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| Representing Knowledge in an Uncertain Domain |

Bayesian networks: represents dependencies among
variables.

A simple, directed graph in which each node is annotated
with quantitative probability information

Syntax:

a set of nodes, one per variable

a directed, acyclic graph (link =“directly influences”)

a conditional distribution for each node given its parents:
P(X|Parents(X))

In the simplest case, conditional distribution
represented as a conditional probability table (CPT)
giving the distribution over X_for each combination
of parent values
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Example |

I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it's set off by minor
earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, J ohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

@ Pearson

— A burglar can set the alarm off

— An earthquake can set the alarm off
— The alarm can cause Mary to call

— The alarm can cause John to call
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l Example

Topology of network encodes conditional independence

assertions:
Toothache @

W eather is independent of the other variables

T oothache and Catch are conditionally independent given

Cavity
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l Example contd.

P(B) P(E)

Burglary

001 Earthquake 002

B E |[P(AB,E)
T T 95

T F 94

F T 29

F _F .001

P(JI|A) A |P(M|A)
T] 90 T .70
F| .05 F| .01
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l Compactness |

A CPT for Boolean X with & Boolean parents has Global semantics defines the full joint

2% rows for the combinations of parent values (B) (E) distribution as the product of the local ()
) cor}g }lonal dlstr butlons {
Each row requires one number p for X = true (A) ‘n’ i- 1P (x|parents(X)) (A)
_ o - I
(the number for X = false is just 1 — p) G @ eg, PG AmAal-b CD’ W)
If each variable has no more than k parents, A e
the complete network requires O(n - 2% numbers _
I.e., grows linearly with n, vs. O2") for the full joint
glstrlbutllo _ s .
Or burglary net, 1 + 1 + 4+ 2+ 2 =10 numbers (vs. 2°—1 =
31)
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l Global semantics | l Local semantics |
“Global” semantics defines the full joint Local semantics: each node is conditionally
distribution as the product of the local (®) independent of its nondescendants given its
cor}g }lonal dlstr butlons parents

e i=1P (x|parents(X)) (A)
11"
eg,PGAmAal-bA-e © ™

= P(jlaP (m|a)P (a|~b, ~e)P (~b)P

e

= 0.9%0.7x0.001 x 0.999 x 0.998

=0.00063
Theorem: Local semantics < global
semantics
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l Markov blanket | l Constructing Bayesian networks |
Each node is conditionally independent of all others Need a method such that a series of locally testable
given its Markov blanket: parents + children + assertions of conditional independence guarantees the
children’s parents required global semantics

1. Choose an ordering of variables X , . . ., X
2. Fori=1ton
add X to the network
select parents from X, . . ., X, such that
PX|Parents(X)) = P(X|X, . . ., X._)

Thﬁ S{hmcgnczf /Q?rentls[ ?;5? ggzs tl_1e 'B%bal se(nﬁgtﬁc'sule)
=[I"_ P(X |Parents(X) (by
construction)
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l Example | l Example |

Suppose we choose the ordering M, J, A, Suppose we choose the ordering M, J, A,
B E B E
Mary;alls MaryCalls
JohnCalls JohnCalls
Alarm
PUJ|M)=PJ PJ|M)=PJ)? No
)? P(AlJ, M)=PA|J)? PAlJ, M)=P
A?
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| Example | | Example |
Suppose we choose the ordering M, J, A, Suppose we choose the ordering M, J, A,

B E B E

Alarm
PJ|M)=PJ)? No PJ|M)=PJ)? No
P(AlJ, M) =P (AlJ)? P(AlJ, M) = P (A)? P(AlJ, M) =P (A|J)? P(AlJ, M) = P (A)?
No No
P(B|A, J, M) = P (B|A)? P(BJA, J, M) =P (BJA? Yes
P(BIA, J, M) =P (B? P(B|A, J, M) =P (B? No
P(E|B, A, J, M) = P (E|A)?
1 P = ? 16
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l Example | l Example contd. |

Suppose we choose the ordering M, J, A,
B E

Earthquake

.Earthquake
PWJ|M)=PJ)? No Deciding conditional independence is hard in noncausal directions
P(A|J, M)=P(AlJ)? PAlJ, M) =P A? (Causal models and conditional independence seem hardwired for
No

