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• Real world problems contain uncertainties due to:
• partial observability, 
• nondeterminism, or 
• adversaries.

• Example of dental diagnosis using propositional logic

Toothache ⇒ Cavity.

• However inaccurate, not all patients with toothaches have cavities

Toothache ⇒ Cavity ∨ GumProblem ∨ Abscess...

• In order to make the rule true, we have to add an almost unlimited list of 
possible problems.

• The only way to fix the rule is to make it logically exhaustive
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• An agent strives to choose the right thing to do—the rational 
decision—depends on both the relative importance of various goals and 
the likelihood that, and degree to which, they will be achieved.

• Large domains such as medical diagnosis fail to three main reasons:
• Laziness: It is too much work to list the complete set of 

antecedents or consequents needed to ensure an exceptionless 
rule

• Theoretical ignorance: Medical science has no complete theory 
for the domain

• Practical ignorance: Even if we know all the rules, we might be 
uncertain about a particular patient because not all the necessary 
tests have been or can be run.

• An agent only has a degree of belief in the relevant sentences.
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• Probability theory
• tool to deal with degrees of belief of relevant sentences.
• summarizes the uncertainty that comes from our laziness and 

ignorance 

• Uncertainty and rational decisions
• An requires preference among different possible 

outcomes of various plans
• Utility Theory: the quality of the outcome being useful

• Every state has a degree of usefulness/utility
• Higher utility is preferred

• Decision Theory: Preferences (Utility Theory) combined 
with probabilities

• Decision theory = probability theory + utility theory.
• agent is rational if and only if it chooses the action 

that yields the highest expected utility, averaged 
over all the possible outcomes of the action.

• principle of maximum expected utility (MEU).
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• Function of a decision-theoretic agent that selects 
rational actions.

function DT-AGENT( percept) returns an action
persistent: belief state, probabilistic beliefs about the current state of the world

action, the agent’s action
update belief state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief state
select action with highest expected utility

given probabilities of outcomes and utility information
return action
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• For our agent to represent and use probabilistic information, we need a 
formal language.

• Sample space: the set of all possible worlds
• The possible worlds are mutually exclusive and exhaustive

• A fully specified probability model associates a numerical probability P(ω) 
with each possible world. 

• The basic axioms of probability theory say that every possible world has a 
probability between 0 and 1 and that the total probability of the set of 
possible worlds is 1:

0 ≤ P(ω) ≤ 1 for every ω and ω∈Ω

• Unconditional or prior probability: degrees of belief in propositions in the 
absence of any other information
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• Conditional or posterior probability: given evidence that has happened, 
degree of belief of new event

• Make use of unconditional probabilities

• Probability of a given b:
P(a|b) = P(a∧b)
                    P(b)

• Can also written as:
P(a∧b) = P(a|b)P(b) .

• Example of rolling fair dice, rolling doubles when the first dice is 5

P(doubles|Die1 = 5) = P(doubles∧Die1 = 5) .
                                      P(Die1 = 5)
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• Factored representation: possible world is represented by a set of 
variable/value pairs.

• Variables in probability theory are called random variables, and their 
names begin with an uppercase letter. (Total and Die1)

• Sometimes we will want to talk about the probabilities of all the possible 
values of a random variable. We could write:

P(Weather = sun) = 0.6
P(Weather = rain) = 0.1
P(Weather = cloud) = 0.29
P(Weather = snow) = 0.01 ,

• Abbreviation of this will be:

P(Weather) = (0.6, 0.1, 0.29, 0.01),

• P statement defines a probability distribution for the random variable Weather
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Inference Using Full Joint Distributions

Start with the joint 
distribution: toothache toothache

catch catch catch catch

cavity .108 .012 .072 .008
cavity .016 .064 .144 .576

For any proposition φ, sum the atomic events where it is 

true:

P (φ) = Σω:ω|=φP (ω)
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Inference Using Full Joint Distributions

Start with the joint 
distribution: toothache toothache

catch catch catch catch

cavity .108 .012 .072 .008
cavity .016 .064 .144 .576

For any proposition φ, sum the atomic events where it is 

true:

