
1

Artificial Intelligence: A Modern
Approach
Fourth Edition

Chapter 8

First-order logic

Copyright © 2021 Pearson Education, Inc. All Rights Reserved

Chapter 8 2

Outline

♦ Why FOL?

♦ Syntax and semantics of FOL

♦ Fun with sentences

♦ Wumpus world in FOL

♦ Knowledge Engineering in FOL

© 2021 Pearson Education Ltd.

Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to
facts

Propositional logic allows partial/disjunctive/negated
information (unlike most data structures and databases)

Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive
power (unlike natural language)
E.g., cannot say “pits cause breezes in adjacent

squares” except by writing one sentence for
each square

Chapter 8 3

© 2021 Pearson Education Ltd.

Chapter 8 4

First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald,
colors, baseball games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after,
owns, comes between, . . .

• Functions: father of, best friend, third inning of, one more than,
end of
. . .

© 2021 Pearson Education Ltd.

Chapter 8 5

Logics in general

Language Ontological
Commitment

Epistemological
Commitment

Propositional
logic

facts true/false/unknow
n

First-order logic facts, objects, relations true/false/unknow
n

Temporal logic facts, objects, relations,
times

true/false/unknow
n

Probability
theory

facts degree of belief

Fuzzy logic facts + degree of truth known interval
value

© 2021 Pearson Education Ltd.

Chapter 8 6

Syntax of FOL: Basic elements

Constants
Predicates
Functions
Variables
Connectiv
es
Equality
Quantifier
s

KingJ ohn, 2, UCB, .
. .
Brother, >, . . .
Sqrt, LeftLegOf, . .
. x, y, a, b, . . .
∧ ∨ ¬ ⇒ ⇔
=
∀ ∃

© 2021 Pearson Education Ltd.

Chapter 8 7

Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term= function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJ ohn, RichardT heLionheart)
> (Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJ ohn)))

© 2021 Pearson Education Ltd.

Chapter 8 8

Complex sentences

Complex sentences are made from atomic sentences using
connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJ ohn, Richard) ⇒ Sibling(Richard, KingJ
ohn)

>(1, 2) ∨ ≤(1, 2)
>(1, 2) ∧ ¬>(1, 2)

© 2021 Pearson Education Ltd.

Chapter 8 9

Truth in first-order logic

Sentences are true with respect to a model and an interpretation
Model contains ≥ 1 objects (domain elements) and relations

among them Interpretation specifies referents for

constant symbols →

objects predicate symbols
→ relations
function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn)
is true iff the objects referred to by term1, . . . ,
termn
are in the relation referred to by predicate

© 2021 Pearson Education Ltd.

Models for FOL: Example

R

Chapter 8 10

J$

left leg left leg

brother

brother

person
on head

person
king

crown

© 2021 Pearson Education Ltd.

Chapter 8 11

Truth example

Consider the interpretation in
which Richard → Richard the
Lionheart J ohn → the evil
King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, J ohn) is
true just in case Richard the Lionheart and the evil
King John are in the brotherhood relation in the
model

© 2021 Pearson Education Ltd.

Chapter 8 12

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating
models
We can enumerate the FOL models for a given KB

vocabulary: For each number of domain elements n

from 1 to ∞

For each k-ary predicate Pk in the
vocabulary For each possible k-ary
relation on n objects

For each constant symbol C in the vocabulary
For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!

© 2021 Pearson Education Ltd.

Chapter 8 13

Universal quantification

∀ }variabless }sentences

Everyone at Berkeley is smart:
∀ x At(x, Berkeley) ⇒ Smart(x)

∀ x P is true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations
of P

(At(KingJ ohn, Berkeley) ⇒ Smart(KingJ ohn))
∧ (At(Richard, Berkeley) ⇒ Smart(Richard))
∧ (At(Berkeley, Berkeley) ⇒ Smart(Berkeley))
∧ . . .

© 2021 Pearson Education Ltd.

Chapter 8 14

A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective
with ∀:

∀ x At(x, Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is
smart”

© 2021 Pearson Education Ltd.

Chapter 8 15

Existential quantification

∃ }variabless }sentences

Someone at Stanford is smart:
∃ x At(x, Stanf ord) ∧ Smart(x)

∃ x P is true in a model m iff P is true with x being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations
of P

(At(KingJ ohn, Stanf ord) ∧ Smart(KingJ ohn))
∨ (At(Richard, Stanf ord) ∧ Smart(Richard))
∨ (At(Stanf ord, Stanf ord) ∧ Smart(Stanf ord))
∨ . . .

© 2021 Pearson Education Ltd.

Chapter 8 16

Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective
with ∃:

∃ x At(x, Stanf ord) ⇒ Smart(x)

is true if there is anyone who is not at Stanford!

