Artificial Intelligence: A Modern

Approach

Qutline

Fourth Edition

Reducing first-order inference to propositional
inference

Unification

Generalized Modus Ponens

® oo o

Chapter 9 Forward and backward chaining
Logic programming
Inference in first-order logic
Resolution
@ Pearson Copyright © 2021 Pearson Education, Inc. All Rights Reserved ! @ Fearson © 2021 Pearson Education Ltd. Chapter9 2
| Universal instantiation (UI) | | Existential instantiation (EI) |
Every instantiation of a universally quantified sentence is entailed by it: For any sentence a, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:
Vv a
Subst({v/g}, a) Jdv a

Subst({v/k}, a)
E.g, 3 x Crown(x) /\ OnHead(x, J ohn) yields

for any variable v and ground term g
E.g, V x King(x) /\ Greedy(x) = Euvil(x) yields

King(J ohn) A Greedy(J ohn) = EvillJ ohn) Crown(C,) /\ OnHead(C,, J ohn)

King(Richard) /\ Greedy(Richard)=> provided C, is a new constant symbol, called a Skolem
Evil(Richard) constant Another example: from = x d(x¥)/dy = x¥ we
King(Father{(d ohn)) /\ Greedy(F ather(J ohn)) = Evil(Fathen{J

ohn)) obtain

d(eY)/dy = eY

provided e is a new constant symbol

@ Pearson © 2021 Pearson Education Ltd. Chapter9 3 @ Pearson © 2021 Pearson Education Ltd. Chapter9 4
l Existential instantiation contd. | l Reduction to propositional inference |
Ul can be applied several times to add new Suppose the KB contains just the following:
sentences; the new KB is logically equivalent to the .
old gically eq YV x King(x) \ Greedy(x) =

Evil(x) King(J ohn)
El can be applied once to replace the existential Greedy(J ohn)
sentence; the new KB is not equivalent to the old, Brother(Richard, J

but is satisfiable iff the old KB was satisfiable ohn)

Instantiating the universal sentence in all possible ways, we have

King(J ohn) N\ Greedy(J ohn) = Evil(J ohn)
King(Richard) /\ Greedy(Richard)=
Evil(Richard) King(J ohn)

Greedy(J ohn)

Brother(Richard, J

ohn)

The new KB is propositionalized: proposition symbols are

@ pearson © 2021 Pearson Education Ltd. Chapters 5 @I’carsxmlg(l] ohn), Greedy(J okmyyrdwiFohn), King(Richard)wes «
etc.

l Reduction contd. | l

Problems with propositionalization |

Claim: a ground sentence™ is entailed by new KB iff entailed by original KB

Propositionalization seems to generate lots of irrelevant
Claim: every FOL KB can be propositionalized so as to preserve

sentences. E.g., from

entailment Idea: propositionalize KB and query, apply resolution, return ¥V xKing(x) /\ Greedy(x) =
Evil(x) King(J ohn)
Vy Greedy(y)
terms, Brother(Richard, J
ohn)

result Problem: with function symbols, there are infinitely many ground

e.g., Father(Father(Father(J ohn))) .

it seems obvious that Evil(J ohn), but propositionalization produces lots
of facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p - n*

Theorem: Herbrand (1930). If a sentence a is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

Idea: For n =0 to oo do
create a propositional KB by instantiating with depth-n
terms see if a is entailed by this KB

instantiations With function symbols, it gets nuch much worse!

Problem: works if a is entailed, loops if a is not entailed

@ pearsonm: Turing (1936), Churche(#986); entailment in FOL is semidecidable @ Pearson © 2021 Pearson Education Ltd Chapiers 8
l Unification | l Unification |
We can get the inference immediately if we can find a substitution 6 We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(J ohn) and such that King(x) and Greedy(x) match King(J ohn) and
Greedy(y) Greedy(y)

6 = {x/John, y/J ohn} works 6 = {x/John, y/J ohn} works
Unify(a, B) = 6if ab = BO Unify(a, B) = 6if ab = BO
p 4 \ |0 p 4q \ |0

Knows(J ohn,) Knows(J ohn,
Jane) Knows(J ohn, x) Knows(y,
OJ) Knows(J ghn, x) Knows(y, M

Knows(J ohn, x) Knows(J ohn, {x/Jane}
Jane) Knows(J ohn, x) Knows(y,
OJ) Knows(J ghn, x) Knows(y, M

other(y)) Knows(J ohn, x) other(y)) Knows(J ohn, x)
Knows(x, OJ) Knows(x, OJ)

