
Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

CPSC 367: Cryptography and Security

Instructor: Michael Fischer
Lecture by Jaspal Singh

Lecture 23
April 18, 2019

CPSC 367, Lecture 23 1/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Homomorphic Encryption

The Millionaires’ Problem

Secure Multiparty Computation
Definition and Applications
A Simple Secure Sum Protocol

Generic Secure computation
Generic MPC Using Value Shares

CPSC 367, Lecture 23 2/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Homomorphic Encryption

CPSC 367, Lecture 23 3/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Goals of encryption

The main goal of encryption is to provide data confidentiality.

Normally, there is a lot you can do with your unencrypted data:
analyze, search, compute, etc.

However, once data is encrypted there is not much you can do
with it.

Encrypted data → secured and useless
Unencrypted data → unsecured and useful

CPSC 367, Lecture 23 4/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Working with encrypted data

Solution: Encrypt – decrypt – perform operations – re-encrypt

Problems: Can get very expensive very quickly. Privacy issues.

Another solution: Perform at least some operations on encrypted
data without decrypting it.

Problems: How do we do that? What operations should be
allowed? Will it affect security properties of the encryption
scheme?

CPSC 367, Lecture 23 5/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Homomorphic encryption

Informally, homomorphic encryption is an encryption scheme with
a special property that allows operations applied to ciphertext be
preserved and carried over to the plaintext.

CPSC 367, Lecture 23 6/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Types of homomorphism

An encryption scheme can be homomorphic with respect to one or
more group operators.

An encryption scheme is additively homomorphic if we consider the
addition operator, and multiplicatively homomorphic if we consider
the multiplication operator.

CPSC 367, Lecture 23 7/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Types of homomorphic encryption

Partially homomorphic encryption – it is possible to perform
operations on encrypted data with respect to one group operator.
For example, from E (x), E (y) compute E (x + y) but not E (x ∗ y).

Fully homomorphic encryption – it is possible to perform
operations on encrypted data with respect to two group operator.
For example, from E (x), E (y) compute E (x + y) and E (x ∗ y).

Somewhat homomorphic encryption – it is possible to perform a
limited number of operations on encrypted data with respect to
two group operators. For example, we can only evaluate
low-degree polynomials over encrypted data.

CPSC 367, Lecture 23 8/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Applications of homomorphic encryption

I Cloud computing (untrusted third parties can be used)

I E-voting (votes can be counted without revealing what they
are)

I Private information retrieval (searching encrypted databases)

CPSC 367, Lecture 23 9/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Partially homomorphic encryption schemes

There are many encryption schemes which have the desired
homomorphic property.

You should be familiar with at least some of them:

I RSA (multiplicatively)

I ElGamal (multiplicatively)

I Exponential Elgamal (additively for small numbers)

I Goldwasser-Micali (additively)

CPSC 367, Lecture 23 10/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

(Plain) RSA

Public key: (e,N)
Private key: (d ,N)
Encryption function: E (m) = me mod N

Multiplicatively homomorphic property:

E (m1) ∗ E (m2) = (me
1 mod N) ∗ (me

2 mod N) mod N

= me
1 ∗me

2 mod N

= (m1 ∗m2)e mod N

= E (m1 ∗m2)

CPSC 367, Lecture 23 11/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

ElGamal

Public key: (p, g , b), where b = g x

Private key: (x)
Encryption function: E (m) = (g r ,m ∗ br ) for a random r ∈ Zφ(p)

Multiplicatively homomorphic property:

E (m1) ∗ E (m2) =

(g r1 ,m1 ∗ br1)(g r2 ,m2 ∗ br2) =

(g r1+r2 , (m1 ∗m2)br1+r2) =

E (m1 ∗m2)

CPSC 367, Lecture 23 12/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Exponential ElGamal

Public key: (p, g , b), where b = g x

Private key: (x)
Encryption function: E (m) = (g r , gm ∗ br ) for a random r ∈ Zφ(p)

Additively homomorphic property:

E (m1) ∗ E (m2) =

(g r1 , gm1 ∗ br1)(g r2 , gm2 ∗ br2) =

(g r1+r2 , g (m1∗m2)br1+r2) =

E (m1 + m2)

Q) Why does this scheme work only for small messages m?

CPSC 367, Lecture 23 13/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Fully homomorphic encryption

The first fully homomorphic encryption scheme using lattice–based
cryptography was presented by Craig Gentry in 2009.1

Later in 2009 a second fully homomorphic encryption scheme
which does not require ideal lattices was presented.2

A lot of changes since then.

1
C. Gentry, Fully Homomorphic Encryption Using Ideal Lattices, STOC 2009

2
M. van Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan Fully Homomorphic Encryption over the Integers,

Eurocrypt 2010

CPSC 367, Lecture 23 14/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

FHE performance

Gentry estimated3 that performing a Google search with encrypted
keywords would increase the amount of computing time by about a
trillion. Moore’s law calculates that it would be 40 years before
that homomorphic search would be as efficient as a search today.

