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Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to 
facts

Propositional logic allows partial/disjunctive/negated 
information  (unlike most data structures and databases)

Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive 
power  (unlike natural language)
E.g., cannot say “pits cause breezes in adjacent 

squares”  except by writing one sentence for 
each square
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First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald, 
colors,  baseball games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, 
owns,  comes between, . . .

• Functions: father of, best friend, third inning of, one more than, 
end of
. . .
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Logics in general

Language Ontological
Commitment

Epistemological
Commitment

Propositional 
logic

facts true/false/unknow
n

First-order logic facts, objects, relations true/false/unknow
n

Temporal logic facts, objects, relations, 
times

true/false/unknow
n

Probability 
theory

facts degree of belief

Fuzzy logic facts + degree of truth known interval 
value
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Syntax of FOL: Basic elements

Constants  
Predicates  
Functions  
Variables  
Connectiv
es  
Equality  
Quantifier
s

KingJ ohn,  2,  UCB, . 
. .
Brother,  >, . . .
Sqrt,  LeftLegOf, . . 
.  x,  y,  a,  b, . . .
∧ ∨ ¬ ⇒ ⇔
=
∀ ∃
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Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term= function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJ ohn, RichardT heLionheart)
> (Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJ ohn)))
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Complex sentences

Complex sentences are made from atomic sentences using 
connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJ ohn, Richard) ⇒ Sibling(Richard, KingJ 
ohn)

>(1, 2) ∨ ≤(1, 2)
>(1, 2) ∧ ¬>(1, 2)
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Truth in first-order logic

Sentences are true with respect to a model and an interpretation
Model contains ≥ 1 objects (domain elements) and relations 

among them  Interpretation specifies referents for

constant symbols → 

objects  predicate symbols 
→ relations
function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn) 
is true  iff the objects referred to by term1, . . . , 
termn
are in the relation referred to by predicate
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Models for FOL: Example

R
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J$

left leg left leg

brother

brother

person
on head

person  
king

crown
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Truth example

Consider the interpretation in 
which  Richard → Richard the 
Lionheart  J ohn → the evil 
King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, J ohn) is 
true  just in case Richard the Lionheart and the evil 
King John  are in the brotherhood relation in the 
model
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Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating 
models
We can enumerate the FOL models for a given KB 

vocabulary:  For each number of domain elements n 

from 1 to ∞

For each k-ary predicate Pk in the 
vocabulary  For each possible k-ary 
relation on n objects

For each constant symbol C in the vocabulary
For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!
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Universal quantification

∀ }variabless }sentences

Everyone at Berkeley is smart:
∀ x At(x, Berkeley) ⇒ Smart(x)

∀ x P is true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations 
of P

(At(KingJ ohn, Berkeley) ⇒ Smart(KingJ ohn))
∧ (At(Richard, Berkeley) ⇒ Smart(Richard))
∧ (At(Berkeley, Berkeley) ⇒ Smart(Berkeley))
∧  . . .
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A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective 
with ∀:

∀ x At(x, Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is 
smart”
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Existential quantification

∃ }variabless }sentences

Someone at Stanford is smart:
∃ x At(x, Stanf ord) ∧ Smart(x)

∃ x P is true in a model m iff P is true with x being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations 
of P

(At(KingJ ohn, Stanf ord) ∧ Smart(KingJ ohn))
∨  (At(Richard, Stanf ord) ∧ Smart(Richard))
∨ (At(Stanf ord, Stanf ord) ∧ Smart(Stanf ord))
∨  . . .
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Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective 
with ∃:

∃ x At(x, Stanf ord) ⇒ Smart(x)

is true if there is anyone who is not at Stanford!
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Properties of quantifiers

∀ 
x

∀ 
y

is the same as 
∀ y

∀ 
x

(why??)

∃ 
x

∃ 
y

is the same as 
∃ y

∃ 
x

(why??)

