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Outline

♦ Game Theory

♦ Optimal Decisions in Games
– minimax decisions
– α–β pruning
– Monte Carlo Tree Search (MCTS)

♦ Resource limits and approximate 
evaluation

♦ Games of chance

♦ Games of imperfect information

♦ Limitations of Game Search Algorithms
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Games Theory

Two players
- Max-min
- Taking turns, fully observable

Moves: Action

Position: state

Zero sum: 
- good for one player, bad for another
- No win-win outcome.
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Games Theory

S0: The initial state of the game 

TO-MOVE(s): player to move in state s.

ACTIONS(s): The set of legal moves in state s.

RESULT(s, a): The transition model, resulting state

IS-TERMINAL(s): A terminal test to detect when the 
game is over

UTILITY(s; p): A utility function (objective/payoff)

© 2021 Pearson Education Ltd.



Chapter 5 5

Games vs. search problems

“Unpredictable” opponent ⇒ solution is a 
strategy  specifying a move for every possible 
opponent reply
Time limits ⇒ unlikely to find goal, must 

approximate  Plan of attack:

• Computer considers possible lines of play (Babbage, 
1846)

• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 
1944)

• Finite horizon, approximate evaluation (Zuse, 1945; 
Wiener, 1948;Shannon, 1950)

• First chess program (Turing, 1951)

• Machine learning to improve evaluation accuracy (Samuel, 
1952–57)

• Pruning to allow deeper search (McCarthy, 1956)
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Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,  
go, othello

backgammon  
monopoly

battleships,  
blind tictactoe

bridge, poker, scrabble  
nuclear war
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Game tree (2-player, deterministic, turns)
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Minimax

Perfect play for deterministic, perfect-information 
games

Idea: choose move to position with highest 
minimax value

= best achievable payoff against best playE.g., 2-ply 
game:
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Minimax algorithm

function Minimax-Decision(state) returns an action
inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v ← −∞
for a, s in Successors(state) do v ← Max(v, Min-Value(s))
return v

function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v ← ∞
for a, s in Successors(state) do v ← Min(v, Max-Value(s))
return v
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Properties of minimax

Complete?
?
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Properties of minimax

Complete?? Only if tree is finite (chess has specific rules 
for this).

NB a finite strategy can exist even in an infinite tree!

Optimal??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules 
for this)
Optimal?? Yes, against an optimal opponent. 

Otherwise??  Time complexity??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules 
for this)
Optimal?? Yes, against an optimal opponent. 

Otherwise??  Time complexity?? O(bm)

Space complexity??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules 
for this)
Optimal?? Yes, against an optimal opponent. 

Otherwise??  Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first 

exploration)  For chess, b ≈ 35, m ≈ 100 for 

“reasonable” games

⇒ exact solution completely infeasible

But do we need to explore every path?
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α–β pruning example
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α–β pruning example
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α–β pruning example
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α–β pruning example

MAX

3

MIN 3

12 8 2

2

X X
14 5

14 5

3

Chapter 5 18

© 2021 Pearson Education Ltd.



α–β pruning example
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Why is it called α–β?
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MAX

MIN V

α is the best value (to max) found so far off the 
current path
If Vis worse than α, max will avoid it ⇒ prune that 

branch  Define β similarly for min
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The α–β algorithm

function Alpha-Beta-Decision(state) returns an action
return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state, α, β) returns a utility value
inputs: state, current state in game

α, the value of the best alternative for max along the path to state
β, the value of the best alternative for min along the path to state

if Terminal-Test(state) then return Utility(state)
v ← −∞
for a, s in Successors(state) do

v ← Max(v, Min-Value(s, α, β))
if v ≥ β then return v
α ← Max(α, v)

return v

function Min-Value(state, α, β) returns a utility value
same as Max-Value but with roles of α, β reversed
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Properties of α–β

Pruning does not affect final result
Good move ordering improves effectiveness of 

pruning  With “perfect ordering,” time 

complexity = O(bm/2)

⇒ doubles solvable depth

A simple example of the value of reasoning about which 
computations are  relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!
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Monte Carlo Tree Search

The basic Monte Carlo Tree Search (MCTS) strategy does not use a 
heuristic evaluation function. Value of a state is estimated as the 
average utility over number of simulations

• Playout: simulation that chooses moves until terminal position 
reached.

• Selection: Start of root, choose move (selection policy) 
repeated moving down tree

• Expansion: Search tree grows by generating a new child of 
selected node

• Simulation: playout from generated child node

• Back-propagation: use the result of the simulation to update 
all the search tree nodes going up to the root
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Monte Carlo Tree Search

UCT: Effective selection policy is called “upper confidence bounds applied to 
trees”

UCT ranks each possible move based on an upper confidence bound 
formula UCT
called UCB1

where U(n) is the total utility of all playouts that went through node n, N(n) is 
the number of playouts through node n, and PARENT(n) is the parent node 
of n in the tree.
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Monte Carlo Tree Search

function MONTE-CARLO-TREE-SEARCH(state) returns an action
         tree ←  NODE(state)
         while IS-TIME-REMAINING() do

leaf  ←  SELECT(tree)
child ←  EXPAND(leaf )
result ←  SIMULATE(child)
BACK-PROPAGATE(result, child)

         return the move in ACTIONS(state) whose node has highest number of 
playouts
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Monte Carlo Tree Search
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Resource limits

Standard approach:

• Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)

• Use Eval instead of Utility
i.e., evaluation function that estimates desirability of 
position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106  nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program
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Evaluation functions

Black to move

White slightly better
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White to move

Black winning

For chess, typically linear weighted sum of 
features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black 
queens),

etc
.
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Digression: Exact values don’t matter

MAX

MIN 1 2 1 20

1 2 2 4 1 20 20 400

Behaviour is preserved under any monotonic transformation of 
Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility 
function
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Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion 
Marion  Tinsley in 1994. Used an endgame database defining 
perfect play for all  positions involving 8 or fewer pieces on the 
board, a total of 443,748,401,247  positions.

