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Game Theory

Optimal Decisions in Games
— minimax decisions

— a—f3 pruning
— Monte Carlo Tree Search (MCTS)

Resource limits and approximate
evaluation

Games of chance
Games of imperfect information

Limitations of Game Search Algorithms
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Two players
- Max-min
- Taking turns, fully observable

Moves: Action
Position: state

Zero sum:
- good for one player, bad for another

- No win-win outcome.
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S, The initial state of the game

TO-MOVE(s): player to move in state s.
ACTIONS(s): The set of legal moves in state s.
RESULT(s, a): The transition model, resulting state

IS-TERMINAL(s): A terminal test to detect when the
game is over

UTILITY(s; p): A utility function (objective/payoff)
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Games vs. search problems

“Unpredictable” opponent = solution is a
strategy specifying a move for every possible
opponent reply

Time limits = unlikely to find goal, must

approximate Plan of attack:

- Computer considers possible lines of play (Babbage,

1846)

- Finite horizon, ap]proxmate evaluation (Zuse, 1945;

ect play (Zermelo, 1912; Von Neumann,
1944)

- First chess program (Turing, 1951)

1952-57)

- Pruning to allow deeper search (McCarthy, 1956)
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- Machine learning to improve evaluation accuracy (Samuel,
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ypes of games

deterministic chance

perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war
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(ame tree (2-player, deterministic, turns)

MAX (X)
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MIN (O) X X X
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Minimax

Perfect play for deterministic, perfect-information
games

Idea: choose move to position with highest
minimax value

E.9.2Hl¥ achievable payoff agains bfst play
game:

MAX

MIN
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Minimax algorithm

function Minimax-Decision(state) returns an action
inputs: stafe, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
V«— —
for a, s in Successors(state) do v «+— Max(v, Min-Value(s))
return v

function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
V«—
for a, s in Successors(state) do v «— Min(v, Max-Value(s))
return v

Chapter 5
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Properties of minimax

Complete?
2
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Properties of minimax

Complete?? Only if tree is finite (chess has specific rules
for this).

NB a finite strategy can exist even in an infinite tree!

Optimal??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules
for this)

Optimal?? Yes, against an optimal opponent.

Otherwise?? Time complexity??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules
for this)

Optimal?? Yes, against an optimal opponent.

Otherwise?? Time complexity?? O(b™

Space complexity??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules
for this)

Optimal?? Yes, against an optimal opponent.

Otherwise?? Time complexity?? O(b™

Space complexity?? O(bm) (depth-first

exploration) For chess, b = 35, m = 100 for
“reasonable” games
= exact solution completely infeasible

But do we need to explore every path?
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a—B pruning example

\"4
w

12 8

© 2021 Pearson Education Ltd.

Chapter 5

15



MAX

MIN

3

a—B pruning example
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a—B pruning example
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a—B pruning example

12 8 2 14
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a—B pruning example
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Why is it called a—p?

MAX
N
MIN %
X (
)
7
C
A
-
MAX
MIN Vv

a is the best value (to max) found so far off the
current path
If Vis worse than a, max will avoid it = prune that

branch Define S similarly for min

Chapter 5 20
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The a—B algorithm

function Alpha-Beta-Decision(state) returns an action
return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state, a, B) returns a utility value
inputs: state, current state in game
a, the value of the best alternative for max along the path to state
B, the value of the best alternative for min along the path to state

if Terminal-Test(sfate) then return Utility(state)
V «— —
for a, s in Successors(state) do
v «— Max(v, Min-Value(s, a, B))
ifv= [ thenreturn v
a «— Max(a, v)
return v

function Min-Value(state, a, 3) returns a utility value
same as Max-Value but with roles of a, 8 reversed

@ Pearson
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Properties of a—_

Pruning does not affect final result
Good move ordering improves effectiveness of

pruning With “perfect ordering,” time
complexity = O(b™?)
= doubles solvable depth

A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

Unfortunately, 35°°is still impossible!
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The basic Monte Carlo Tree Search (MCTS) strategy does not use a
heuristic evaluation function. Value of a state is estimated as the
average utility over number of simulations

e Playout: simulation that chooses moves until terminal position
reached.

o Selection: Start of root, choose move (selection policy)
repeated moving down tree

 Expansion: Search tree grows by generating a new child of
selected node

« Simulation: playout from generated child node

 Back-propagation: use the result of the simulation to update
all the search tree nodes going up to the root

Chapter 5 23
) VoI .
@ Pearson © 2021 Pearson Education Ltd.



UCT: Effective selection policy is called “upper confidence bounds applied to
trees”

UCT ranks each possible move based on an upper confidence bound
formula UCT

called UCB1 UCBI(n)= U(n) T log N(PARENT(n))
N (n) N(n)

where U(n) is the total utility of all playouts that went through node n, N(n) is
the number of playouts through node n, and PARENT (n) is the parent node
of nin the tree.

