
1

Artificial Intelligence: A Modern
Approach
Fourth Edition

Chapter 9

Inference in first-order logic

Copyright © 2021 Pearson Education, Inc. All Rights Reserved

Chapter 9 2

Outline

♦ Reducing first-order inference to propositional
inference

♦ Unification

♦ Generalized Modus Ponens

♦ Forward and backward chaining

♦ Logic programming

♦ Resolution

© 2021 Pearson Education Ltd.

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

∀ v α
Subst({v/g}, α)

for any variable v and ground term g

E.g., ∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) yields

King(J ohn) ∧ Greedy(J ohn) ⇒ Evil(J ohn)
King(Richard) ∧ Greedy(Richard)⇒
Evil(Richard)
King(Father(J ohn)) ∧ Greedy(F ather(J ohn)) ⇒ Evil(Father(J
ohn))

.

Chapter 9 3© 2021 Pearson Education Ltd.

Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:

∃ v α
Subst({v/k}, α)

E.g., ∃ x Crown(x) ∧ OnHead(x, J ohn) yields

Crown(C1) ∧ OnHead(C1, J ohn)
provided C1 is a new constant symbol, called a Skolem

constant Another example: from ∃ x d(xy)/dy = xy we

obtain

d(ey)/dy = ey

provided e is a new constant symbol

Chapter 9 4© 2021 Pearson Education Ltd.

Chapter 9 5

Existential instantiation contd.

UI can be applied several times to add new
sentences; the new KB is logically equivalent to the
old

EI can be applied once to replace the existential
sentence; the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable

© 2021 Pearson Education Ltd.

Chapter 9 6

Reduction to propositional inference

Suppose the KB contains just the following:

∀ x King(x) ∧ Greedy(x) ⇒
Evil(x) King(J ohn)
Greedy(J ohn)
Brother(Richard, J
ohn)

Instantiating the universal sentence in all possible ways, we have

King(J ohn) ∧ Greedy(J ohn) ⇒ Evil(J ohn)
King(Richard) ∧ Greedy(Richard)⇒
Evil(Richard) King(J ohn)
Greedy(J ohn)
Brother(Richard, J
ohn)

The new KB is propositionalized: proposition symbols are

King(J ohn), Greedy(J ohn), Evil(J ohn), King(Richard)
etc.

© 2021 Pearson Education Ltd.

Chapter 9 7

Reduction contd.

Claim: a ground sentence∗ is entailed by new KB iff entailed by original KB
Claim: every FOL KB can be propositionalized so as to preserve

entailment Idea: propositionalize KB and query, apply resolution, return

result Problem: with function symbols, there are infinitely many ground

terms,

e.g., Father(Father(Father(J ohn)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n
terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable© 2021 Pearson Education Ltd.

Chapter 9 8

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant
sentences. E.g., from

∀ xKing(x) ∧ Greedy(x) ⇒
Evil(x) King(J ohn)
∀ y Greedy(y)
Brother(Richard, J
ohn)

it seems obvious that Evil(J ohn), but propositionalization produces lots
of facts such as Greedy(Richard) that are irrelevant
With p k-ary predicates and n constants, there are p · nk

instantiations With function symbols, it gets nuch much worse!

© 2021 Pearson Education Ltd.

Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(J ohn) and
Greedy(y)

θ = {x/John, y/J ohn} works

Unify(α, β) = θ if αθ = βθ

θp q
Knows(J ohn, x) Knows(J ohn,
Jane) Knows(J ohn, x) Knows(y,
OJ) Knows(J ohn, x) Knows(y, M
other(y)) Knows(J ohn, x)
Knows(x, OJ)

Chapter 9 9© 2021 Pearson Education Ltd.

Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(J ohn) and
Greedy(y)

θ = {x/John, y/J ohn} works

Unify(α, β) = θ if αθ = βθ

θ
{x/Jane}

p q
Knows(J ohn, x) Knows(J ohn,
Jane) Knows(J ohn, x) Knows(y,
OJ) Knows(J ohn, x) Knows(y, M
other(y)) Knows(J ohn, x)
Knows(x, OJ)

Chapter 9 10© 2021 Pearson Education Ltd.

Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(J ohn) and
Greedy(y)

θ = {x/John, y/J ohn} works

Unify(α, β) = θ if αθ = βθ

θ
{x/Jane}
{x/OJ, y/J
ohn}

p q
Knows(J ohn, x) Knows(J ohn,
Jane) Knows(J ohn, x) Knows(y,
OJ) Knows(J ohn, x) Knows(y, M
other(y)) Knows(J ohn, x)
Knows(x, OJ)

Chapter 9 11© 2021 Pearson Education Ltd.

Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(J ohn) and
Greedy(y)

θ = {x/John, y/J ohn} works

Unify(α, β) = θ if αθ = βθ

θp q
Knows(J ohn, x) Knows(J ohn,
Jane) Knows(J ohn, x) Knows(y,
OJ)

{x/Jane}
{x/OJ, y/J
ohn}Knows(J ohn, x) Knows(y, M other(y)) {y/J ohn, x/M

other(J ohn)} Knows(J ohn, x) Knows(x, OJ)

Chapter 9 12© 2021 Pearson Education Ltd.

Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(J ohn) and
Greedy(y)

θ = {x/John, y/J ohn} works

Unify(α, β) = θ if αθ = βθ

θp q
Knows(J ohn, x) Knows(J ohn,
Jane) Knows(J ohn, x) Knows(y,
OJ)

{x/Jane}
{x/OJ, y/J
ohn}

Chapter 9 13

Knows(J ohn, x) Knows(y, M other(y)) {y/J ohn, x/M
other(J ohn)} Knows(J ohn, x) Knows(x, OJ) fail

Standardizing apart eliminates overlap of variables, e.g., Knows(z17, OJ)

© 2021 Pearson Education Ltd.

Generalized Modus Ponens (GMP)

p1
I, p2

I, . . . ,
pn

I,
(p1 ∧ p2 ∧ . . . ∧ pn
⇒ q)q
θ

Chapter 9 14

Iwhere pi θ = piθ for all
i

p1
I is King(J

ohn) p2
I is

Greedy(y)

p1 is King(x)
p2 is
Greedy(x)θ is {x/John, y/J ohn} q is

Evil(x) qθ is Evil(J ohn)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

© 2021 Pearson Education Ltd.

Chapter 9 15

Soundness of GMP

Need to show that

p1
I, . . . , pn

I, (p1 ∧ . . . ∧ pn ⇒ q) |= qθ

provided that pi
Iθ = piθ for all i

Lemma: For any definite clause p, we have p |= pθ by UI

1. (p1 ∧ . . . ∧ pn ⇒ q) |= (p1 ∧ . . . ∧ pn ⇒ q)θ = (p1θ ∧ . . . ∧
pnθ ⇒ qθ)

2. p1
I, . . . , pn

I |= p1
I ∧ . . . ∧ pn

I |= p1
Iθ ∧ . . . ∧ pn

Iθ

3. From 1 and 2, qθ follows by ordinary Modus Ponens

© 2021 Pearson Education Ltd.

Chapter 9 16

Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

© 2021 Pearson Education Ltd.

Chapter 9 17

Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile
nations:

© 2021 Pearson Education Ltd.

Chapter 9 18

Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒
Criminal(x)

Nono . . . has some missiles

© 2021 Pearson Education Ltd.

Chapter 9 19

Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒
Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(N ono, x) ∧
Missile(x): Owns(N ono, M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West

© 2021 Pearson Education Ltd.

Chapter 9 20

Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒
Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(N ono, x) ∧
Missile(x): Owns(N ono, M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀ x Missile(x) ∧ Owns(N ono, x) ⇒ Sells(W est, x, N ono)

Missiles are weapons:

© 2021 Pearson Education Ltd.

Chapter 9 21

Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒
Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(N ono, x) ∧
Missile(x): Owns(N ono, M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀ x Missile(x) ∧ Owns(N ono, x) ⇒ Sells(W est, x, N ono)

Missiles are weapons:
Missile(x) ⇒ W eapon(x)

An enemy of America counts as “hostile”:

© 2021 Pearson Education Ltd.

Chapter 9 22

Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒
Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(N ono, x) ∧
Missile(x): Owns(N ono, M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀ x Missile(x) ∧ Owns(N ono, x) ⇒ Sells(W est, x, N ono)

Missiles are weapons:
Missile(x) ⇒ W eapon(x)

An enemy of America counts as “hostile”:
Enemy(x, America) ⇒ Hostile(x)

West, who is American . . .
American(W est)

The country Nono, an enemy of America . . .
Enemy(N ono, America)

© 2021 Pearson Education Ltd.

Forward chaining algorithm

function FOL-FC-Ask(KB, α) returns a substitution or false

repeat until new is empty
new ← { }
for each sentence r in KB do

(p1 ∧ . . . ∧ pn ⇒ q) ← Standardize-Apart(r)
1 nfor each θ such that (p1 ∧ . . . ∧ pn)θ = (pl ∧ . . .