@PC;IFSUH © 2021 Pearson Education Ltd. Chapter9 9 @I’o;u'sun © 2021 Pearson Education Ltd. Chapter9 10
l Unification | l Unification |
We can get the inference immediately if we can find a substitution 6 We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(J ohn) and such that King(x) and Greedy(x) match King(J ohn) and
Greedy(y) Greedy(y)

6 = {x/John, y/J ohn} works 6 = {x/John, y/J ohn} works
Unify(a, B) = 0if ab = BO Unify(a, B) = 0 if ab = BO
P q \ |6 P q \ |6
Knows(J ohn, x) Knows(J ohn, {x/Jane} Knows(J ohn, x) Knows(J ohn, {x/Jane}
Jane) Knows(J ohn, x) Knows(y, |{x/OJ, y/J Jane) Knows(J ohn, x) Knows(y, |{x/OJ, y/J
OJ) Knows(J ghn, x) Knows(y, M |ohn} &dgws(J ohn, x) Knows(y, M other(yphrdy/J ohn, x/ M
other(y)) Knows(J ohn, x) other(J ohn)} Knows(J ohn, x) Knows(x, OJ)

Knows(x, OJ)

@ Pearson 2021 Pearson Education Ltd

Chapter9 11 @ Pearson 2021 Pearson Education Ltd. Chapter9 12

l Unification |

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(J ohn) and
Greedy(y)

6 = {x/John, y/J ohn} works
Unify(a, B) = 6if ab = BO

P q \ 0

Knows(J ohn, x) Knows(J ohn, {x/Jane}

Jane) Knows(J ohn, x) Knows(y, |{x/OJ, y/J
Bdgws(J ohn, x) Knows(y, M other(yphnfy/J ohn, x/ M
other(J ohn)} ows(J ohn, x) Knows(x, OJ) fail

Standardizing apart eliminates overlap of variables, e.g., Knows(zr, oJ)

@ Pearson 2021 Pearson Education Ltd. Chapter9 13

l Soundness of GMP |

Need to show that

p,s....p, (,/N...\Np,=qI|=q6

provided that p!6 = p6 for all i
Lemma: For any definite clause p, we have p |= p6 by Ul

L(pAN...Np=9l=(p,N...N\p,=q0=pON... N
p,0 = q0)

2.p, ..., p' IEFp/AN.. AP I=P'OAN ... NDp6

3. From 1 and 2, g0 follows by ordinary Modus Ponens

@ Pearson 2021 Pearson Education Ltd. Chapter9 15

l Example knowledge base contd. |

. . . itis a crime for an American to sell weapons to hostile
nations:

@ Pearson 2021 Pearson Education Ltd. Chapter9 17

| Generalized Modus Ponens (GMP) |

pLp,...., APAN...Ap

n

b 39 \{vhere p‘,. 6= p,0forall
i
6
p,'is King(J p, is King(x)
ohn) p.is D,is

Gisediyfghn, y/J ohn)Gréedy(x)
Evil(x) q0is Evil(J ohn)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

@ Pearson 2021 Pearson Education Ltd. Chapter9 14

l Example knowledge base |

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

@ Pearson 2021 Pearson Education Ltd. Chapter9 16

l Example knowledge base contd. |

. . . itis a crime for an American to sell weapons to hostile nations:
American(x)/\ W eapon(y)/\ Sells(x, y, z)/\ Hostile(z) =
Criminal(x)

Nono . . . has some missiles

@ Pearson 2021 Pearson Education Ltd. Chapter9 18

l Example knowledge base contd. |

. . . itis a crime for an American to sell weapons to hostile nations:
American(x)/\ W eapon(y)/\ Sells(x, y, z)/\ Hostile(z) =
Criminal(x)

Nono . . . has some missiles, i.e., 3 x Owns(N ono, x) /\
Missile(x): Owns(N ono, M,) and Missile(M,)

... all of its missiles were sold to it by Colonel West

@ Pearson 2021 Pearson Education Ltd. Chapter9 19

l Example knowledge base contd. |

. . . itis a crime for an American to sell weapons to hostile nations:
American(x)/\ W eapon(y)/\ Sells(x, y, z)/\ Hostile(z) =
Criminal(x)

Nono . . . has some missiles, i.e., 3 x Owns(N ono, x) /\
Missile(x): Owns(N ono, M,) and Missile(M,)

