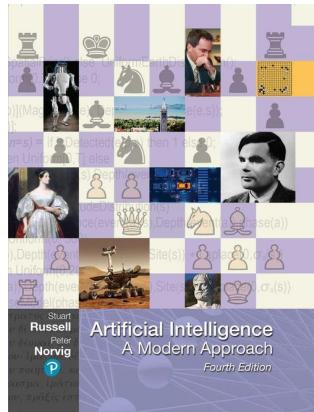


Artificial Intelligence: A Modern Approach

Fourth Edition



Chapter 12

Quantifying Uncertainty

Outline

- ◆ Acting Under Uncertainty
- ◆ Basic Probability Notation
- ◆ Inference Using Full Joint Distributions
- ◆ Independence
- ◆ Bayes' Rule and Its Use
- ◆ Naive Bayes Models
- ◆ The Wumpus World Revisited

Acting Under Uncertainty

- Real world problems contain **uncertainties due to**:
 - partial observability,
 - nondeterminism, or
 - adversaries.
- Example of dental diagnosis using propositional logic
$$\text{Toothache} \Rightarrow \text{Cavity}.$$
- However inaccurate, not all patients with toothaches have cavities
$$\text{Toothache} \Rightarrow \text{Cavity} \vee \text{GumProblem} \vee \text{Abscess}...$$
- In order to make the rule true, we have to add an almost unlimited list of possible problems.
- The only way to fix the rule is to make it logically exhaustive

Acting Under Uncertainty

- **Probability theory**
 - tool to deal with degrees of belief of relevant sentences.
 - summarizes the uncertainty that comes from our laziness and ignorance
- **Uncertainty and rational decisions**
 - An requires **preference** among **different possible outcomes** of various plans
 - **Utility Theory**: the quality of the outcome being useful
 - Every state has a degree of usefulness/utility
 - Higher utility is preferred
 - **Decision Theory**: Preferences (Utility Theory) combined with probabilities
 - *Decision theory = probability theory + utility theory.*
 - agent is **rational** if and only if it chooses the action that **yields the highest expected utility**, averaged over all the **possible outcomes** of the action.
 - principle of maximum expected utility (MEU).

Acting Under Uncertainty

- An agent strives to choose the right thing to do—the rational decision—depends on both the relative importance of various goals and the likelihood that, and degree to which, they will be achieved.
- Large domains such as medical diagnosis fail to three main reasons:
 - **Laziness**: It is too much work to list the complete set of antecedents or consequents needed to ensure an exceptionless rule
 - **Theoretical ignorance**: Medical science has no complete theory for the domain
 - **Practical ignorance**: Even if we know all the rules, we might be uncertain about a particular patient because not all the necessary tests have been or can be run.
- An agent only has a degree of belief in the relevant sentences.

Acting Under Uncertainty

- Function of a decision-theoretic agent that selects rational actions.

```
function DT-AGENT(percept) returns an action
  persistent: belief state, probabilistic beliefs about the current state of the world
  action, the agent's action
  update belief state based on action and percept
  calculate outcome probabilities for actions,
    given action descriptions and current belief state
  select action with highest expected utility
    given probabilities of outcomes and utility information
  return action
```

Basic Probability Notation

- For our agent to represent and use probabilistic information, we need a formal language.
- Sample space:** the set of all possible worlds
 - The possible worlds are mutually exclusive and exhaustive
- A fully specified probability model associates a numerical probability $P(\omega)$ with each possible world.
- The basic axioms of probability theory say that every possible world has a probability between 0 and 1 and that the total probability of the set of possible worlds is 1:

$$0 \leq P(\omega) \leq 1 \text{ for every } \omega \text{ and } \omega \in \Omega$$

- Unconditional or prior probability:** degrees of belief in propositions in the absence of any other information

Basic Probability Notation

- Conditional or posterior probability:** given evidence that has happened, degree of belief of new event
 - Make use of unconditional probabilities
- Probability of a given b :

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$

- Can also write as:

$$P(a|b) = P(a|b)P(b).$$

- Example of rolling fair dice, rolling doubles when the first dice is 5

$$P(\text{doubles}|\text{Die}_1 = 5) = \frac{P(\text{doubles} \wedge \text{Die}_1 = 5)}{P(\text{Die}_1 = 5)}.$$