Chapter 5 24
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function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree «— NODE(state)
while IS-TIME-REMAINING() do
leaf «— SELECT(tree)
child < EXPAND(leaf )
result «— SIMULATE(child)
BACK-PROPAGATE(result, child)
return the move in ACTIONS(state) whose node has highest number of
playouts

Chapter 5
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(a) Selection ;= (b) Expansion (c) Backpropagation
and simulation

black wins

Figure 6.10 One iteration of the process of choosing a move with Monte Carlo tree search
(MCTYS) using the upper confidence bounds applied to trees (UCT) selection metric, shown
after 100 iterations have already been done. In (a) we select moves, all the way down the
tree, ending at the leaf node marked 27/35 (for 27 wins for black out of 35 playouts). In (b)
we expand the selected node and do a simulation (playout), which ends in a win for black. In
(c), the results of the simulation are back-propagated up the tree.
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Resource limits

Standard approach:

- Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)

- Use Eval instead of Utility
i.e., evaluation function that estimates desirability of
position

Suppose we have 100 seconds, explore 10* nodes/second
= 10° nodes per move = 3552
= a—J3 reaches depth 8 = pretty good chess program
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Evaluation functions
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Black to move White to move

White slightly better Black winning

For chess, typically linear weighted sum of

features
Eval(s) = w. f,(s) + w,fi(s) +. .. + w [ (9)

e.g., w, =9 with
f,(s) = (number of white queens) — (number of black etc
queens),
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Digression: Exact values don’t matter

MAX
MIN X 2 1 20
1 2 4 1 20 2 400

Behaviour is preserved under any monotonic transformation of
Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility
function

Chapter 5 29
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Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining
perfect play for all positions involving 8 or fewer pieces on the
board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov
in @ six- game match in 1997. Deep Blue searches 200 million
positions per second, uses very sophisticated evaluation, and
undisclosed methods for extending some lines of search up to 40

ply.

Othello: human champions refuse to compete against computers,
who are too good.

Go: human champions refuse to compete against computers, who
are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.
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Nondeterministic games: backgammon
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Nondeterministic games in general

In nondeterministic games, chance introduced by dice,
card-shuffling

Simplified example with coin-flipping:

MAX

CHANCE

MIN

Chapter 5 32
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Algorithm for nondeterministic games

Expectiminimax gives perfect play

Just like Minimax, except we must also handle chance nodes:

if state is @ Max node then
return the highest ExpectiMinimax-Value of
Successors(state)

if state is @ Min node then

return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

Chapter 5 33
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Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon = 20 legal moves (can be 6,000 with
1-1 roll)

39
depth4 =20 X (21 X 20) = 1.2X 10

As depth increases, probability of reaching a given node
shrinks

= value of lookahead is diminished
a—f3 pruning is much less effective

TDGammon uses depth-2 search + very good Eval
~ world-champion level

Chapter 5 34
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Digression: Exact values DO matter

MAX

DICE

MIN

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff
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Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of

the game™ Idea: compute the minimax value of each action in
each deal,

then choose the action with highest expected value over all
deals™

Special case: if an action is optimal for all deals, it's
optimal.” GIB, current best bridge program,
approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average
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Example

Four-card bridge/whist/hearts hand, Max to play
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Example

Four-card bridge/whist/hearts hand, Max to play

3

MAX lov] o 3] #| B4 lov] JJI7sl  [ov] 7a)  [ov] oA BV
WEEECERNTELEFITE 34
3 2

@ Pearson © 2021 Pearson Education Ltd.

64

fir
MLEErCEEICEE CEEE CEEIEER
— —_— —_— —_—
TPECCEERELCECIEED D £
4

o

=

o

Chapter 5

38

0

0



Four-card bridge/whist/hearts hand, Max to play
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Road A leads to a small heap of gold

pieces Road B leads to a fork:
take the left fork and you’'ll find a mound of
jewels; take the right fork and you’ll be run
over by a bus.
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Road A leads to a small heap of gold

pieces Road B leads to a fork:
take the left fork and you’'ll find a mound of
jewels; take the right fork and you’ll be run
over by a bus.

Road A leads to a small heap of gold

pieces Road B leads to a fork:
take the left fork and you’ll be run over by a
bus; take the right fork and you’ll find a
mound of jewels.
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Road A leads to a small heap of gold

pieces Road B leads to a fork:
take the left fork and you’'ll find a mound of
jewels; take the right fork and you’ll be run
over by a bus.

Road A leads to a small heap of gold

pieces Road B leads to a fork:
take the left fork and you’ll be run over by a
bus; take the right fork and you’ll find a
mound of jewels.

Road A leads to a small heap of gold
pieces Road B leads to a fork:
guess correctly and you’ll find a mound of

jewels; guess incorrectly and you'll be run
over by a bus.

Chapter 5 42
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Proper analysis

*Intuition that the value of an action is the average of its
values in all actual states is WRONG

With partial observability, value of an action depends
on the information state or belief state the agent is
in

Can generate and search a tree of information

states Leads to rational behaviors such as

¢ Acting to obtain information
¢ Signalling to one’s partner
¢ Acting randomly to minimize information disclosure

Chapter 5 43
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Alpha-beta search vulnerable to errors in the
heuristic function.

Waste of computational time for deciding best
move where it is obvious (meta-reasoning).

Reasoning done on individual moves. Humans
reason on abstract levels.

Possibility to incorporate Machine Learning into
game search process.

© 2021 Pearson Education Ltd.
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Summa

Minimax algorithm: selects optimal moves by a depth-first
enumeration of the game tree.

Alpha—beta algorithm: greater efficiency by eliminating
subtrees

Evaluation function: a heuristic that estimates utility of
state.

Monte Carlo tree search (MCTS): no heuristic, play game
to the end with rules and repeated multiple times to
determine optimal moves during playout.
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