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Acting Under Uncertaint

» Real world problems contain uncertainties due to:
» partial observability,
* nondeterminism, or
« adversaries.
« Example of dental diagnosis using propositional logic
Toothache = Cavity.
* However inaccurate, not all patients with toothaches have cavities

Toothache = Cavity Y GumProblem NV Abscess...

* In order to make the rule true, we have to add an almost unlimited list of
possible problems.

* The only way to fix the rule is to make it logically exhaustive
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Acting Under Uncertaint

« An agent strives to choose the right thing to do—the rational
decision—depends on both the relative importance of various goals and
the likelihood that, and degree to which, they will be achieved.

« Large domains such as medical diagnosis fail to three main reasons:

* Laziness: It is too much work to list the complete set of
antecedents or consequents needed to ensure an exceptionless
rule

* Theoretical ignorance: Medical science has no complete theory
for the domain

* Practical ignorance: Even if we know all the rules, we might be
uncertain about a particular patient because not all the necessary
tests have been or can be run.

« An agent only has a degree of belief in the relevant sentences.
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Acting Under Uncertaint

* Probability theory

 tool to deal with degrees of belief of relevant sentences.

« summarizes the uncertainty that comes from our laziness and
ignorance

* Uncertainty and rational decisions
« An requires preference among different possible
outcomes of various plans
o Utility Theory: the quality of the outcome being useful
« Every state has a degree of usefulness/utility
« Higher utility is preferred
* Decision Theory: Preferences (Utility Theory) combined
with probabilities

* Decision theory = probability theory + utility theory.

« agent is rational if and only if it chooses the action
that yields the highest expected utility, averaged
over all the possible outcomes of the action.

* principle of maximum expected utility (MEU).
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Acting Under Uncertaint

@ Pearson

« Function of a decision-theoretic agent that selects
rational actions.

function DT-AGENT( percept) returns an action

persistent: belief state, probabilistic beliefs about the current state of the world
action, the agent’s action

update belief state based on action and percept

calculate outcome probabilities for actions,
given action descriptions and current belief state

select action with highest expected utility
given probabilities of outcomes and utility information

return action
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Basic Probability Notation

« For our agent to represent and use probabilistic information, we need a
formal language.

 Sample space: the set of all possible worlds
* The possible worlds are mutually exclusive and exhaustive

A fully specified probability model associates a numerical probability P(w)
with each possible world.

« The basic axioms of probability theory say that every possible world has a
probability between 0 and 1 and that the total probability of the set of
possible worlds is 1:

0 < P(w) <1 forevery w and wEQ

* Unconditional or prior probability: degrees of belief in propositions in the
absence of any other information
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Basic Probability Notation

e Conditional or posterior probability: given evidence that has happened,
degree of belief of new event
» Make use of unconditional probabilities

« Probability of a given b:
P(a|b) = P(anb)
P(b)

e Can also written as:
P(anb) = P(alb)P(b) .

« Example of rolling fair dice, rolling doubles when the first dice is 5

P(doubles|Die, = 5) =_P(doubleshDie, = 5)
1 1 .
P(Die, = 5)
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Basic Probability Notation

* Factored representation: possible world is represented by a set of
variable/value pairs.
« Variables in probability theory are called random variables, and their
names begin with an uppercase letter. (7otal and Die,)

« Sometimes we will want to talk about the probabilities of all the possible
values of a random variable. We could write:

P(Weather = sun) = 0.6
P(Weather = rain) = 0.1
P(Weather = cloud) = 0.29
P(Weather = snow) = 0.01,
 Abbreviation of this will be:

P(Weather) = (0.6, 0.1, 0.29, 0.01),

* P statement defines a probability distribution for the random variable Weather
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Start with the joint

distribution: toothache toothache
catch catchl catch catch
cavity | 108 | .012 072 .008
cavity | .016| .064 1441 .576

For any proposition ¢, sum the atomic events where it is

true:
P(@)=X,,.,P©®
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Start with the joint

distribution: toothache toothache

catch catch | catch catch

cavity | 108 | .012 072 .008
cavity | .016| .064 1441 .576

For any proposition ¢, sum the atomic events where it is
true:

P@)=2,, P ©)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Start with the joint

distribution: toothache toothache

catch catch | catch catch
cavity | 108 | .012 072 .008
cavity | .016| .064 1441 .576