Basic Probability Notation

- Factored representation:** possible world is represented by a set of variable/value pairs.
 - Variables in probability theory are called random variables, and their names begin with an uppercase letter. (*Total* and *Die_i*)
- Sometimes we will want to talk about the probabilities of all the possible values of a random variable. We could write:

$$\begin{aligned} P(\text{Weather} = \text{sun}) &= 0.6 \\ P(\text{Weather} = \text{rain}) &= 0.1 \\ P(\text{Weather} = \text{cloud}) &= 0.29 \\ P(\text{Weather} = \text{snow}) &= 0.01, \end{aligned}$$

- Abbreviation of this will be:

$$P(\text{Weather}) = (0.6, 0.1, 0.29, 0.01),$$

- P statement defines a **probability distribution** for the random variable *Weather*

Inference Using Full Joint Distributions

Start with the joint

distribution:

	toothache		toothache	
	catch	catch	catch	catch
cavity	.108	.012	.072	.008
cavity	.016	.064	.144	.576

For any proposition φ , sum the atomic events where it is true:

$$P(\varphi) = \sum_{\omega: \omega \models \varphi} P(\omega)$$

Inference Using Full Joint Distributions

Start with the joint

distribution:

	toothache		toothache	
	catch	catch	catch	catch
cavity	.108	.012	.072	.008
cavity	.016	.064	.144	.576

For any proposition φ , sum the atomic events where it is true:

$$P(\varphi) = \sum_{\omega: \omega \models \varphi} P(\omega)$$

$$P(\text{toothache}) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Inference Using Full Joint Distributions

Start with the joint

distribution:

	toothache		toothache	
	catch	catch	catch	catch
cavity	.108	.012	.072	.008
cavity	.016	.064	.144	.576

For any proposition φ , sum the atomic events where it is true:

$$P(\varphi) = \sum_{\omega: \omega \models \varphi} P(\omega)$$

$$P(\text{cavity} \vee \text{toothache}) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$$

Inference Using Full Joint Distributions

Start with the joint distribution:

	toothache	toothache	
	catch	catch	catch
cavity	.108	.012	.072
cavity	.016	.064	.144
			.576

Can also compute conditional probabilities:

$$\begin{aligned} P(\neg \text{cavity} | \text{toothache}) &= \frac{P(\neg \text{cavity} \wedge \text{toothache})}{P(\text{toothache})} \\ &= \frac{0.016 + 0.064}{0.108 + 0.064 + 0.016 + 0.008} = 0.4 \end{aligned}$$

Inference Using Full Joint Distributions

Let \mathbf{X} be all the variables. Typically, we want the posterior joint distribution of the **query variables** \mathbf{Y} given specific values \mathbf{e} for the **evidence variables** \mathbf{E}

Let the **hidden variables** be $\mathbf{H} = \mathbf{X} - \mathbf{Y} - \mathbf{E}$

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(\mathbf{Y} | \mathbf{E} = \mathbf{e}) = aP(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = a\sum_{\mathbf{h}} P(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$$

The terms in the summation are joint entries because \mathbf{Y} , \mathbf{E} , and \mathbf{H} together exhaust the set of random variables

Obvious problems:

- Worst-case time complexity $O(d^n)$ where d is the largest arity
- Space complexity $O(d^n)$ to store the joint distribution
- How to find the numbers for $O(d^n)$ entries???

Bayes' Rule and Its Use

- Bayes' rule is derived from the product rule
- $P(a \wedge b) = P(a | b)P(b)$ and $P(a \wedge b) = P(b | a)P(a)$.
- Equating the two right-hand sides and dividing by $P(a)$, we get

$$P(b | a) = \frac{P(a | b)P(b)}{P(a)}$$

- Often, we perceive as evidence the effect of some unknown cause and we would like to determine that cause. In that case, Bayes' rule becomes

$$P(\text{cause} | \text{effect}) = \frac{P(\text{effect} | \text{cause})P(\text{cause})}{P(\text{effect})}$$

- The conditional probability $P(\text{effect} | \text{cause})$ quantifies the relationship in the causal direction, whereas $P(\text{cause} | \text{effect})$ describes the **diagnostic** direction.