P (φ) = Σω:ω|=φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference Using Full Joint Distributions

Start with the joint 
distribution: toothache toothache

catch catch catch catch

cavity .108 .012 .072 .008
cavity .016 .064 .144 .576

For any proposition φ, sum the atomic events where it is true:

P (φ) = Σω:ω|=φP (ω)

P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 
0.28
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Inference Using Full Joint Distributions

Start with the joint 
distribution: toothache toothache

catch catch catch catch

cavity .108 .012 .072 .008
cavity .016 .064 .144 .576

Can also compute conditional 
probabilities:

P (¬cavity|toothache)  
=

P (¬cavity ∧ 
toothache)P (toothache)  

0.016 + 
0.064

=
0.108 + 0.012 + 0.016 + 
0.064

Chapter 
13
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= 0.4
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Normalization
toothache toothache

catch catch catch catch

cavity .108 .012 .072 .008
cavity .016 .064 .144 .576

Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = α P(Cavity, toothache)
= α [P(Cavity, toothache, catch) + P(Cavity, toothache, 
¬catch)]
=  α [(0.108, 0.016) + (0.012, 0.064)]
=  α (0.12, 0.08) = (0.6, 0.4)

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables

Chapter 
13
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Inference Using Full Joint Distributions

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X − Y − E

Then the required summation of joint entries is done by summing out the  
hidden variables:

P(Y|E = e) = αP(Y, E = e) = αΣhP(Y, E = e, H = h)

The terms in the summation are joint entries because Y, E, and H 
together  exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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• Two examples of factoring a large joint distribution into smaller distributions, 
using absolute independence. (a) Weather and dental problems are 
independent. (b) Coin flips are independent. 

• P(a|b) = P(a) or P(b|a) = P(b) or P(a∧b) = P(a)P(b) .

• one’s dental problems influence the weather thus:
• P(toothache, catch, cavity, cloud) = P(cloud |toothache, catch cavity) P(toothache, 

catch, cavity) .
• P(cloud |toothache, catch, cavity) = P(cloud) .
• P(toothache, catch, cavity, cloud) = P(cloud)P(toothache, catch, cavity)
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• Bayes’ rule is derived from the product rule

• P(a∧b) = P(a|b)P(b)      and    P(a∧b) = P(b|a)P(a) .

• Equating the two right-hand sides and dividing by P(a), we get

         P(b|a) =P(a|b)P(b) .
                              P(a)
• Often, we perceive as evidence the effect of some unknown cause and we 

would like to determine that cause. In that case, Bayes’ rule becomes

P(cause|effect) =P(effect |cause)P(cause)
                           P(effect)

• The conditional probability P(effect|cause) quantifies the relationship in the 
causal direction, whereas P(cause|effect) describes the diagnostic direction. 
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• For example, a doctor knows that the disease meningitis causes a patient to 
have a stiff neck, say, 70% of the time. The doctor also knows some 
unconditional facts: the prior probability that any patient has meningitis is 
1/50,000, and the prior probability that any patient has a stiff neck is 1%. 
Letting s be the proposition that the patient has a stiff neck and m be the 
proposition that the patient has meningitis, we have

P(s|m) = 0.7
P(m) = 1/50000
P(s) = 0.01

P(m|s) = P(s|m)P(m) = 0.7 × 1/50000 = 0.0014
                       P(s) 0.01

• That is, we expect only 0.14% of patients with a stiff neck to have meningitis. 
Notice that even though a stiff neck is quite strongly indicated by meningitis 
(with probability 0.7), the probability of meningitis in patients with stiff necks 
remains small. This is because the prior probability of stiff necks (from any 
cause) is much higher than the prior for meningitis.
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Bayes’ Rule and conditional independence

P(Cavity|toothache ∧ catch)
= α P(toothache ∧ catch|Cavity)P(Cavity)
= α P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Effect1, . . . , Effectn) = P(Cause)ΠiP(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n