For any proposition ¢, sum the atomic events where it is true:
P(p =2 P (@)

W:0|=@

P (cavityV toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 =
0.28
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Start with the joint

distribution: toothache toothache

catch catch | catch catch

cavity | .108| .012 072 .008

cavity | .016| .064 | .144| 576

Can also compute conditional
probabilities:

P (—cavity|toothache)

P (—cavity A
toothpehsdthache)

_ 0.016 +
0.108 + .92 + 0.016 +

0.064

0.4
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Normalization

toothache toothache

catch catchll catch catch

cavity | .-108]1.012 .072] .008
cavity |.0161.064 1441 .576

Denominator can be viewed as a nhormalization constant a

P(Cavity|toothache) = a P(Cavity, toothache)

= a [P(Cauvity, toothache, catch) + P(Cavity, toothache,
—catch)]

= a [(0.108, 0.016) + (0.012, 0.064)]
= a (0.12, 0.08) = (0.6, 0.4)

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variablesbe H=X-Y - E

Then the required summation of joint entries is done by summing out the
hidden variables:

PY[E=e)=aP(Y,E=¢) =ax, PY,E=e, H=h)

The terms in the summation are joint entries because Y, E, and H
together exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(d"™) where d is the largest arity
2) Space complexity O(d") to store the joint distribution
3) How to find the numbers for O(d") entries???
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« Two examples of factoring a large joint distribution into smaller distributions,
using absolute independence. (a) Weather and dental problems are
independent. (b) Coin flips are independent.

C(I \‘I.r'\y

Toothache Catch

Weather

decomposes
decomposes into
into
Cavity
it ) G (G
(a)

(b)

« P(alb) = P(a) or P(bla) = P(b) or P(anb) = P(a)P(b) .

» one’s dental problems influence the weather thus:

» P(toothache, catch, cavity, cloud) = P(cloud |toothache, catch cavity) P(toothache,
catch, cavity) .

» P(cloud |toothache, catch, cavity) = P(cloud) .

» P(toothache, catch, cavity, cloud) = P(cloud)P(toothache, catch, cavity)
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Baves' Rule and Its Use

Bayes’ rule is derived from the product rule
P(anb) = P(al|b)P(b) and P(anb) = P(bla)P(a) .
Equating the two right-hand sides and dividing by P(a), we get
P(bla) =P(alb)P(b)
P(a)

Often, we perceive as evidence the effect of some unknown cause and we
would like to determine that cause. In that case, Bayes’ rule becomes

P(causeleffect) =P(effect |cause)P(cause)
P(effect)

The conditional probability P(effect|cause) quantifies the relationship in the
causal direction, whereas P(causel|effect) describes the diagnostic direction.
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Baves' Rule and Its Use

* For example, a doctor knows that the disease meningitis causes a patient to
have a stiff neck, say, 70% of the time. The doctor also knows some
unconditional facts: the prior probability that any patient has meningitis is
1/50,000, and the prior probability that any patient has a stiff neck is 1%.
Letting s be the proposition that the patient has a stiff neck and m be the
proposition that the patient has meningitis, we have

P(s|m) = 0.7
P(m) = 1,/50000
P(s) = 0.01

P(m|s) = P(slm)P(m) = 0.7 x 1/50000 = 0.0014
P(s) 0.01

« That is, we expect only 0.14% of patients with a stiff neck to have meningitis.
Notice that even though a stiff neck is quite strongly indicated by meningitis
(with probability 0.7), the probability of meningitis in patients with stiff necks
remains small. This is because the prior probability of stiff necks (from any
cause) is much higher than the prior for meningitis.
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Baves’ Rule and conditional independence

P(Cavity|toothache A catch)
= a P(toothache A catch|Cavity)P(Cavity)
= a P(toothache| Cavity)P(catch| Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Effect,, . . ., Effect ) = P(Cause)ll P(Effect|Cause)

I 4 3 £ rFv X 2

Total number of parameters is linear in n
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Naive Baves Models

* Thefull joint distribution can be written as

P(Cause, Effect,, . . ., Effect,) = P(Cause) ) [1; P(Effect, | Cause)
* Such a probability distribution is called a naive Bayes model—“naive” because it is
often used (as a simplifying assumption) in cases where the “effect” variables are not

strictlyindependent given the cause variable.

