplied by
y2 (lines 10 and 11), and x gets multiplied by y (line 12); hence
the invariant remains true regardless of the value of y .

If the program terminates, we have b ≡ 1 (mod p), so x2 ≡ a, and
x is a square root of a (mod p).
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General primes

Termination proof (sketch)

The algorithm terminates after at most s − 1 iterations of the loop.

To see why, we look at the orders4 of b and z (mod p) and show
the following loop invariant:

At the start of each loop iteration (before line 8), ord(b)
is a power of 2 and ord(b) < ord(z) = 2k .

After line 8, m < k since 2m = ord(b) < 2k . Line 13 sets k = m
for the next iteration, so k decreases on each iteration.

The loop terminates when b ≡ 1 (mod p). Then ord(b) = 1 < 2k ,
so k ≥ 1. Hence, the loop is executed at most s − 1 times.

4Recall that the order of an element g modulo p is the least positive integer
k such that g k ≡ 1 (mod p).
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General primes

Looking ahead

In the rest of this lecture, we carefully define what it means for a
PRSG to be secure.

We then show how to build a PRSG that is provably secure. It is
based on the quadratic residuosity assumption (lecture 20) on
which the Goldwasser-Micali probabilistic cryptosystem is based.
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Appendix: Similarity of Probability

Distributions
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Cryptographically secure PRSG

Formal definition of PRSG

Formally, a pseudorandom sequence generator G is a function from
a domain of seeds S to a domain of strings X .

We generally assume that all of the seeds in S have the same
length n and that X is the set of all binary strings of length
` = `(n).

`(·) is called the expansion factor of G .

`(·) is assumed to be a polynomial such that n� `(n).
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Cryptographically secure PRSG

Output distribution of a PRSG

Let S be a uniformly distributed random variable over the set S of
possible seeds.

The output distribution of G is a random variable X ∈ X defined
by X = G (S).

For x ∈ X ,

Pr[X = x] =
|{s ∈ S | G(s) = x}|

|S|
.

Thus, Pr[X = x] is the probability of obtaining x as the output of
the PRSG for a randomly chosen seed.
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Cryptographically secure PRSG

Randomness amplifier

We think of G (·) as a randomness amplifier.

We start with a short truly random seed and obtain a long random
string distributed according to X , which is very much non-uniform.

Because |S| ≤ 2n, |X | = 2`, and n� `, most strings in X are not
in the range of G and hence have probability 0.

For the uniform distribution U over X , all strings have the same
non-zero probability 1/2`.

U is what we usually mean by a truly random variable on `-bit
strings.
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Indistinguishability

Computational indistinguishability

We have just seen that the probability distributions of X = G (S)
and U are quite different.

Nevertheless, it may be the case that all feasible probabilistic
algorithms behave essentially the same whether given a sample
chosen according to X or a sample chosen according to U.

If that is the case, we say that X and U are computationally
indistinguishable and that G is a cryptographically secure
pseudorandom sequence generator.
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Indistinguishability

Some implications of computational indistinguishability
Before going further, let me describe some functions G for which
G (S) is readily distinguished from U.

Suppose every string x = G (s) has the form b1b1b2b2b3b3 . . ., for
example 0011111100001100110000. . . .

Algorithm A(x) outputs “G” if x is of the special form above, and
it outputs “U”otherwise.

A will always output “G” for inputs from G (S). For inputs from U,
A will output “G” with probability only

2`/2

2`
=

1

2`/2
.

How many strings of length ` have the special form above?
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Indistinguishability

Judges
Formally, a judge is a probabilistic polynomial-time algorithm J
that takes an `-bit input string x and outputs a single bit b.

Thus, it defines a probabilistic function from X to {0, 1}.

This means that for every input x , the output is 1 with some
probability px , and the output is 0 with probability 1− px .

If the input string is a random variable X , then the probability that
the output is 1 is the weighted sum of px over all possible inputs x ,
where the weight is the probability Pr[X = x] of input x occurring.

Thus, the output value is itself a random variable J(X ), where

Pr[J(X) = 1] =
∑
x∈X

Pr[X = x] · px.
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Indistinguishability

Formal definition of indistinguishability

Two random variables X and Y are ε-indistinguishable by judge J if

|Pr[J(X) = 1]− Pr[J(Y) = 1]| < ε.

Intuitively, we say that G is cryptographically secure if G (S) and U
are ε-indistinguishable for suitably small ε by all judges that do not
run for too long.

A careful mathematical treatment of the concept of
indistinguishability must relate the length parameters n and `, the
error parameter ε, and the allowed running time of the judges

Further formal details may be found in Goldwasser and Bellare.
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Appendix: The Legendre and Jacobi Symbols

CPSC 367, Lecture 21 52/72



Outline QR QR encryption Secure PRSG BBS Finding sqrt Distributions Legendre/Jacobi BBS Security

Notation for quadratic residues

The Legendre and Jacobi symbols form a kind of calculus for
reasoning about quadratic residues and non-residues.