... all of its missiles were sold to it by Colonel West
V x Missile(x) /\ Owns(N ono, x) = Sells(W est, x, N ono)

Missiles are weapons:

Missile(x) = W eapon(x)
An enemy of America counts as “hostile”:

@ Pearson 2021 Pearson Education Ltd. Chapter9 21

l Forward chaining algorithm |

function FOL-FC-Ask(KB, a) returns a substitution or false

repeat until new is empty
new «— {}
for each sentence in KB do
(pyN... N\ p, ® q)<« Standardize-Apart(r)
for each Osuchthat (p, A\ ... A p)o =, (A
A phe for some pl, . ., , P in
q ! «— Sub’éﬂe, q)
if ¢ 'is not a renaming of a sentence already in KB or new then do
add ¢ ' to new
@ < Unify(¢', @)
if @ is not fail then return ¢
add new to KB
return false

@ Pearson 2021 Pearson Education Ltd. Chapter9 23

l Example knowledge base contd. |

. . . itis a crime for an American to sell weapons to hostile nations:
American(x)/\ W eapon(y)/\ Sells(x, y, z)/\ Hostile(z) =
Criminal(x)

Nono . . . has some missiles, i.e., 3 x Owns(N ono, x) /\
Missile(x): Owns(N ono, M,) and Missile(M,)

... all of its missiles were sold to it by Colonel West
V x Missile(x) /\ Owns(N ono, x) = Sells(W est, x, N ono)

Missiles are weapons:

@ Pearson 2021 Pearson Education Ltd. Chapter9 20

l Example knowledge base contd. |

. . . itis a crime for an American to sell weapons to hostile nations:
American(x)/\ W eapon(y)/\ Sells(x, y, z)/\ Hostile(z) =
Criminal(x)

Nono . . . has some missiles, i.e., 3 x Owns(N ono, x) /\
Missile(x): Owns(N ono, M,) and Missile(M,)

... all of its missiles were sold to it by Colonel West
V x Missile(x) /\ Owns(N ono, x) = Sells(W est, x, N ono)

Missiles are weapons:

Missile(x) = W eapon(x)

An enemy of America counts as “hostile”:
Enemy(x, America) = Hostile(x)

West, who is American . . .

American(W est)

The country Nono, an enemy of America . . .

Enemy(N ono, America)

@ Pearson 2021 Pearson Education Ltd. Chaptery 22
l Forward chaining proof |
American(West) l lMixsile(Ml) l l()wnx(Nono,M]) l lEnemy(Nono,Amerim)

@ Pearson 2021 Pearson Education Ltd. Chapter9 24

l Forward chaining proof |

Weapon(M1)] lSells(West,M[,Nono)

Hostile(Nono)

American(West) l lMissile(Ml) l lOwnS(Nono,M]) l |Enemy(N0no,America)
@ Pearson 2021 Pearson Education Ltd. Chapter9 25
l Properties of forward chaining |

Sound and complete for first-order definite
clauses (proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p - n” literals

May not terminate in general if a is not entailed

This is unavoidable: entailment with definite clauses is semidecidable

@ Pearson 2021 Pearson Education Ltd. Chapter9 27

l Hard matching example |

Difflwa, nt) N\ Difflwa, sa)
A\

Diff(qt,rpiiffinBify, sa)

A Diff(nsw, v) A\

Diff(nsw, sa) /\ Diff(v, sa)
Diff(Red, Bu&oBi¥ld, Green)
Diff(Green, Diff(Green,
Red) Diff(Blue, Blue)

Colorable() is inferred iff the CSP ﬁﬁdg solution Diff(Blue, Green)
CSPs include 3SAT as a special case, hence matching is NP-hard

@ Pearson 2021 Pearson Education Ltd. Chapter9 29

l Forward chaining proof

Criminal(West)

Weapon(M1) l lSells(West,M[,Nono) Hostile(Nono)

American(West) l lMissile(Ml) l lOwnS(Nono,M]) l |Enemy(N0no,America)
@ Pearson 2021 Pearson Education Ltd. Chapter9 26
l Efficiency of forward chaining |

Simple observation: no need to match a rule on iteration k

if a premise wasn’t added on iteration k — 1
= match each rule whose premise contains a newly added
literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known
facts e.g., query Missile(x) retrieves
Missile(M,)

Matching conjunctive premises against known facts is

NP-hard Forward chaining is widely used in deductive

databases
@ Pearson 2021 Pearson Education Ltd. Chapter9 28
l Backward chaining algorithm |

function FOL-BC-Ask(KB, goals, 6) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query (6 already applied)
6, the current substitution, initially the empty substitution { }
local variables: answers, a set of substitutions, initially empty
if goals is empty then return {6}
¢ — Subst(6, First(goals))
for each sentence »in KB
where Standardize-Apart(r) = (p, \ ... Ap,= q)
and 6« Unify(q, ¢ ') succeeds
newgoals < [p,, . .., p,|Rest(goals)]
answers < FOL-BC-Ask(KB, new_goals, Compose(g, 0)) U answers
return answers

@ Pearson 2021 Pearson Education Ltd. Chapter 9.