∧ pl)θ 1 nfor some pl , . . . , pl in
KBq l ← Subst(θ, q)

if q l is not a renaming of a sentence already in KB or new then do
add q l to new
φ ← Unify(q l, α)
if φ is not fail then return φ

add new to KB
return false

Chapter 9 23© 2021 Pearson Education Ltd.

Chapter 9 24

Forward chaining proof

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

© 2021 Pearson Education Ltd.

Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1) Sells(West,M1,Nono)

Chapter 9 25© 2021 Pearson Education Ltd.

Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Chapter 9 26© 2021 Pearson Education Ltd.

Chapter 9 27

Properties of forward chaining

Sound and complete for first-order definite
clauses (proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p · nk literals

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is semidecidable

© 2021 Pearson Education Ltd.

Chapter 9 28

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn’t added on iteration k − 1

⇒ match each rule whose premise contains a newly added
literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known
facts e.g., query Missile(x) retrieves
Missile(M1)

Matching conjunctive premises against known facts is

NP-hard Forward chaining is widely used in deductive

databases

© 2021 Pearson Education Ltd.

Hard matching example

WA

NT

SA

Q

NS
W

Vic
V

tor
ia

T

Chapter 9 29

Diff(wa, nt) ∧ Diff(wa, sa)
∧

Diff(nt, q)Diff(nt, sa)
∧
Diff(q, nsw) ∧ Diff(q, sa)
∧ Diff(nsw, v) ∧

Diff(nsw, sa) ∧ Diff(v, sa)
⇒ Colorable()Diff(Red, Blue)

Diff(Green,
Red) Diff(Blue,
Red)

Diff(Red, Green)
Diff(Green,
Blue)

Diff(Blue, Green)Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard

© 2021 Pearson Education Ltd.

Backward chaining algorithm

function FOL-BC-Ask(KB, goals, θ) returns a set of substitutions
inputs: KB, a knowledge base

goals, a list of conjuncts forming a query (θ already applied)
θ, the current substitution, initially the empty substitution { }

local variables: answers, a set of substitutions, initially empty

if goals is empty then return {θ}
q l ← Subst(θ, First(goals))
for each sentence r in KB

where Standardize-Apart(r) = (p1 ∧ . . . ∧ pn ⇒ q)
and θl ← Unify(q, q l) succeeds

new goals ← [p1, . . . , pn|Rest(goals)]
answers ← FOL-BC-Ask(KB, new goals, Compose(θl, θ)) ∪ answers

return answers

Chapter 9 30© 2021 Pearson Education Ltd.

Chapter 9 31

Backward chaining example

Criminal(West)

© 2021 Pearson Education Ltd.

Backward chaining example

Criminal(West)

Weapon(y)American(x) Sells(x,y,z)

Chapter 9 32

Hostile(z)

{x/West}

© 2021 Pearson Education Ltd.

Backward chaining example

Criminal(West)

Weapon(y) Sells(x,y,z)

Chapter 9 33

Hostile(z)

{x/West}

{
}

American(West)

© 2021 Pearson Education Ltd.

Backward chaining example

Hostile(Nono)

Criminal(West)

Weapon(y)

Missile(y)

Sells(West,M1,z)American(West)

{
}

Sells(x,y,z) Hostile(z)

Chapter 9 34

{x/West}

© 2021 Pearson Education Ltd.

Backward chaining example

Hostile(Nono)

Criminal(West)

Weapon(y)

Missile(y)

Sells(West,M1,z)American(West)

{
}

Sells(x,y,z) Hostile(z)

Chapter 9 35

{
y/M1}

{x/West, y/M1}

© 2021 Pearson Education Ltd.

Backward chaining example

Owns(Nono,M1)Missile(M1)

Criminal(West)

Weapon(y)

Missile(y)

Sells(West,M1,z)American(West)

{
y/M1}

Chapter 9 36

{ z/Nono

}
{
}

Hostile(z)

{x/West, y/M1, z/Nono}

© 2021 Pearson Education Ltd.

Backward chaining example

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Weapon(y)

Missile(y)

Sells(West,M1,z)American(West)

{
y/M1}

Chapter 9 37

{
}

{
}

{
}

{ z/Nono

}
{
}

{x/West, y/M1, z/Nono}

© 2021 Pearson Education Ltd.

Chapter 9 38

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of
proof

Incomplete due to infinite loops
⇒ fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
⇒ fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

© 2021 Pearson Education Ltd.