Chess: Deep Blue defeated human world champion Gary Kasparov 
in a six-  game match in 1997. Deep Blue searches 200 million 
positions per second,  uses very sophisticated evaluation, and 
undisclosed methods for extending  some lines of search up to 40 
ply.

Othello: human champions refuse to compete against computers, 
who are  too good.

Go: human champions refuse to compete against computers, who 
are too  bad. In go, b > 300, so most programs use pattern 
knowledge bases to  suggest plausible moves.
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Nondeterministic games: backgammon

0 1 2 3 4 5 6 7 8 9 10 
11 12
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25 24 23 22 21 20 19 18 17 16 15 14 13
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Nondeterministic games in general

In nondeterministic games, chance introduced by dice, 
card-shuffling

Simplified example with coin-flipping:

MAX

MIN

2 4 7 4 6 0 5 −2
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CHANCE

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1
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Algorithm for nondeterministic games

Expectiminimax gives perfect play

Just like Minimax, except we must also handle chance nodes:

. . .
if state is a Max node then

return the highest ExpectiMinimax-Value of 
Successors(state)

if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)

if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

. . .
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Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice  
Backgammon ≈ 20 legal moves (can be 6,000 with 
1-1 roll)

3 9
depth 4 = 20 × (21 × 20) ≈ 1.2 × 10

As depth increases, probability of reaching a given node 
shrinks

⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval
≈ world-champion level
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Digression: Exact values DO matter

DICE

MIN

MAX

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 30 1 400

.9 .1 .9 .1

21 40.9

2 2 3 3 1 1 4 4 20 20 30 30 1 1 400 
400

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff

Chapter 5 35

© 2021 Pearson Education Ltd.



Chapter 5 36

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of 

the game∗  Idea: compute the minimax value of each action in 

each deal,

then choose the action with highest expected value over all 
deals∗

Special case: if an action is optimal for all deals, it’s 

optimal.∗  GIB, current best bridge program, 

approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average
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Example

Four-card bridge/whist/hearts hand, Max to play 
first 8 66 6 8 7 6 6 7 6 6 7 6 6 7

4 2 9 3 4 2 9 3 9 4 2 3 2 4
3

6 7

4 3
0
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Example

Four-card bridge/whist/hearts hand, Max to play 
first

6

8 67 6 7

3 4 3

MAX 6 6 8 7 6 6 7 6 6 7 6 6

MIN 4 2 9 3 4 2 9 3 9 4 2

3 2 4

0

8

9 2

6 6
8
7
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Example

Four-card bridge/whist/hearts hand, Max to play 
first 8 6 6 7

4 3

MAX 6 6 8 7 6 6 7 6 6 7 6 6
7
MIN 4 2 9 3 4 2 9 3 9 4 2 3

2 4 3

0

68

9 2

6

6

7 6

6

7 6

6

7 7

3 3 3
0

444

2

4 2
9
3

6MAX 6 6
8 7
MIN 4 2
9 3

8

9 2

6

6

7 6

6

7

34

2

4 2
9
3

MAX 6 6
8 7
MIN 4 2
9 3

6

6

7

34

6 6 7

4 3

6 7

6 4 3
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Common sense example

Road A leads to a small heap of gold 
pieces  Road B leads to a fork:

take the left fork and you’ll find a mound of 
jewels;  take the right fork and you’ll be run 
over by a bus.

© 2021 Pearson Education Ltd.



Chapter 5 41

Common sense example

Road A leads to a small heap of gold 
pieces  Road B leads to a fork:

take the left fork and you’ll find a mound of 
jewels;  take the right fork and you’ll be run 
over by a bus.

Road A leads to a small heap of gold 
pieces  Road B leads to a fork:

take the left fork and you’ll be run over by a 
bus;  take the right fork and you’ll find a 
mound of jewels.
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Common sense example

Road A leads to a small heap of gold 
pieces  Road B leads to a fork:

take the left fork and you’ll find a mound of 
jewels;  take the right fork and you’ll be run 
over by a bus.

Road A leads to a small heap of gold 
pieces  Road B leads to a fork:

take the left fork and you’ll be run over by a 
bus;  take the right fork and you’ll find a 
mound of jewels.

Road A leads to a small heap of gold 
pieces  Road B leads to a fork:

guess correctly and you’ll find a mound of 
jewels;  guess incorrectly and you’ll be run 
over by a bus.
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Proper analysis

*Intuition that the value of an action is the average of its 
values  in all actual states is WRONG

With partial observability, value of an action depends 
on the  information state or belief state the agent is 
in
Can generate and search a tree of information 

states  Leads to rational behaviors such as

♦ Acting to obtain information
♦ Signalling to one’s partner
♦ Acting randomly to minimize information disclosure
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Limitations of Game Search Algorithms

• Alpha–beta search vulnerable to errors in the 
heuristic function.

• Waste of computational time for deciding best 
move where it is obvious (meta-reasoning).

• Reasoning done on individual moves. Humans 
reason on abstract levels.

• Possibility to incorporate Machine Learning into 
game search process.
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Summary

Minimax algorithm: selects optimal moves by a depth-first 
enumeration of the game tree.

Alpha–beta algorithm: greater efficiency by eliminating 
subtrees

Evaluation function: a heuristic that estimates utility of 
state.

Monte Carlo tree search (MCTS): no heuristic, play game 
to the end with rules and repeated multiple times to 
determine optimal moves during playout.
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