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♦ Defining Constraint Satisfaction Problems (CSP)
♦ CSP examples

♦ Backtracking search for CSPs

♦ Local search for CSPs

♦ Problem structure and problem decomposition
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Defining Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of three 
components, X, D, and C:
• X is a set of variables, {X

1
 ….. X

n
}.

• D is a set of domains, {D
1
, …. , D

n
}, one for each variable

• C is a set of constraints that specify allowable combination 
of values

CSPs deal with assignments of values to variables. 
• A complete assignment is one in which every variable is 

assigned a value, and a solution to a CSP is a consistent, 
complete assignment.

• A partial assignment is one that leaves some variables 
unassigned.

• Partial solution is a partial assignment that is consistent
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Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box”—any old data structure  

that supports goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of 
variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more 
power  than standard search algorithms
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Example: Map-Coloring

Western  
Australia
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Northern  
Territory

Queensland

South  
Australia

New South Wales

Victoria

Tasmania
Variables WA, NT , Q, NSW , V , SA, T
Domains Di = {red, green, blue}
Constraints: adjacent regions must have different 

colors  e.g., WA /= NT (if the language allows 
this), or
(W A, NT ) ∈ {(red, green), (red, blue), (green, red), (green, 
blue), . . .}
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Example: Map-Coloring contd.

Western  
Australia
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Northern  
Territory

Queensland

South  
Australia

New South Wales
Victoria  

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = 
green}
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Constraint graph

SA

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show 
constraints

NT
Q

WA
NS
W

Vic
V

to
ria

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent 
subproblem!
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Varieties of CSPs

Discrete variables
finite domains; size d⇒ O(dn) complete assignments
♦ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)  

infinite domains (integers, strings, etc.)

♦ e.g., job scheduling, variables are start/end days for each job

♦ need a constraint language, e.g., StartJ ob1 + 5 ≤ StartJ 
ob3♦ linear constraints solvable, nonlinear undecidable

Continuous variables
♦ e.g., start/end times for Hubble Telescope observations
♦ linear constraints solvable in poly time by LP methods
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Varieties of constraints

Unary constraints involve a single 
variable,  e.g., SA /= green

Binary constraints involve pairs of 
variables,  e.g., SA /= WA

Higher-order constraints involve 3 or more 
variables,  e.g., cryptarithmetic column 
constraints

Preferences (soft constraints), e.g., red is better than 
green
often representable by a cost for each variable assignment

→ constrained optimization problems
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Example: Cryptarithmetic

OTF U W RT W 
O

+ T W 
O  F O
U R X2 X1X3

Variables: F T U W R O X1 X2 X3
Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints

alldiff(F, T, U, W, R, O)
O + O = R + 10 · X1, etc.
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Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets  

Transportation 

scheduling  Factory 

scheduling  

Floorplanning

Notice that many real-world problems involve real-valued 
variables
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Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it

States are defined by the values assigned so far

♦ Initial state:  the empty assignment, { }

♦ Successor function: assign a value to an unassigned 
variable  that does not conflict with current assignment.

⇒ fail if no legal assignments (not fixable!)

♦ Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables

⇒ use depth-first search
3) Path is irrelevant, so can also use complete-state 

formulation
4) b = (n − €)d at depth €, hence n!dn leaves!!!!
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Backtracking search

Variable assignments are commutative, i.e.,
[WA = red then NT = green]  same as [NT = green then WA = 
red]

Only need to consider assignments to a single variable at each node
⇒ b = d and there are dn  leaves

Depth-first search for CSPs with single-variable 
assignments  is called backtracking search
Backtracking search is the basic uninformed algorithm for 

CSPs  Can solve n-queens for n ≈ 25
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Backtracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var ← Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result ← Recursive-Backtracking(assignment, csp)
if result /= failure then return result
remove {var = value} from assignment

return failure
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Backtracking example
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Backtracking example
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Backtracking example
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Backtracking example
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Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?
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Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal 
values
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Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining 
variables
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Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Chapter 6 22

Allows 0 values for SA

Combining these heuristics makes 1000 queens 
feasible
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Forward checking

Idea: Keep track of remaining legal values for unassigned 
variables  Terminate search when any variable has no legal 
values

WA NT Q NSW V SA T
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Forward checking

