Artificial Intelligence: A Modern
Approach

Fourth Edition

Chapter 6

Constraint Satisfaction
Problems

4 vbe A
Y .
T
£ E59 Ay .
_—
8 A
| 18 b
!
45 SNUS
L= Y/,
B o § \
TN ¢
) b
e s

russell SARficialiintelligence
Norvig A Modern Approach

P Fourth Edition

@Pearson Copyright © 2021 Pearson Education, Inc. All Rights Reserved

Defining Constraint Satisfaction Problems (CSP)
CSP examples

Backtracking search for CSPs

Local search for CSPs

® & & oo

Problem structure and problem decomposition

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 2

Defining Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of three
components, X, D, and C:

* Xis a set of variables, {X1 Xn}.
 Dis aset of domains, {Dl, een, Dn}, one for each variable

e Cis a set of constraints that specify allowable combination
of values

CSPs deal with assignments of values to variables.

* A complete assignment is one in which every variable is

assigned a value, and a solution to a CSP is a consistent,
complete assignment.

e A partial assighnment is one that leaves some variables
unassigned.

* Partial solution is a partial assignment that is consistent

) P .
@ Pearson © 2021 Pearson Education Ltd. Chapter 6 3

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box”—any old data structure

that supports goal test, eval, successor

CSP:
state is defined by variables X with values from domain D.

goal test is a set of constraints specifying

allowable combinations of values for subsets of
variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 4

Example: Map-Coloring

Northern
Territory
Western Queensland
Australia
South —
Australia

New South Wales

Tasmania

Variables WA, NT, O, NSW, V,SA, T

Domains D, = {red, green, blue}

Constraints: adjacent regions must have different
colors e.g., WA /= NT (if the language allows
this), or

pearson A NT') € {(red, green), (red, blue), (green, red), (green,
blue), . . .}

Example: Map-Coloring contd.

-

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T =
greent

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 6

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show
constraints

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent
cithnrablem|

) P .
Pearson © 2021 Pearson Education Ltd. Chapter 6 7

Varieties of CSPs

Discrete variables
finite domains; size d= O(d"™) complete assignments
0 e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

infinite domains (integers, strings, etc.)

‘ e.g., job scheduling, variables are start/end days for each job

@ need a constraint language, e.g., StartJ ob, + 5 < StartJ

ob3

@ linear constraints solvable, nonlinear undecidable

Continuous variables

‘ e.g., start/end times for Hubble Telescope observations
0 linear constraints solvable in poly time by LP methods

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 8

Varieties of constraints

Unary constraints involve a single
variable, e.g., SA /= green

Binary constraints involve pairs of
variables, e.g., SA /= WA

Higher-order constraints involve 3 or more
variables, e.g., cryptarithmetic column
constraints

Preferences (soft constraints), e.g., red is better than
green

often representable by a cost for each variable assignment
— constrained optimization problems

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 9

Example: Cryptarithmetic

C oI+
o N4 0O -
Olz =

& g
Variables: FT U W R OX1 X2X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints
alldiff(F, T, U, W, R, O)
O+0O=R+10 - Xl,etc.

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 10

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets

Transportation
scheduling Factory
scheduling

Floorplanning

Notice that many real-world problems involve real-valued
\l'\r‘i'\l‘\l
es

) VoI .
Pearson © 2021 Pearson Education Ltd. Chapter 6 11

Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
@ Initial state: the empty assignment, { }

0 Successor function: assign a value to an unassigned
variable that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

0 Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables
= use depth-first search

3) Pathisirrelevant, so can also use complete-state
formulation

4) b = (n - €)d at depth €, hence n!d" leaves!!!!

@ Pearson © 2021 Pearson Education Ltd. Chapter 6

12

Backtracking search

Variable assignments are commutative, i.e.,

[WA = red then NT = green] sameas [NT = green then WA =
red]

Only need to consider assignments to a single variable at each node
= b = d and there are d" leaves

Depth-first search for CSPs with single-variable
assignments is called backtracking search
Backtracking search is the basic uninformed algorithm for

CSPs Can solve n-queens for n = 25

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 13

Backtracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var < Select-Unassigned-Variable(Variables|csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result «—— Recursive-Backtracking(assignment, csp)
if result /= failure then return result
remove {var = value} from assignment
return failure

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 14

Backtracking example

) VoI .
@ Pearson © 2021 Pearson Education Ltd. Chapter 6 15

Backtracking example

—]

o o

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 16

Backtracking example

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 17

Backtracking example

—]

o o

/\

¢ &

Improving backtracking efficienc

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?
4

. Can we take advantage of problem structure?

) P .
@ Pearson © 2021 Pearson Education Ltd. Chapter 6 19

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal
values

SN SSh SO o=

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 20

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining
variables

SEn® Shad Shad -

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 21

Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

‘\ | Allows 1 value for SA
-4 -—4" <
,:\‘ * Allows 0 values for SA

Combining these heuristics makes 1000 queens
feasible

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 22

Forward checking

Idea: Keep track of remaining legal values for unassigned
variables Terminate search when any variable has no legal
values

D

WA NT Q NSW \" SA T

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 23

Forward checking

Idea: Keep track of remaining legal values for unassigned
variables Terminate search when any variable has no legal
values

SSm SS

WA NT Q NSW \"/ SA T
I I IrmaIrmaireriren
| AMEIrerireni mjEem

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 24

Forward checking

Idea: Keep track of remaining legal values for unassigned
variables Terminate search when any variable has no legal
values

SSE Sl Se

WA NT Q NSW \"/ SA T
I I IrmaIrmaireriren
| M Irerireri mjEem
| 1 Im m[mnn] mjEem