30

l Backward chaining example |

Criminal(West)

@ Pearson 2021 Pearson Education Ltd. Chapter9 31

l Backward chaining example |

{x/West}

Criminal(West)

lAmerican(West) l l Weapon(y) l [Sells(x,y,z)
{
}
@l’mrsnn © 2021 Pearson Education Ltd. Chapter9 33
l Backward chaining example |

{x/West, y/M1}

Criminal(West)

l American(West) l

{

}

| Weapon(y) | lSells(x,y,z)

Missile(y)

y/MI1 }

@ Pearson 2021 Pearson Education Ltd. Chapter9 35

l Backward chaining example |

Criminal(West)

{x/West}

lAmerican(x) l l Weapon(y) l [Sells(x,y,z)

@ Pearson 2021 Pearson Education Ltd. Chapter9 32

l Backward chaining example |

Criminal(West)

{x/West}

lAmerican(West) l | Weapon(y) | lSells(x,y,z)
{
}
Missile(y)
@l’mrsnn © 2021 Pearson Education Ltd. Chapter9 34
l Backward chaining example |

{x/West, y/M1, z/Nono}

Criminal(West)

lAmerican(West) l | Weapon(y) | lSells(West,Ml,z) l
{ { z/Nono
1

s }

| Missile(y) HM[.mile(M]) l lOwn.v(Nono,M])]

y/MI1 }

@ Pearson 2021 Pearson Education Ltd. Chapter9 36

l Backward chaining example | l Properties of backward chaining |

Criminal(West)

{e/West, y/MI, =/Nono} Depth-first recursive proof search: space is linear in size of
proof

Incomplete due to infinite loops
= fix by checking current goal against every goal on stack

[American(u/esz)] [Weaponty)| [Sells(West,M1,z)] Hostile(Nono) Inefficient due to repeated subgoals (both success and failure)
{ { z/Nono = fix using caching of previous results (extra space!)
1
! ! Widely used (without improvements!) for logic programming
| Missile(y) HM[.mile(M])] lOwnx(Nono,M])] |Enemy(Nono,Amerim)
{ { { {
MLy } } }

@PCHFSHH © 2021 Pearson Education Ltd. Chapter9 37 @P(’?”'-*“” © 2021 Pearson Education Ltd. Chapter9 38
l Logic programming | l Prolog systems |
Sound bite: computation as inference on logical Basis: backward chaining with Horn clauses + bells & whistles
KBs . . . Widely used in Europe, Japan (basis of 5th Generation

Logic programming Ordinary roject) Compilation techniques = approaching a billion LIPS
1. Identify problem programming proj P q PP &
2. Assemble information Identify problem Program = set of clauses =head :- literal ,. . . literal .
3. Tea break Assemble . .) .
4. Encode information in KB information Figure criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
5. Encode problem instance as out solution Program Efficient unification by open coding
facts solution Efficient retrieval of matching clauses by direct
6. Ask queries Encode problem instance as linking Depth-first, left-to-right backward chaining
7. Find false facts X ilt-i i i i i *
Should be easier to debug Capltal(N%ﬁi%f Efsm%t%?’ét% + Built-in predicates for ‘fzrlth’rlnetlc "_Atc" eg,X is Y'Z+3
21 Debug procedural errors Closed-world assumption (“negation as
failure”) e.g., given alive(X) :- not
dead(X). alive(joe) succeeds if
dead(joe) fails