∃ 
x

∀ 
y

is not the same 
as

∀ 
y

∃ x
∃ x ∀ y Loves(x, y)
“There is a person who loves everyone in the 
world”

∀ y ∃ x Loves(x, y)
“Everyone in the world is loved by at least one 
person”

Quantifier duality: each can be expressed using 
the other

∀ x Likes(x, 
IceCream)

∃ x Likes(x, 
Broccoli)

¬∃ x ¬Likes(x, 
IceCream)

¬∀ x ¬Likes(x, Broccoli)
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Fun with sentences

Brothers are 
siblings
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Fun with sentences

Brothers are siblings
∀ x, y Brother(x, y) ⇒

Sibling(x, y).  “Sibling” is symmetric
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Fun with sentences

Brothers are siblings
∀ x, y Brother(x, y) ⇒

Sibling(x, y).  “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔

Sibling(y, x).  One’s mother is 

one’s female parent
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Fun with sentences

Brothers are siblings
∀ x, y Brother(x, y) ⇒

Sibling(x, y).  “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔

Sibling(y, x).  One’s mother is 

one’s female parent

∀ x, y M other(x, y) ⇔ (F emale(x) ∧ 

Parent(x, y)).  A first cousin is a child of a parent’s 

sibling
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Fun with sentences

Brothers are siblings
∀ x, y Brother(x, y) ⇒

Sibling(x, y).  “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔

Sibling(y, x).  One’s mother is 

one’s female parent

∀ x, y M other(x, y) ⇔ (F emale(x) ∧ 

Parent(x, y)).  A first cousin is a child of a parent’s 

sibling

∀ x, y FirstCousin(x, y) ⇔ ∃ p, ps Parent(p, x) ∧ 
Sibling(ps, p) ∧
Parent(ps, y)
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Equality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀ x ×(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:
∀ x, y Sibling(x, y) ⇔ [¬(x = y) ∧ ∃ m, f ¬(m = f ) ∧

Parent(m, x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, 
y)]
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Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at 
t = 5:

T ell(KB, P ercept([Smell, Breeze, N one], 5))
Ask(KB, ∃ a Action(a, 5))
I.e., does KB entail any particular actions at t = 5?  

Answer: Y es, {a/Shoot} ← substitution (binding 

list)  Given a sentence S and a substitution σ,

Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x, y)
σ = {x/Hillary, y/Bill}
Sσ = Smarter(Hillary, Bill)

Ask(KB, S) returns some/all σ such that KB |= Sσ

© 2021 Pearson Education Ltd.



Chapter 8 25

Knowledge base for the wumpus world

“Perception”
∀ b, g, t P ercept([Smell, b, g], t) ⇒ Smelt(t)
∀ s, b, t P ercept([s, b, Glitter], t) ⇒ AtGold(t)

Reflex: ∀ t AtGold(t) ⇒ Action(Grab, t)

Reflex with internal state: do we have the gold 
already?
∀ tAtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab, 
t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential
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Deducing hidden properties

Properties of locations:
∀ x, t At(Agent, x, t) ∧ Smelt(t) ⇒ Smelly(x)
∀ x, t At(Agent, x, t) ∧ Breeze(t)⇒ Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
∀ y Breezy(y) ⇒ ∃ x Pit(x) ∧ Adjacent(x, y)

Causal rule—infer effect from cause
∀ x, y Pit(x) ∧ Adjacent(x, y)⇒ Breezy(y)

Neither of these is complete—e.g., the causal ruledoesn’t say
whether  squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x, y)]

© 2021 Pearson Education Ltd.

Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, N ow) rather than just 
Holding(Gold)

Situation calculus is one way to represent change in 
FOL:

Adds a situation argument to each non-eternal 
predicate  E.g., N ow in Holding(Gold, N ow) 
denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in 
s PIT
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PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0
Forward

S1
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Describing actions I

“Effect” axiom—describe changes due to action
∀ s AtGold(s) ⇒ Holding(Gold, Result(Grab, s))

“Frame” axiom—describe non-changes due to action
∀ s HaveArrow(s) ⇒ HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of 

state

Qualification problem: true descriptions of real actions require endless 
caveats—  what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary 
consequences—  what about the dust on the gold, wear and tear 
on gloves, . . .
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Describing actions II

Successor-state axioms solve the representational frame 
problem

Each axiom is “about” a predicate (not an action per se):
P true 
afterwards

⇔ [an action made P true
∨ P true already and no action made P 
false]

For holding the gold:
∀ a, s Holding(Gold, Result(a, s))
⇔

[(a = Grab ∧ AtGold(s))
∨ (Holding(Gold, s) ∧ a  = 
Release)]
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Making plans

Initial condition in KB:
At(Agent, [1, 1], S0)
At(Gold, [1, 2], S0)

Query: Ask(KB, ∃ s Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab, Result(F orward, S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and 
that S0
is the only situation described in the KB
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Making plans: A better way

Represent plans as action sequences [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB, ∃ p Holding(Gold, PlanResult(p, S0)))
has the solution {p/[F orward, Grab]}

Definition of PlanResult in terms of Result:
∀ s PlanResult([ ], s) = s
∀ a, p, s PlanResult([a|p], s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this 
type of  inference more efficiently than a general-purpose reasoner
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Knowledge Engineering in FOL

Knowledge engineering: the general process of knowledge-base 
construction.

The steps used in the knowledge engineering process:
1. Identify the questions.
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the problem instance
6. Pose queries to the inference procedure and get answers
7. Debug and evaluate the knowledge base

© 2021 Pearson Education Ltd.

Chapter 8 33

Knowledge Engineering in FOL

Applications in the electronic circuits domain

1. Identify the questions

• Does the circuit in Figure 8.6 actually add properly? 
• If all the inputs are high, what is the output of gate A2? 
• Questions about the circuit’s structure are also interesting. 
• For example, what are all the gates connected to the first input terminal? 
• Does the circuit contain feedback loops?
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Knowledge Engineering in FOL

Applications in the electronic circuits domain

2. Assemble the relevant knowledge
• Circuits composed of wires and gates.
• Signals flow along wires to the input terminals of gates
• Each gate produces a signal on the output terminal that flows along 

another wire.
• There are four types of gates: AND, OR, and XOR gates have two input 

terminals, and NOT gates have one.
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Knowledge Engineering in FOL

Applications in the electronic circuits domain

3. Decide on a vocabulary
• Each gate is represented as an object named by a constant, about which 

we assert that it is a gate with
• Gate(X1), eg: Type(X1)=XOR
• Circuit(C1)
• Terminal(x)
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Knowledge Engineering in FOL

Applications in the electronic circuits domain

4. Encode general knowledge of the domain
• Example:
       If two terminals are connected, then they have the same signal:

∀ t1, t2 Terminal(t1) ∧ Terminal(t2) ∧ Connected(t1, t2) ⇒
Signal(t1)=Signal(t2)
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Knowledge Engineering in FOL

Applications in the electronic circuits domain

5. Encode the specific problem instance
• Categorize the circuit and its component gates & show the connections:
Connected(Out(1,X1), In(1,X2)) Connected(In(1,C1); In(1,X1))
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Knowledge Engineering in FOL

Applications in the electronic circuits domain

6. Pose queries to the inference procedure
• What are the possible sets of values of all the terminals for the adder 

circuit?
• This final query will return a complete input–output table for the device, 

which can be used
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Knowledge Engineering in FOL

Applications in the electronic circuits domain

7. Debug the knowledge base
• We can perturb the knowledge base in various ways to see what kinds of 

erroneous behaviors emerge
• Example if no assertion 1 ≠ 0 
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Summary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, 

quantifiers
Increased expressive power: sufficient to define 

wumpus world  

Situation calculus:

– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation 

calculus KB

Developing a KB in FOL requires a careful process of 
analyzing the domain, choosing a vocabulary, and encoding 
the axioms required to support the  desired inferences.
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