Normalization

	toothache		toothache	
	catch	catch	catch	catch
cavity	.108	.012	.072	.008
cavity	.016	.064	.144	.576

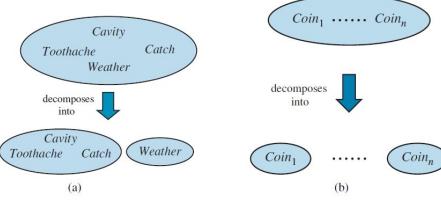
Denominator can be viewed as a **normalization constant** a

$$\begin{aligned} P(\text{Cavity} | \text{toothache}) &= a P(\text{Cavity}, \text{toothache}) \\ &= a [P(\text{Cavity}, \text{toothache}, \text{catch}) + P(\text{Cavity}, \text{toothache}, \neg \text{catch})] \\ &= a [(0.108, 0.016) + (0.012, 0.064)] \\ &= a (0.12, 0.08) = (0.6, 0.4) \end{aligned}$$

General idea: compute distribution on query variable by fixing **evidence variables** and summing over **hidden variables**

Independence

- Two examples of factoring a large joint distribution into smaller distributions, using absolute independence. (a) Weather and dental problems are independent. (b) Coin flips are independent.



- $P(a | b) = P(a)$ or $P(b | a) = P(b)$ or $P(a \wedge b) = P(a)P(b)$.
- one's dental problems influence the weather thus:
- $P(\text{toothache}, \text{catch}, \text{cavity}, \text{cloud}) = P(\text{cloud} | \text{toothache}, \text{catch}, \text{cavity}) P(\text{toothache}, \text{catch}, \text{cavity})$.
- $P(\text{cloud} | \text{toothache}, \text{catch}, \text{cavity}) = P(\text{cloud})$.
- $P(\text{toothache}, \text{catch}, \text{cavity}, \text{cloud}) = P(\text{cloud})P(\text{toothache}, \text{catch}, \text{cavity})$

Bayes' Rule and Its Use

- For example, a doctor knows that the disease meningitis causes a patient to have a stiff neck, say, 70% of the time. The doctor also knows some unconditional facts: the prior probability that any patient has meningitis is 1/50,000, and the prior probability that any patient has a stiff neck is 1%. Letting s be the proposition that the patient has a stiff neck and m be the proposition that the patient has meningitis, we have

$$\begin{aligned} P(s | m) &= 0.7 \\ P(m) &= 1/50000 \\ P(s) &= 0.01 \end{aligned}$$

$$P(m | s) = \frac{P(s | m)P(m)}{P(s)} = \frac{0.7 \times 1/50000}{0.01} = 0.0014$$

- That is, we expect only 0.14% of patients with a stiff neck to have meningitis. Notice that even though a stiff neck is quite strongly indicated by meningitis (with probability 0.7), the probability of meningitis in patients with stiff necks remains small. This is because the prior probability of stiff necks (from any cause) is much higher than the prior for meningitis.

Bayes' Rule and conditional independence

$$\begin{aligned} P(Cavity \mid toothache \wedge catch) \\ = a P(toothache \wedge catch \mid Cavity) P(Cavity) \\ = a P(toothache \mid Cavity) P(catch \mid Cavity) P(Cavity) \end{aligned}$$

This is an example of a **naive Bayes** model:

$$P(Cause, Effect_1, \dots, Effect_n) = P(Cause) \prod_i P(Effect_i \mid Cause)$$

Total number of parameters is **linear** in n

The Wumpus World Revisited

1.4	2.4	3.4	4.4
1.3	2.3	3.3	4.3
1.2	2.2	3.2	4.2
B OK	B OK	3.1	4.1
OK	OK		

$P_{ij} = \text{true}$ iff $[i, j]$ contains a pit

$B_{ij} = \text{true}$ iff $[i, j]$ is breezy

Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Observations and query

We know the following facts:

$$\begin{aligned} b &= \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\ \text{known} &= \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1} \end{aligned}$$

Query is $P(P_{1,3} \mid \text{known}, b)$

Define $\text{Unknown} = P_{ij}$ s other than $P_{1,3}$ and Known

For inference by enumeration, we have

$$P(P_{1,3} \mid \text{known}, b) = a \sum_{\text{Unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b)$$

Grows exponentially with number of squares!

Naïve Bayes Models

- The full joint distribution can be written as

$$P(Cause, Effect_1, \dots, Effect_n) = P(Cause) \prod_i P(Effect_i \mid Cause)$$

- Such a probability distribution is called a **naive Bayes model**—“naive” because it is often used (as a simplifying assumption) in cases where the “effect” variables are not strictly independent given the cause variable.