Chapter 9 39

Logic programming

Sound bite: computation as inference on logical
KBs

Logic programming
1. Identify problem
2. Assemble information
3. Tea break
4. Encode information in KB
5. Encode problem instance as

facts
6. Ask queries
7. Find false facts

Ordinary
programming
Identify problem
Assemble
information Figure
out solution Program
solution
Encode problem instance as

data Apply program to data

Debug procedural errors
Should be easier to debug Capital(N ewY ork, US) than x := x +
2 !

© 2021 Pearson Education Ltd.

Chapter 9 40

Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation
project) Compilation techniques ⇒ approaching a billion LIPS

Program = set of clauses = head :- literal1, . . . literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct
linking Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption (“negation as

failure”) e.g., given alive(X) :- not
dead(X). alive(joe) succeeds if

dead(joe) fails

© 2021 Pearson Education Ltd.

Chapter 9 41

Prolog examples

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).
No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?
answers: A=[]

A=[1]
B=[1,2]
B=[2]

A=[1,2] B=[]

© 2021 Pearson Education Ltd.

Resolution: brief summary

Full first-order version:

 1 ∨ · · · ∨ k,m1 ∨ · · · ∨ mn
(1 ∨ · · · ∨ i−1 ∨ i+1 ∨ · · · ∨ k ∨ m1 ∨ · · · ∨ mj−1 ∨ mj+1 ∨ · · · ∨

mn)θ
where Unify(i, ¬mj) = θ.

For example,

¬Rich(x) ∨
Unhappy(x)
Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

Apply resolution steps to CNF (KB ∧ ¬α); complete for FOL

Chapter 9 42© 2021 Pearson Education Ltd.

Chapter 9 43

Conversion to CNF

Everyone who loves all animals is loved by
someone:

∀ x [∀ y Animal(y) ⇒ Loves(x, y)]
⇒ [∃ y

1. Eliminate biconditionals and implications

Loves(y,
x)]

∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y
Loves(y, x)]

2. Move ¬ inwards: ¬∀ x, p ≡ ∃ x ¬p, ¬∃ x, p ≡ ∀ x
¬p:∀
x

[∃
y

¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y
Loves(y, x)]

∀
x

[∃
y

¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y
Loves(y, x)]

∀
x

[∃
y

Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y
Loves(y, x)]

© 2021 Pearson Education Ltd.

Chapter 9 44

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

∀ x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

5. Drop universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

6. Distribute ∧ over ∨:

[Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨
Loves(G(x), x)]

© 2021 Pearson Education Ltd.

Resolution proof: definite clauses

American(West)

Missile(M1)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America) Enemy(Nono,America)

American(x) Weapon(y) Sells(x,y,z) Hostile(z) Criminal(x)> > > >

Weapon(x)Missile(x) >

Sells(West,x,Nono)Missile(x) Owns(Nono,x)> >

Enemy(x,America)Hostile(x)>

Sells(West,y,z)Weapon(y)American(West) > > Hostile(z)>

Sells(West,y,z)Weapon(y) > Hostile(z)>
Sells(West,y,z)> Hostile(z)>Missile(y)

Hostile(z)>Sells(West,M1,z)

> >Missile(M1) Owns(Nono,M1) Hostile(Nono)
>Owns(Nono,M1) Hostile(Nono)

Hostile(Nono)

Criminal(West)

Chapter 9 45© 2021 Pearson Education Ltd.

Gödel's Incompleteness Theorem

Chapter 9 46

• There are true arithmetic sentences that cannot be
proved

• For any set of true sentences of number theory, and in
particular any set of basic axioms, there are other true
sentences that cannot be proved from those axioms.

• We can never prove all the theorems of mathematics
within any given system of axioms.

© 2021 Pearson Education Ltd.

Resolution strategies

Chapter 9 47

• Unit preference: prefers to do resolutions where one of the
sentences is a single literal (unit clause)

• Set of support: every resolution step involve at least one
element of a special set of clauses

• Input resolution: every resolution combines one of the KB
input sentences with other sentences

• Subsumption: eliminates all sentences that are subsumed
by KB sentences

• Learning: learning from experience (machine learning)

© 2021 Pearson Education Ltd.

Summary

Chapter 9 48

• Unification identify appropriate substitutions for variables eliminates the
instantiation step in first-order proofs, making the process more efficient
in many cases

• Forward chaining is used in deductive databases, where it can be
combined with relational database operations. It is also used in
production systems

• Backward chaining is used in logic programming systems, which
employ sophisticated compiler technology to provide very fast inference

• Prolog, unlike first-order logic, uses a closed world with the unique
names assumption and negation as failure.

• The generalized resolution inference rule provides a complete proof
system for first order logic, using knowledge bases in conjunctive normal
form.

© 2021 Pearson Education Ltd.