@PCHFSHH © 2021 Pearson Education Ltd. Chapter9 39 @P(’?”'-*“” © 2021 Pearson Education Ltd. Chapter9 40
l Prolog examples | l Resolution: brief summary |
Depth-first search from a start state X: Full first-order version:
dfs(X) :- goal(X). NV em VeV omy
dfs(X) :- successor(X,S),dfs(S). (Ve VoV g VeV Vm Ve Vm Vom VeV
No need to loop over S: successor succeeds for each mn)Q

where Unify(, ~m) = 6.
Appending two lists to produce a third: J

append([],Y,Y). For example,
append([X|L],Y,[X|Z]) :- append(L,Y,Z). SRich(x) v
Unhappy(x)
query: appin?](A,B,EF ,[%];]? Rich(Ken)
answers: = =[1, Unha Ken
Al B2 ppy(Ken)
A=[1,2] B=[] with 6 = {x/Ken}

Apply resolution steps to CNF (KB /\ ~a); complete for FOL

@ Pearson 2021 Pearson Education Ltd. Chapter9 41 @ Pearson 2021 Pearson Education Ltd, Chapter9 42

l Conversion to CNF] l Conversion to CNF contd. |
Everyone who loves all animals is loved by 3. Standardize variables: each quantifier should use a different one
someone: Loves(y, .

Vx[Vy Animaly) = Loves(x,y)])] Vx[3dy Animally) N\ -~Loves(x, y)] V [3 zLoves(z, x)]

= [Jy 4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

1. EfminbtebioraftEmALRY inprugdd W1 V S v
Loves(y, x)]

2. MVOI\: - mvza(:clgn-l-ia)lc(ﬁ \/ELaot)zces(_‘)gy_i)? \)/C’[pEI y =V x VY x [Animal(F (x)) /\ ~Loves(x, F (x))] VV Loves(G(x), x)
x"y Loves(y, x)] 5. Drop universal quantifiers:
YV [3 --Animal(y) /\ ~Loves(x, VI3 .
x [y Loves(y,)E)y]) eyl VISy [Animal(F (x)) /\ =Loves(x, F (x))] VV Loves(G(x), x)
vV [3 Animal(y) N\ ~Loves(x, y)] V [T y 6. Distribute /\ over \/:
x y Loves(y, x)]

[Animal(F (x)) \V Loves(G(x), x)] /\ [~Loves(x, F (x)) V
Loves(G(x), x)]

@ Pearson 2021 Pearson Education Ltd. Chapter9 43 @ Pearson 2021 Pearson Education Ltd. Chapter9 44

l Resolution proof: definite clauses | L Gédel's Incompleteness Theorem |

[American(y) v Weapony) \Sells(yz) Hostile(z) Criminal(y) | Criminal(West) e There are true arithmetic sentences that cannot be

proved
American(West) American(West) v Weapon(y) v Sells(Westyz) v Hostile(z)

Missile(x) Weapon(x) Weapon(y) v Sells(West,y,z) v Hostile(z)

Missile(y) v Sells(Westy,z) v Hostile(z)

Missile(x) v Owns(Nono,x) v Sells(West,x,Nono) Sells(West,M1,z) v Hostile(z)

Missile(M1) Missile(M1) v Owns(Nono,M1) v Hostile(Nono)
Owns(Nono,M1) Owns(Nono,M1) Hostile(Nono)

Enemy(x,America) Hostile(x) Hostile(Nono)

Enemy(Nono, America) Enemy(Nono, America)

@ Pearson 2021 Pearson Education Ltd. Chapter9 45

Resolution strategies]

* Unit preference: prefers to do resolutions where one of the
sentences is a single literal (unit clause)

* Set of support: every resolution step involve at least one
element of a special set of clauses

* Input resolution: every resolution combines one of the KB
input sentences with other sentences

¢ Subsumption: eliminates all sentences that are subsumed
by KB sentences

¢ Learning: learning from experience (machine learning)

@ Pearson 2021 Pearson Education Ltd. Chapter9 47

For any set of true sentences of number theory, and in
particular any set of basic axioms, there are other true
sentences that cannot be proved from those axioms.

We can never prove all the theorems of mathematics
within any given system of axioms.

@ Pearson 2021 Pearson Education Ltd. Chapter9 46

Summarv]

Unification identify appropriate substitutions for variables eliminates the
instantiation step in first-order proofs, making the process more efficient
in many cases

Forward chaining is used in deductive databases, where it can be
combined with relational database operations. It is also used in
production systems

Backward chaining is used in logic programming systems, which
employ sophisticated compiler technology to provide very fast inference
Prolog, unlike first-order logic, uses a closed world with the unique
names assumption and negation as failure.

The generalized resolution inference rule provides a complete proof
system for first order logic, using knowledge bases in conjunctive normal
form.

@ Pearson 2021 Pearson Education Ltd. Chapter9 48