* (Call the observed effects E=e, while the remaining effect variables Y are unobserved

P(Cause |e)

x ZP(C(I(I,g-(’)P(y | C(III.S‘(-") (HP((,J | C(lll.&‘(’))
y i

= aP(Cause) <TP((1 | Cuus(’)) ZP()-’ | Cause)
J y

= aP(Cause) F:P(f’j | Cause)
J
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1,4 24 34 4.4
1,3 23 33 43
1,2 22 3.2 42
B

OK

11 2,1 3.1 41
B
OK OK

Pij: true iff [, j] contains a pit

Bl.j: true iff [i, j] is breezy
Include only B, 1 B, 2 B
model
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Specifying the probability model

The full joint distribution is P(P IRERE P4 "y 81 By P B, )

Apply product rule: P(B, |, B, ,, B, AP, P, )P, . ..
P
(Do it this way to get P (Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Se term: pjts are placed rand me, pr bab|I| 2 per square:
?%1)1.44# > H4i}_11 ﬁ 9 ¥XQ

for n
pits.
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Observations and que

We know the following facts:
b= ﬂbl ) A Db l’)2 )

1,2
known = ~P;, N ~P, N =D,
Query is P(P, ,|known, b)
Define Unknown = Pijs other than P1 . and Known

For inference by enumeration, we have

P(P, ,|known, b) = ax
b

P(P,

unknown, known,
unknown

;3

Grows exponentially with number of squares!

© 2021 Pearson Education Ltd. Chapter 23
@ Pearson

13



Using conditional independence

Basic insight: observations are conditionally independent of other
hidden squares given neighbouring hidden squares

1{4___D_/|__’LAJ__A_A__L___\
\\ |
\ |
RN 1
P=. 33 43 |
\
I\QUERYI \\ OTHER :
N
1\2_~) 22 \\ |
!-\ /’ —\ I
I N \NA |
NN
| N
NN\ N\ |
K 2IOFRINGG S [
| knowN N\ N I
|

Define Unknown = Fringe U Other
P(b|P, ,, Known, Unknown) = P(b|P, ,, Known,
Fringe) ’

Manipulate query into a form where we can use this!
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Using conditional independence contd.

P(P, ,|known, by=a . P(P, ,, unknown, known, b)

= a P(b|P, ,, known, unknown)P(P, ,, known, unknown)
unknown ’ ’

= a P(b|known, P, ,, fringe, othenP(P, ,, known, fringe,

other)

f ringe other

aP (bl knowre Bl knfiogep, ., Yrthge) P8y, KRowiwn/Tirgge, othen

TFnge otndrer
= af 7 ﬂf’(bl known, P, ,, fringe) %;(]}?12 P (known)P (fringe)P
(other)

fringe other
—aP (known)P(PL?)) Fringe P(blknown, P, 5 fringe)P (fringe) ., P
(other)
=aPP ) ;1 inge P(blknown, P, ,, fringe)P (fringe)
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Using conditional independence contd.

12 2,2 1.2 2,2 12 22 1,2 2,2 12 2,2
OK OK OK

0.2x0.2=0.04 0.2x0.8=0.16 0.8x0.2=0.16 0.2x0.2=0.04 0.2x0.8=0.16
P(P, |known, b) = a(0.200.04 + 0.16 + 0.16), 0.8(0.04 +
0.16))
~ (0.31, 0.69)

P(P, 2Iknown, b) = (0.86, 0.14)
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* Probabilities express the agent’s inability to reach a definite decision
regarding the truth of a sentence.

* Decision theory combines the agent’s beliefs and desires, defining the
best action as the one that maximizes expected utility.

» Basic probability statements include prior or unconditional
probabilities and posterior or conditional probabilities over simple
and complex propositions.

» The axioms of probability constrain the probabilities of logically related
propositions.

» The full joint probability distribution specifies the probability of each
complete assignment of values to random variables

* Absolute independence between subsets of random variables allows
the full joint distribution to be factored into smaller joint distributions,
greatly reducing its complexity.

* Bayes’ rule allows unknown probabilities to be computed from known
conditional probabilities, usually in the causal direction.

e Conditional independence brought about by direct causal relationships
in the domain allows the full joint distribution to be factored into smaller,
conditional distributions.
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