They lead to a feasible algorithm for determining membership in
Q01

n ∪ Q10
n . Like the Euclidean gcd algorithm, the algorithm does

not require factorization of its arguments.

The existence of this algorithm also explains why the
Goldwasser-Micali cryptosystem can’t use all of QNRn in the
encryption of “1”, for those elements in Q01

n ∪ Q10
n are readily

determined to be in QNRn.
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Legendre

Legendre symbol
Let p be an odd prime, a an integer. The Legendre symbol

(
a
p

)
is

a number in {−1, 0,+1}, defined as follows:

(
a

p

)
=


+1 if a is a non-trivial quadratic residue modulo p

0 if a ≡ 0 (mod p)
−1 if a is not a quadratic residue modulo p

By the Euler Criterion, we have

Theorem
Let p be an odd prime. Then(

a

p

)
≡ a( p−1

2 ) (mod p)

Note that this theorem holds even when p |a.
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Legendre

Properties of the Legendre symbol

The Legendre symbol satisfies the following multiplicative property:

Fact
Let p be an odd prime. Then(

a1a2
p

)
=

(
a1
p

) (
a2
p

)

Not surprisingly, if a1 and a2 are both non-trivial quadratic
residues, then so is a1a2. Hence, the fact holds when(

a1
p

)
=

(
a2
p

)
= 1.
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Legendre

Product of two non-residues
Suppose a1 6∈ QRp, a2 6∈ QRp. The above fact asserts that the
product a1a2 is a quadratic residue since(

a1a2
p

)
=

(
a1
p

) (
a2
p

)
= (−1)(−1) = 1.

Here’s why.

I Let g be a primitive root of p.

I Write a1 ≡ gk1 (mod p) and a2 ≡ gk2 (mod p).

I Both k1 and k2 are odd since a1, a2 6∈ QRp.

I But then k1 + k2 is even.

I Hence, g (k1+k2)/2 is a square root of a1a2 ≡ gk1+k2 (mod p),
so a1a2 is a quadratic residue.
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Jacobi

The Jacobi symbol
The Jacobi symbol extends the Legendre symbol to the case where
the “denominator” is an arbitrary odd positive number n.

Let n be an odd positive integer with prime factorization
∏k

i=1 pi
ei .

We define the Jacobi symbol by(a
n

)
=

k∏
i=1

(
a

pi

) ei

(1)

The symbol on the left is the Jacobi symbol, and the symbol on
the right is the Legendre symbol.

(By convention, this product is 1 when k = 0, so
(
a
1

)
= 1.)

The Jacobi symbol extends the Legendre symbol since the two
definitions coincide when n is an odd prime.
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Jacobi

Meaning of Jacobi symbol

What does the Jacobi symbol mean when n is not prime?

I If
(
a
n

)
= +1, a might or might not be a quadratic residue.

I If
(
a
n

)
= 0, then gcd(a, n) 6= 1.

I If
(
a
n

)
= −1 then a is definitely not a quadratic residue.
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Jacobi

Jacobi symbol = +1 for n = pq

Let n = pq for p, q distinct odd primes. Since(a
n

)
=

(
a

p

) (
a

q

)
(2)

there are two cases that result in
(
a
n

)
= 1:

1.
(

a
p

)
=
(

a
q

)
= +1, or

2.
(

a
p

)
=
(

a
q

)
= −1.
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Jacobi

Case of both Jacobi symbols = +1

If
(

a
p

)
=
(

a
q

)
= +1, then a ∈ QRp ∩QRq = Q11

n .

It follows by the Chinese Remainder Theorem that a ∈ QRn.

This fact was implicitly used in the proof sketch that |
√
a| = 4.
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Jacobi

Case of both Jacobi symbols = −1

If
(

a
p

)
=
(

a
q

)
= −1, then a ∈ QNRp ∩QNRq = Q00

n .

In this case, a is not a quadratic residue modulo n.

Such numbers a are sometimes called “pseudo-squares” since they
have Jacobi symbol 1 but are not quadratic residues.
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Identities

Computing the Jacobi symbol

The Jacobi symbol
(
a
n

)
is easily computed from its definition

(equation 1) and the Euler Criterion, given the factorization of n.

Similarly, gcd(u, v) is easily computed without resort to the
Euclidean algorithm given the factorizations of u and v .

The remarkable fact about the Euclidean algorithm is that it lets
us compute gcd(u, v) efficiently, without knowing the factors of u
and v .