At Eurocrypt 2010, Craig Gentry and Shai Halevi presented a
working implementation of fully homomorphic encryption.
Martin van Dijk about the efficiency:

“Computation, ciphertext-expansion are polynomial, but a rather
large one...”

3
IBM Touts Encryption Innovation. New technology performs calculations on encrypted data without

decrypting it computerworld.com, M. Cooney,

CPSC 367, Lecture 23 15/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Current FHE efforts

FHE is a very popular research area. Three main directions:

1. Improving the scheme itself (security)
I Relying on standard hardness assumptions

2. Improving the bootstrapping phase (efficiency)
I Leveled FHE schemes that are initialized with a bound on the

maximal evaluation depth

3. Implementations
I HElib4, a software library that implements homomorphic

encryption.
I Extension of HElib that includes the full bootstrapping phase5

4
GitHub Repository

5
S. Halevi and V. Shoup. Bootstrapping HElib, 2014

CPSC 367, Lecture 23 16/40

https://github.com/shaih/HElib
https://eprint.iacr.org/2014/873.pdf


Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Security of homomorphic encryption

Let’s (informally) rephrase what homomorphic encryption is.

“If you encrypt some plaintext using homomorphic encryption,
then by changing the ciphertext you can change the corresponding
plaintext”.

Q: Is it a good or bad property?

CPSC 367, Lecture 23 17/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Security of homomorphic encryption

Non–malleability is a desirable security goal for encryption schemes
so that the attacker cannot tamper with the ciphertext to affect
the plaintext and go undetected.

However, homomorphic encryption implies malleability!

To reconcile this situation, we want an encryption scheme to be
non-malleable except for some desired operations.

However, it’s difficult to capture the notion of “some malleability
allowed.”6

6
B. Hemenway and R. Ostrovsky, On Homomorphic Encryption and Chosen-Ciphertext Security, PKC 2012

CPSC 367, Lecture 23 18/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

The Millionaires’ Problem

CPSC 367, Lecture 23 19/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

The Millionaires’ Problem

The Millionaires’ problem, introduced by Andy Yao in 1982, began
the study of privacy-preserving multiparty computation.

Alice and Bob want to know who is the richer without revealing
how much they are actually worth.

Alice is worth I million dollars; Bob is worth J million dollars.

They want to determine whether or not I ≥ J, but at the end of
the protocol, neither should have learned any more about the other
person’s wealth than is implied by the truth value of the predicate
I ≥ J.

CPSC 367, Lecture 23 20/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Secure Multiparty Computation

CPSC 367, Lecture 23 21/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Definition and Applications

Secure multiparty computation (MPC)

Consider n parties P1,P2, . . . ,Pn with private inputs x1, x2, . . . , xn
and a public function f .

The MPC protocol must output f (x1, x2, . . . , xn) while preserving
certain security properties, even if some of the parties collude and
maliciously attack the protocol

Normally, this is modeled by an external adversary A that may
corrupt some parties and coordinates their actions

CPSC 367, Lecture 23 22/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Definition and Applications

Applications

I Private Auction
I Inputs: bids
I outputs: winning party and winning price

I Anonymous credentials
I Inputs: credential with personal information, e.g. driving

license
I Output: proof of a certain property of the credentials, e.g. age

over 21

CPSC 367, Lecture 23 23/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Definition and Applications

Applications

I Disease tests with DNA sequences
I Inputs: test algorithm, sequenced genome
I Output: test result

I Data sharing between hospitals
I Inputs: hospital databases information, e.g. driving license
I Output: common patients

CPSC 367, Lecture 23 24/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Definition and Applications

Some commonly studied security properties

I Correctness: parties obtain correct output (even if some
parties misbehave)

I Privacy: only the output is learned (nothing else)

I Independence of inputs: parties cannot choose their inputs as
a function of other parties’ inputs

I Fairness: if one party learns the output, then all parties learn
the output

I . . .

CPSC 367, Lecture 23 25/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Definition and Applications

The Adversary in an MPC protocol

One could make various assumptions about the power of the
adversary. Generally we model the adversary to have control over
the data and actions of a set of t parties (also known as corrupt
parties).

Most commonly studied adversarial models:

I Semi-honest adversarial model - adversary only observes the
views of the corrupt parties

I Malicious adversarial model - adversary controls the behavior
of the corrupt parties during the protocol

CPSC 367, Lecture 23 26/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Definition and Applications

Defining privacy requirement for the semi-honest model

There exist an efficient algorithm S that can simulate the views of
the corrupt parties using only the input and output of the corrupt
parties.

Let C be the set of corrupt parties, yi and viewi represent the
output and the view of party Pi in the protocol respectively. Then,

S({xi , yi}i∈C ) ≡ {viewi}i∈C

CPSC 367, Lecture 23 27/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

A Simple Secure Sum Protocol

A simple Secure Sum Protocol

Party Pi inputs xi ∈ Zm for some m.
Output: (

∑n
i=1 xi mod m )

Secure against a single corrupt party?

CPSC 367, Lecture 23 28/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

A Simple Secure Sum Protocol

A simple Secure Sum Protocol

Secure against a corruption of 2 parties?