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 25

Forward checking

Idea: Keep track of remaining legal values for unassigned
variables Terminate search when any variable has no legal
values

ke

WA NT Q NSW \'/ SA T
T MM I Irerireriremir
| AMEIrerireni C1C
| 1 Mreri 1O
| 1 C — 1 C

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 26

Constraint propagation

Forward checking propagates information from assigned to unassigned
vari- ables, but doesn’t provide early detection for all failures:

SSR Sl Se

WA NT Q NSW \" SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints
locally

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 27

Arc consistenc

Simplest form of propagation makes each arc
consistent

X — Y is consistent iff
for every value x of X therz is some aliowed y

SSE SSh S

_{/

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 28

Arc consistenc

Simplest form of propagation makes each arc
consistent

X — Y is consistent iff
for every value x of X therz is some aliowed y

SSE SSh S

WA NT Q NSW Y SA T
|]| [m = nn] E[ErE
@ Pearson © 2021 Pearson Education Ltd.

Chapter 6 29

Arc consistenc

Simplest form of propagation makes each arc
consistent

X — Y is consistent iff
for every value x of X therz is some aliowed y

SCHR S S
LI NTll : IINSW!IXVII SAIIITI
&

If X loses a value, neighbors of X need to be
rechecked

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 30

Arc consistenc

Simplest form of propagation makes each arc
consistent

X — Y is consistent iff
for every value x of X therz is some aliowed y

WA NT Q NSW \'} SA T
mm] m] [0 xxFm] Weim
— ‘< —

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward

checking Can be run as a preprocessor or after each
assignment

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 31

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X|, X,, ..., X }
local variables: queue, a queue of arcs, initially all the arcs in csp
while gueue is not empty do

(X, Xj) «— Remove-First(queue)

if Remove-Inconsistent-Values(X, XJ) then for

each X . In Neighbors[X] do
add (Xk’ Xi) to queue

function Remove-Inconsistent-Values(Xi, Xj) returns true iff succeeds
removed «— false
for each x in Domain[X] do
if no value y in Domain[Xj] allows (x,y) to satisfy the constraint Xl. > XJ
then delete x from Domain[X]; removed < true
return removed

O(n’d’), can be reduced to O(n*d”) (but detecting all is NP-hard)

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 32

Local Search for CSPs

Local search algorithms can be very effective in solving many CSPs.

Local search algorithms use a complete-state formulation where each
state assigns a value to every variable, and the search changes the value
of one variable at a time.

Min-conflicts heuristic: value that results in the minimum number
of conflicts with other variables that brings us closer to a solution.
» Usually has a series of plateaus

Plateau search: allowing sideways moves to another state with the same
score.
» can help local search find its way off the plateau.

Constraint weighting aims to concentrate the search on the

important constraints

« Each constraint is given a numeric weight, initially all 1.

* weights adjusted by incrementing when it is violated by the current
assignment

) P .
Pearson © 2021 Pearson Education Ltd. Chapter 6 33

Example: 4-Oueens

States: 4 queens in 4 columns (4% = 256 states)
Operators: move queen in

column Goal test: no attacks

Evaluation: h(n) = number of attacks

N
= WS
L

h=2 h=0

=

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 34

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of

caQshitaenisf

vanabdggu

| R
critical
ratio

) P .
@ Pearson © 2021 Pearson Education Ltd. Chapter 6 35

Problem structure

ria
Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint

graph

) VoI .
@ Pearson © 2021 Pearson Education Ltd.

Chapter 6

36

Problem structure contd.

Suppose each subproblem has c variables out of n
total

Worst-case solution costis n/c - dS, linear in n

Eg,n=80,d=2,¢c=20
280 = 4 billion years at 10 million nodes/sec
4 - 2?Y=0.4 seconds at 10 million nodes/sec

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 37

Tree-structured CSPs

AE

CF

Theorem: if the constraint graph has no loops, the CSP can be solved in

O(n d°) time
Compare to general CSPs, where worst-case time is O(d")

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic
restrictions and the complexity of reasoning.

) VoI .
@ Pearson © 2021 Pearson Education Ltd.

Chapter 6

38

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to
leaves such that every node’s parent precedes it in the

Sh-cig 0B

2. For jfrom n down to 2, apply RemoveInconsistent(Parent(X]), X])

3. Forjfrom 1 to n, assign chonsistently with Parent(Xj)

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 39

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’
domains

Cutset conditioning: instantiate (in all ways) a set of
variables such that the remaining constraint graph is a tree

Cutset size c= runtime O(d° - (n — o d?), very fast for small ¢

@ Pearson © 2021 Pearson Education Ltd. Chapter 6 40

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work
with “complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied
constraints operators reassign
variable values
Variable selection: randomly select any conflicted

variable Value selection by min-conflicts heuristic:

choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

) P .
@ Pearson © 2021 Pearson Education Ltd. Chapter 6 41

Summa

CSPs are a special kind of problem:
states defined by values of a fixed set of
variables goal test defined by constraints on
variable values
Backtracking = depth-first search with one variable assigned per

node Variable ordering and value selection heuristics help
significantly Forward checking prevents assignments that guarantee
later failure Constraint propagation (e.g., arc consistency) does
additional work

to constrain values and detect inconsistencies

Local search using the min-conflicts heuristic has also been applied
to constraint satisfaction problems with great success
The CSP representation allows analysis of problem

) P .
Pearson © 2021 Rearson Edlllcatlon Chapter 6 42

td. .
suucwdre Tree-structured CSPs can be solved in linear