Idea: Keep track of remaining legal values for unassigned 
variables  Terminate search when any variable has no legal 
values

WA NT Q NSW V SA T
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Forward checking

Idea: Keep track of remaining legal values for unassigned 
variables  Terminate search when any variable has no legal 
values

WA NT Q NSW V SA T
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Forward checking

Idea: Keep track of remaining legal values for unassigned 
variables  Terminate search when any variable has no legal 
values

WA NT Q NSW V SA T
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Constraint propagation

Forward checking propagates information from assigned to unassigned 
vari-  ables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints 
locally
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Arc consistency

Simplest form of propagation makes each arc 
consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T
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Arc consistency

Simplest form of propagation makes each arc 
consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T
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Arc consistency

Simplest form of propagation makes each arc 
consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be 
rechecked
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Arc consistency

Simplest form of propagation makes each arc 
consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward 

checking  Can be run as a preprocessor or after each 

assignment
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Arc consistency algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi,  Xj ) ← Remove-First(queue)
if Remove-Inconsistent-Values(Xi,  Xj ) then  for 

each Xk in Neighbors[Xi] do
add (Xk, Xi) to queue

function Remove-Inconsistent-Values( Xi, Xj) returns true iff succeeds

removed ← false
for each x in Domain[Xi] do

if no value y in Domain[Xj] allows (x,y) to satisfy the constraint Xi ↔ Xj
then delete x from Domain[Xi]; removed ← true

return removed

O(n2d3), can be reduced to O(n2d2) (but detecting all is NP-hard)
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Local Search for CSPs

Local search algorithms can be very effective in solving many CSPs.

Local search algorithms use a complete-state formulation where each 
state assigns a value to every variable, and the search changes the value 
of one variable at a time. 

Min-conflicts heuristic: value that results in the minimum number
of conflicts with other variables that brings us closer to a solution. 
• Usually has a series of plateaus

Plateau search: allowing sideways moves to another state with the same 
score. 
• can help local search find its way off the plateau.

Constraint weighting aims to concentrate the search on the
important constraints
• Each constraint is given a numeric weight, initially all 1. 
• weights adjusted by incrementing when it is violated by the current 

assignment
© 2021 Pearson Education Ltd.

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in 

column  Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5
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h = 2 h = 0
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Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time 
for  arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

R =
number of 
constraintsnumber of 

variables

R
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CPU
time

critical  
ratio

Problem structure

SA
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Tasmania and mainland are independent subproblems  

Identifiable as connected components of constraint 

graph
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Problem structure contd.

Suppose each subproblem has c variables out of n 
total

Worst-case solution cost is n/c · dc, linear in n

E.g., n = 80, d = 2, c = 20
280 = 4 billion years at 10 million nodes/sec
4 · 220 = 0.4 seconds at 10 million nodes/sec

© 2021 Pearson Education Ltd.

Tree-structured CSPs

A E
B D
C F

Theorem: if the constraint graph has no loops, the CSP can be solved  in
O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic 
restrictions  and the complexity of reasoning.
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Algorithm for tree-structured CSPs

C

1. Choose a variable as root, order variables from root to 
leaves  such that every node’s parent precedes it in the 
ordering

A EB D A B C D E F  F

2. For j from n down to 2, apply RemoveInconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)
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Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ 
domains

WA
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Cutset conditioning: instantiate (in all ways) a set of 
variables  such that the remaining constraint graph is a tree

Cutset size c⇒ runtime O(dc · (n − c)d2), very fast for small c
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Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work 
with  “complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied 
constraints  operators reassign 
variable values

Variable selection: randomly select any conflicted 

variable  Value selection by min-conflicts heuristic:

choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints
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Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of 
variables  goal test defined by constraints on 
variable values

Backtracking = depth-first search with one variable assigned per 

node  Variable ordering and value selection heuristics help 

significantly  Forward checking prevents assignments that guarantee 

later failure  Constraint propagation (e.g., arc consistency) does 

additional work

to constrain values and detect inconsistencies

Local search using the min-conflicts heuristic has also been applied 
to constraint satisfaction problems with great success
The CSP representation allows analysis of problem 

structure  Tree-structured CSPs can be solved in linear 

time
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