© 2021 Pearson Education Ltd.

Chapter 8 17

Properties of quantifiers

∀
x

∀
y

is the same as
∀ y

∀
x

(why??)

∃
x

∃
y

is the same as
∃ y

∃
x

(why??)

∃
x

∀
y

is not the same
as

∀
y

∃ x
∃ x ∀ y Loves(x, y)
“There is a person who loves everyone in the
world”

∀ y ∃ x Loves(x, y)
“Everyone in the world is loved by at least one
person”

Quantifier duality: each can be expressed using
the other

∀ x Likes(x,
IceCream)

∃ x Likes(x,
Broccoli)

¬∃ x ¬Likes(x,
IceCream)

¬∀ x ¬Likes(x, Broccoli)

© 2021 Pearson Education Ltd.

Chapter 8 18

Fun with sentences

Brothers are
siblings

© 2021 Pearson Education Ltd.

Chapter 8 19

Fun with sentences

Brothers are siblings
∀ x, y Brother(x, y) ⇒

Sibling(x, y). “Sibling” is symmetric

© 2021 Pearson Education Ltd.

Chapter 8 20

Fun with sentences

Brothers are siblings
∀ x, y Brother(x, y) ⇒

Sibling(x, y). “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔

Sibling(y, x). One’s mother is

one’s female parent

© 2021 Pearson Education Ltd.

Chapter 8 21

Fun with sentences

Brothers are siblings
∀ x, y Brother(x, y) ⇒

Sibling(x, y). “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔

Sibling(y, x). One’s mother is

one’s female parent

∀ x, y M other(x, y) ⇔ (F emale(x) ∧

Parent(x, y)). A first cousin is a child of a parent’s

sibling

© 2021 Pearson Education Ltd.

Chapter 8 22

Fun with sentences

Brothers are siblings
∀ x, y Brother(x, y) ⇒

Sibling(x, y). “Sibling” is symmetric

∀ x, y Sibling(x, y) ⇔

Sibling(y, x). One’s mother is

one’s female parent

∀ x, y M other(x, y) ⇔ (F emale(x) ∧

Parent(x, y)). A first cousin is a child of a parent’s

sibling

∀ x, y FirstCousin(x, y) ⇔ ∃ p, ps Parent(p, x) ∧
Sibling(ps, p) ∧
Parent(ps, y)

© 2021 Pearson Education Ltd.

Chapter 8 23

Equality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀ x ×(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:
∀ x, y Sibling(x, y) ⇔ [¬(x = y) ∧ ∃ m, f ¬(m = f) ∧

Parent(m, x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f,
y)]

© 2021 Pearson Education Ltd.

Chapter 8 24

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at
t = 5:

T ell(KB, P ercept([Smell, Breeze, N one], 5))
Ask(KB, ∃ a Action(a, 5))
I.e., does KB entail any particular actions at t = 5?

Answer: Y es, {a/Shoot} ← substitution (binding

list) Given a sentence S and a substitution σ,

Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x, y)
σ = {x/Hillary, y/Bill}
Sσ = Smarter(Hillary, Bill)

Ask(KB, S) returns some/all σ such that KB |= Sσ

© 2021 Pearson Education Ltd.

Chapter 8 25

Knowledge base for the wumpus world

“Perception”
∀ b, g, t P ercept([Smell, b, g], t) ⇒ Smelt(t)
∀ s, b, t P ercept([s, b, Glitter], t) ⇒ AtGold(t)

Reflex: ∀ t AtGold(t) ⇒ Action(Grab, t)

Reflex with internal state: do we have the gold
already?
∀ tAtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab,
t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential

© 2021 Pearson Education Ltd.

Chapter 8 26

Deducing hidden properties

Properties of locations:
∀ x, t At(Agent, x, t) ∧ Smelt(t) ⇒ Smelly(x)
∀ x, t At(Agent, x, t) ∧ Breeze(t)⇒ Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
∀ y Breezy(y) ⇒ ∃ x Pit(x) ∧ Adjacent(x, y)

Causal rule—infer effect from cause
∀ x, y Pit(x) ∧ Adjacent(x, y)⇒ Breezy(y)

Neither of these is complete—e.g., the causal ruledoesn’t say
whether squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x, y)]

© 2021 Pearson Education Ltd.

Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, N ow) rather than just
Holding(Gold)

Situation calculus is one way to represent change in
FOL:

Adds a situation argument to each non-eternal
predicate E.g., N ow in Holding(Gold, N ow)
denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in
s PIT

Chapter 8 27

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0
Forward

S1

© 2021 Pearson Education Ltd.