A similar algorithm allows us to compute the Jacobi symbol
(
a
n

)
efficiently, without knowing the factorization of a or n.
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Identities

Identities involving the Jacobi symbol

The algorithm is based on identities satisfied by the Jacobi symbol:

1.
(
0
n

)
=

{
1 if n = 1
0 if n 6= 1;

2.
(
2
n

)
=

{
1 if n ≡ ±1 (mod 8)
−1 if n ≡ ±3 (mod 8);

3.
(
a1
n

)
=
(
a2
n

)
if a1 ≡ a2 (mod n);

4.
(
2a
n

)
=
(
2
n

)
·
(
a
n

)
;

5.
(
a
n

)
=

{ (
n
a

)
if a, n odd and ¬(a ≡ n ≡ 3 (mod 4))

−
(
n
a

)
if a, n odd and a ≡ n ≡ 3 (mod 4).
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Identities

A recursive algorithm for computing Jacobi symbol

/* Precondition: a, n >= 0; n is odd */

int jacobi(int a, int n) {

if (a == 0) /* identity 1 */

return (n==1) ? 1 : 0;

if (a == 2) /* identity 2 */

switch (n%8) {

case 1: case 7: return 1;

case 3: case 5: return -1;

}

if ( a >= n ) /* identity 3 */

return jacobi(a%n, n);

if (a%2 == 0) /* identity 4 */

return jacobi(2,n)*jacobi(a/2, n);

/* a is odd */ /* identity 5 */

return (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);

}
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Appendix: Security of BBS
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Blum integers and the Jacobi symbol

Fact
Let n be a Blum integer and a ∈ QRn. Then

(
a
n

)
=
(−a

n

)
= 1.

Proof.
This follows from the fact that if a is a quadratic residue modulo a
Blum prime, then −a is a quadratic non-residue. Hence,(

a

p

)
= −

(
−a
p

)
and

(
a

q

)
= −

(
−a
q

)
, so

(a
n

)
=

(
a

p

)
·
(
a

q

)
=

(
−
(
−a
p

))
·
(
−
(
−a
q

))
=

(
−a
n

)
.
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Blum integers and the least significant bit

The low-order bits of x mod n and (−x) mod n always differ when
n is odd.

Let lsb(x) = (x mod 2) be the least significant bit of integer x .

Fact
If n is odd, then lsb(x mod n)⊕ lsb((−x) mod n) = 1.
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First-bit prediction

A first-bit predictor with advantage ε is a probabilistic polynomial
time algorithm A that, given b2, . . . , b`, correctly predicts b1 with
probability at least 1/2 + ε.

This is not sufficient to establish that the pseudorandom sequence
BBS(S) is indistinguishable from the uniform random sequence U,
but if it did not hold, there certainly would exist a distinguishing
judge.

Namely, the judge that outputs 1 if b1 = A(b2, . . . , b`) and 0
otherwise would output 1 with probability greater than 1/2 + ε in
the case that the sequence came from BBS(S) and would output 1
with probability exactly 1/2 in the case that the sequence was truly
random.
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BBS has no first-bit predictor under the QR assumption

If BBS has a first-bit predictor A with advantage ε, then there is a
probabilistic polynomial time algorithm Q for testing quadratic
residuosity with the same accuracy.

Thus, if quadratic-residue-testing is “hard”, then so is first-bit
prediction for BBS.

Theorem
Let A be a first-bit predictor for BBS(S) with advantage ε. Then
we can find an algorithm Q for testing whether a number x with
Jacobi symbol 1 is a quadratic residue, and Q will be correct with
probability at least 1/2 + ε.
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Construction of Q
Assume that A predicts b1 given b2, . . . , b`.

Algorithm Q(x) tests whether or not a number x with Jacobi
symbol 1 is a quadratic residue modulo n.

It outputs 1 to mean x ∈ QRn and 0 to mean x 6∈ QRn.

To Q(x):
1. Let ŝ2 = x2 mod n.
2. Let ŝi = ŝ2i−1 mod n, for i = 3, . . . , `.

3. Let b̂1 = lsb(x).

4. Let b̂i = lsb(ŝi ), for i = 2, . . . , `.

5. Let c = A(b̂2, . . . , b̂`).

6. If c = b̂1 then output 1; else output 0.
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Why Q works
Since

(
x
n

)
= 1, then either x or −x is a quadratic residue. Let s0

be the principal square root of x or −x . Let s1, . . . , s` be the state
sequence and b1, . . . , b` the corresponding output bits of BBS(s0).

We have two cases.

Case 1: x ∈ QRn. Then s1 = x , so the state sequence of BBS(s0)
is

s1, s2, . . . , s` = x , ŝ2, . . . , ŝ`,

and the corresponding output sequence is

b1, b2, . . . , b` = b̂1, b̂2, . . . , b̂`.

Since b̂1 = b1, Q(x) correctly outputs 1 whenever A correctly
predicts b1. This happens with probability at least 1/2 + ε.
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Why Q works (cont.)

Case 2: x ∈ QNRn, so −x ∈ QRn. Then s1 = −x , so the state
sequence of BBS(s0) is

s1, s2, . . . , s` = −x , ŝ2, . . . , ŝ`,

and the corresponding output sequence is

b1, b2, . . . , b` = ¬b̂1, b̂2, . . . , b̂`.

Since b̂1 = ¬b1, Q(x) correctly outputs 0 whenever A correctly
predicts b1. This happens with probability at least 1/2 + ε.
In both cases, Q(x) gives the correct output with probability at
least 1/2 + ε.
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