- Call the observed effects $\mathbf{e} = \mathbf{e}$, while the remaining effect variables \mathbf{Y} are unobserved

$$\begin{aligned} P(Cause \mid \mathbf{e}) &= \alpha \sum_{\mathbf{y}} P(Cause) P(\mathbf{y} \mid Cause) \left(\prod_j P(e_j \mid Cause) \right) \\ &= \alpha P(Cause) \left(\prod_j P(e_j \mid Cause) \right) \sum_{\mathbf{y}} P(\mathbf{y} \mid Cause) \\ &= \alpha P(Cause) \prod_j P(e_j \mid Cause) \end{aligned}$$

Specifying the probability model

The full joint distribution is $P(P_{1,1}, \dots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \dots, P_{4,4}) P(P_{1,1}, \dots, P_{4,4})$

(Do it this way to get $P(\text{Effect} \mid \text{Cause})$.)

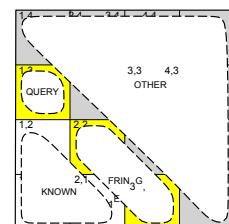
First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square: $P(P_{i,1} \dots P_{i,4}) = \prod_{j=1,1}^{4,4} P(P_{i,j} \mid \text{F}) = 0.2^n \times 0.8^{16-n}$

for n pits.

Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares



Define $\text{Unknown} = \text{Fringe} \cup \text{Other}$

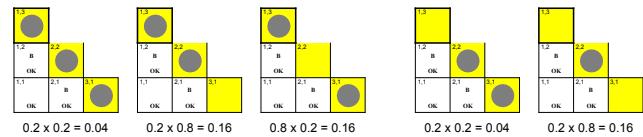
$$P(b \mid P_{1,3}, \text{Known}, \text{Unknown}) = P(b \mid P_{1,3}, \text{Known}, \text{Fringe})$$

Manipulate query into a form where we can use this!

Using conditional independence contd.

$$\begin{aligned}
 P(P_{1,3} | \text{known}, b) &= a_{\text{unk now}} P(P_{1,3}, \text{unknown}, \text{known}, b) \\
 &= a_{\text{unk now}} P(b|P_{1,3}, \text{known}, \text{unknown}) P(P_{1,3}, \text{known}, \text{unknown}) \\
 &= a_{\text{unk now}} P(b|\text{known}, P_{1,3}, \text{fringe, other}) P(P_{1,3}, \text{known}, \text{fringe, other}) \\
 &\equiv a_{\text{fringe other}} P(b|\text{known}) P(B|\text{fringe}) P(P_{1,3}, \text{known}, \text{fringe, other}) \\
 &= a_{\text{fringe other}} P(b|\text{known}, P_{1,3}, \text{fringe}) P(P_{1,3}, \text{known}) P(\text{fringe}) P(\text{other}) \\
 &= a_{\text{fringe other}} P(\text{known}) P(P_{1,3}, \text{fringe}) P(b|\text{known}, P_{1,3}, \text{fringe}) P(\text{fringe}) P(\text{other}) \\
 &= a_{\text{fringe other}} P(P_{1,3}, \text{fringe}) P(b|\text{known}, P_{1,3}, \text{fringe}) P(\text{fringe})
 \end{aligned}$$

Using conditional independence contd.



$$\begin{aligned}
 P(P_{1,3} | \text{known}, b) &= a (0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)) \\
 &\approx (0.31, 0.69) \\
 P(P_{2,3} | \text{known}, b) &\approx (0.86, 0.14)
 \end{aligned}$$

Summary

- **Probabilities** express the agent's inability to reach a definite decision regarding the truth of a sentence.
- **Decision theory** combines the agent's beliefs and desires, defining the best action as the one that maximizes expected utility.
- Basic probability statements include **prior or unconditional probabilities** and **posterior or conditional probabilities** over simple and complex propositions.
- The axioms of probability constrain the probabilities of logically related propositions.
- The **full joint probability distribution** specifies the probability of each complete assignment of values to random variables
- **Absolute independence** between subsets of random variables allows the full joint distribution to be factored into smaller joint distributions, greatly reducing its complexity.
- **Bayes' rule** allows unknown probabilities to be computed from known conditional probabilities, usually in the causal direction.
- **Conditional independence** brought about by direct causal relationships in the domain allows the full joint distribution to be factored into smaller, conditional distributions.