Chapter 
13
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Naïve Bayes Models
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The Wumpus World Revisited
1,4 2,4 3,4 4,4

1,3 2,3 3,3 4,3

1,2
B

OK

2,2 3,2 4,2

1,1

OK

2,1
B

OK

3,1 4,1
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Pij = true iff [i, j] contains a pit

Bij = true iff [i, j] is breezy
Include only B1,1, B1,2, B2,1  in the probability 
model
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Specifying the probability model

The full joint distribution is P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1)

Apply product rule: P(B1,1, B1,2, B2,1 | P1,1, . . . , P4,4)P(P1,1, . . . , 
P4,4)

(Do it this way to get P (Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:
P(P , . . . , P1,1 4,4 ) = Π4,4i,j = 1,1 i,jP(P ) = 0.2n × 0.816−n

for n 
pits.
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Observations and query

We know the following facts:
b = ¬b

1,1 
∧ b

1,2 
∧ b

2,1

known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|known, b)

Define Unknown = Pijs other than P1,3 and Known

For inference by enumeration, we have

P(P1,3|known, b) = αΣunknownP(P1,3, unknown, known, 
b)

Grows exponentially with number of squares!
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Using conditional independence

1,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3

Basic insight: observations are conditionally independent of other 
hidden  squares given neighbouring hidden squares

1,4 2,4 3,4 4,4

2,1
KNOWN

FRIN3G,

1E

QUERY

Chapter 
13

24

3,3 4,3
OTHER

Define Unknown = Fringe ∪ Other
P(b|P1,3, Known, Unknown) = P(b|P1,3, Known, 
Fringe)

Manipulate query into a form where we can use this!
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Using conditional independence contd.

P(P1,3|known, b) = α unk
 
nown P(P1,3, unknown, known, b)

= α  P(b|P1,3, known, unknown)P(P1,3, known, unknown)
unknown

= α   P(b|known, P1,3, fringe, other)P(P1,3, known, fringe, 
other)

f ringe other

= α   P(b|known, P1,3, fringe)P(P1,3, known, fringe, other)
f ringe other

  
fringe other

= αP(b|known, P1,3, fringe) P(P 1,3, known, fringe, 
other)

=  α  P(b|known, P1,3, fringe)  P(P1,3)P (known)P (fringe)P 
(other)

f ringe other

= α P (known)P(P1,3) f r
 
inge P(b|known, P1,3, fringe)P (fringe) ot

 
her P 

(other)

= α P(P1,3) f r
 
inge P(b|known, P1,3, fringe)P (fringe)
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Using conditional independence contd.

1,3

1,2
B

OK

2,2

1,1

OK

2,1
B

OK

3,1

1,3

1,2
B

OK

2,2

1,1

OK

2,1
B

OK

3,1

1,3

1,2
B

OK

2,2

1,1

OK

2,1
B

OK

3,1

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16 0.8 x 0.2 = 0.16
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3,1

0.2 x 0.2 = 0.04
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0.2 x 0.8 = 0.16

P(P1,3|known, b) = α (0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 
0.16))

≈  (0.31, 0.69)

P(P2,2|known, b)  ≈  (0.86, 0.14)
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• Probabilities express the agent’s inability to reach a definite decision 
regarding the truth of a sentence. 

• Decision theory combines the agent’s beliefs and desires, defining the 
best action as the one that maximizes expected utility.

• Basic probability statements include prior or unconditional 
probabilities and posterior or conditional probabilities over simple 
and complex propositions.

• The axioms of probability constrain the probabilities of logically related 
propositions. 

• The full joint probability distribution specifies the probability of each 
complete assignment of values to random variables

• Absolute independence between subsets of random variables allows 
the full joint distribution to be factored into smaller joint distributions, 
greatly reducing its complexity.

• Bayes’ rule allows unknown probabilities to be computed from known 
conditional probabilities, usually in the causal direction.

• Conditional independence brought about by direct causal relationships 
in the domain allows the full joint distribution to be factored into smaller, 
conditional distributions.
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