CPSC 367, Lecture 23 29/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Generic Secure computation

CPSC 367, Lecture 23 30/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Boolean functions computed by circuits

Let z̄ = f (x̄ , ȳ), where x̄ , ȳ , and z̄ are bit strings of lengths nx , ny ,
and nz , respectively, and f is a Boolean function computed by a
polynomial size Boolean circuit Cf with nx + ny input wires and nz
output wires.

Example:

AND

OR

XNOR

Alice

Bob

σ1

σ2

σ3

σ4

σ5

σ6

σ7

CPSC 367, Lecture 23 31/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Private evaluation

In a private evaluation of Cf , Alice furnishes the (private) input
data to the first nx input wires, and Bob furnishes the (private)
input data for the remaining ny input wires. The nz output wires
should contain the result z̄ = f (x̄ , ȳ). The corresponding
functionality is

F (x̄ , ȳ) = (z̄ , z̄).

Alice and Bob should learn nothing about each other’s inputs or
the intermediate values of the circuit, other than what is implied
by their own inputs and the output values z̄ .

CPSC 367, Lecture 23 32/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Circuit evaluation

An evaluation of a circuit assigns a Boolean value σw to each wire
of the circuit. The input wires are assigned the corresponding
input values.

Let G be a gate with input wires u and v and output wire w that
computes the Boolean function g(x , y). In a correct assignment,
σw = g(σu, σv ).

A complete evaluation of the circuit first assigns values to the
input wires and then works its way down the circuit, assigning a
value to the output wire of any gate whose inputs have already
received values.

CPSC 367, Lecture 23 33/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Generic MPC Using Value Shares

Generic MPC Using Value Shares

CPSC 367, Lecture 23 34/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Generic MPC Using Value Shares

Value shares

In a private evaluation using value shares, we split each value σw
into two random shares aw and bw such that σw = aw ⊕ bw .

I Alice knows aw ; Bob knows bw .

I Neither share alone gives any information about σw , but
together they allow σw to be computed.

After all shares have been computed for all wires, Alice and Bob
exchange their shares aw and bw for each output wire w .

They are both then able to compute the circuit output.

CPSC 367, Lecture 23 35/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Generic MPC Using Value Shares

Obtaining the shares

We now describe how Alice and Bob obtain their shares while
maintaining the desired privacy.

There are three cases, depending on whether w is

1. An input wire controlled by Alice;

2. An input wire controlled by Bob;

3. The output wire of a gate G .

CPSC 367, Lecture 23 36/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Generic MPC Using Value Shares

Alice’s input wires

1. Input wire controlled by Alice:

Alice knows σw .

She generates a random share aw ∈ {0, 1} for herself and
sends Bob his share bw = aw ⊕ σw .

CPSC 367, Lecture 23 37/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Generic MPC Using Value Shares

Bob’s input wires

2. Input wire controlled by Bob:

Bob knows σw .

Alice chooses a random share aw ∈ {0, 1} for herself.

She prepares a table T :

σ T [σ]

0 aw
1 aw ⊕ 1.

Bob requests T [σw ] from Alice via OT2
1 and takes his share to

be bw = T [σw ] = aw ⊕ σw .

CPSC 367, Lecture 23 38/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Generic MPC Using Value Shares

Obtaining shares for gate output wires

3. Output wire of a gate G :
Let G have input wires u, v and compute function g(x , y).
Alice chooses random share aw ∈ {0, 1} for herself.
She computes the table

T [0, 0] = aw ⊕ g(au, av )
T [0, 1] = aw ⊕ g(au, av ⊕ 1)
T [1, 0] = aw ⊕ g(au ⊕ 1, av )
T [1, 1] = aw ⊕ g(au ⊕ 1, av ⊕ 1)

(Equivalently, T [r , s] = aw ⊕ g(au ⊕ r , av ⊕ s).)

Bob requests T [bu, bv ] from Alice via OT4
1 and takes his share

to be bw = T [bu, bv ] = aw ⊕ g(σu, σv ).

CPSC 367, Lecture 23 39/40



Outline Homomorphic Encryption Millionaires Secure Multiparty Computation Generic Secure computation

Generic MPC Using Value Shares

Remarks
1. Alice and Bob’s shares for w are both independent of σw .

I Alice’s share is chosen uniformly at random.
I Bob’s share is always the XOR of Alice’s random bit aw with

something independent of aw .

2. This protocol requires ny executions of OT2
1 to distribute the

shares for Bob’s inputs, and one OT4
1 for each gate.7

3. This protocol assumes semi-honest parties.

4. Bob does not even need to know what function each gate G
computes. He only uses his private inputs or shares to request
the right line of the table in each of the several OT protocols.

7Note: The ny executions of OT2
1 can be eliminated by having Bob produce

the shares for his input wires just as Alice does for hers. Our approach has the
advantage of being more uniform since Alice is in charge of distributing the
shares for all wires.

CPSC 367, Lecture 23 40/40


	Outline
	Homomorphic Encryption
	The Millionaires' Problem
	Secure Multiparty Computation
	Definition and Applications
	A Simple Secure Sum Protocol

	Generic Secure computation
	Generic MPC Using Value Shares