Chapter 8 28

Describing actions I

“Effect” axiom—describe changes due to action
∀ s AtGold(s) ⇒ Holding(Gold, Result(Grab, s))

“Frame” axiom—describe non-changes due to action
∀ s HaveArrow(s) ⇒ HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of

state

Qualification problem: true descriptions of real actions require endless
caveats— what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary
consequences— what about the dust on the gold, wear and tear
on gloves, . . .

© 2021 Pearson Education Ltd.

Chapter 8 29

Describing actions II

Successor-state axioms solve the representational frame
problem

Each axiom is “about” a predicate (not an action per se):
P true
afterwards

⇔ [an action made P true
∨ P true already and no action made P
false]

For holding the gold:
∀ a, s Holding(Gold, Result(a, s))
⇔

[(a = Grab ∧ AtGold(s))
∨ (Holding(Gold, s) ∧ a =
Release)]

© 2021 Pearson Education Ltd.

Chapter 8 30

Making plans

Initial condition in KB:
At(Agent, [1, 1], S0)
At(Gold, [1, 2], S0)

Query: Ask(KB, ∃ s Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab, Result(F orward, S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and
that S0
is the only situation described in the KB

© 2021 Pearson Education Ltd.

Chapter 8 31

Making plans: A better way

Represent plans as action sequences [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB, ∃ p Holding(Gold, PlanResult(p, S0)))
has the solution {p/[F orward, Grab]}

Definition of PlanResult in terms of Result:
∀ s PlanResult([], s) = s
∀ a, p, s PlanResult([a|p], s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this
type of inference more efficiently than a general-purpose reasoner

© 2021 Pearson Education Ltd.

Chapter 8 32

Knowledge Engineering in FOL

Knowledge engineering: the general process of knowledge-base
construction.

The steps used in the knowledge engineering process:
1. Identify the questions.
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the problem instance
6. Pose queries to the inference procedure and get answers
7. Debug and evaluate the knowledge base

© 2021 Pearson Education Ltd.

Chapter 8 33

Knowledge Engineering in FOL

Applications in the electronic circuits domain

1. Identify the questions

• Does the circuit in Figure 8.6 actually add properly?
• If all the inputs are high, what is the output of gate A2?
• Questions about the circuit’s structure are also interesting.
• For example, what are all the gates connected to the first input terminal?
• Does the circuit contain feedback loops?

© 2021 Pearson Education Ltd.

Chapter 8 34

Knowledge Engineering in FOL

Applications in the electronic circuits domain

2. Assemble the relevant knowledge
• Circuits composed of wires and gates.
• Signals flow along wires to the input terminals of gates
• Each gate produces a signal on the output terminal that flows along

another wire.
• There are four types of gates: AND, OR, and XOR gates have two input

terminals, and NOT gates have one.

© 2021 Pearson Education Ltd.

Chapter 8 35

Knowledge Engineering in FOL

Applications in the electronic circuits domain

3. Decide on a vocabulary
• Each gate is represented as an object named by a constant, about which

we assert that it is a gate with
• Gate(X1), eg: Type(X1)=XOR
• Circuit(C1)
• Terminal(x)

© 2021 Pearson Education Ltd.

Chapter 8 36

Knowledge Engineering in FOL

Applications in the electronic circuits domain

4. Encode general knowledge of the domain
• Example:
 If two terminals are connected, then they have the same signal:

∀ t1, t2 Terminal(t1) ∧ Terminal(t2) ∧ Connected(t1, t2) ⇒
Signal(t1)=Signal(t2)

© 2021 Pearson Education Ltd.

Chapter 8 37

Knowledge Engineering in FOL

Applications in the electronic circuits domain

5. Encode the specific problem instance
• Categorize the circuit and its component gates & show the connections:
Connected(Out(1,X1), In(1,X2)) Connected(In(1,C1); In(1,X1))

© 2021 Pearson Education Ltd.

Chapter 8 38

Knowledge Engineering in FOL

Applications in the electronic circuits domain

6. Pose queries to the inference procedure
• What are the possible sets of values of all the terminals for the adder

circuit?
• This final query will return a complete input–output table for the device,

which can be used

© 2021 Pearson Education Ltd.

Chapter 8 39

Knowledge Engineering in FOL

Applications in the electronic circuits domain

7. Debug the knowledge base
• We can perturb the knowledge base in various ways to see what kinds of

erroneous behaviors emerge
• Example if no assertion 1 ≠ 0

© 2021 Pearson Education Ltd.

Chapter 8 40

Summary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality,

quantifiers
Increased expressive power: sufficient to define

wumpus world

Situation calculus:

– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation

calculus KB

Developing a KB in FOL requires a careful process of
analyzing the domain, choosing a vocabulary, and encoding
the axioms required to support the desired inferences.

© 2021 Pearson Education Ltd.