P(BIA, J, M) =P (BIA? Yes humans!) Assessing conditional probabilities is hard in noncausal

P(B|A, J, M) =P (B)? No directions
P(E|B, A, J, M) = P (E|A)?No

P - ? ; .
© pearson (BB, A, J, M) =P (E|A D? Yes v @ pearsonletwork is less compact:,}, .2 & 4,42 + 4 = 13 numbers needed
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l Example: Car insurance | l Compact conditional distributions |

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent
or child

Solution: canonical distributions that are defined

compactly Deterministic nodes are the simplest

, /\V\\\ case:
ﬁ? ' £ s ‘ X = f (Parents(X)) for some function f
A Airbag { CarValue( HomeBase

E.g., Boolean functions
ﬁg{;t merican & Canadian V USV M
= inflow + precipitation - outflow -

evaporation .
E.g., numerical relationships among continuous
variables
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l Compact conditional distributions contd. | | Hybrid (discrete+continuous) networks |
Noisy-OR distributions model multiple noninteracting Discrete (Subsidy? and Buys?); continuous (Harvest and
causes Cost)
1) Parents U,. .. U, include all causes (can add leak Subsidy? @
nede)P (X|U ... U, U, ... Uy=1-1T g, ;
i ility g for each cause \
Calde  Flu  Malaria| P (F ever| P (~F ever)
F F F |00 0 ; @
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02=0.2x0.1 B ”
T F Foo|o4 0.6 uys:
T F T 0.94 0.06 = 0.6 x 0.1
T T F 0.88 0.12=0.6 x 0.2 Option 1: discretization—possibly large errors, large
T T T 0.988 0.012=10.6 x 0.2 x 0.1 CPTs Option 2: finitely parameterized canonical
Number of parameters linear in number of families
parents 1) Continuous variable, discrete+continuous parents (e.g.,
Cost)
© rearson @ reann) Discrete variable, continuous parents (e.g., Buys?)
l Continuous child variables | l Continuous child variables |
Need one conditional density function for child variable given PConayag bty
continuous parents, for each possible assignment to discrete
parents
Most common is the linear Gaussian model, e.g.,:
0 } 5 Harvest
P (Cost = c|Harvest = h, Subsidy? = true) Cost i
=N {Fffng o@h+bh) . * All-continuous network with LG distributions
o, ¢ 2 o o = full joint distribution is a multivariate Gaussian
21
fl\_lfl):zadn Cost varies linearly with Harvest, variance is Discrete+continuous LG network is a conditional Gaussian network
i.e., a multivariate Gaussian over all continuous variables for each
Linear variation is unreasonable over the full range combination of discrete variable values
but works OK if the likely range of Harvest is
narrow
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| Discrete variable w/ continuous parents | l Why the probit? |

Probability of Buys? given Cost should be a “soft” 1. It's sort of the right shape

2. Can view as hard threshold whose location is subject
to noise

Logit
L

o
N
P(buys | ¢)
o
=

Pc)

() (b)
(a) A normal (Gaussian) distribution for the cost threshold, centered on =
6.0 with standard deviation o = 1.0. (b) Expit and probit models for the
probability of buys given cost, for the parameters y = 6.0 and 0 = 1.0. s«
Probit distribution uses integral of

Gaussign: **, N (0,
P (Buys? =ljtaelxCost = ¢) = O((—c +

0 2 4 6 8 10 12 0 2 4 6 8 10 12 —
Coste Costc

w/o
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l Discrete variable contd. | l Exact Inference in Bavesian Networks ]
Sigmoid (or logit) distribution also used in neural Simple queries: compute posterior marginal P(X|E = e)
networks: 1 e.g., P (N oGas|Gauge = empty, Lights = on, Starts = false)

P (Buys? = true | Cost = 0 ——————4— . . .

_ 1+ exp(—2-<H) Conjunctive queries: P(X, Xle =e)=PXJE = e)P(XJ,IXf, E=¢)
Sigmoid has similar slhape to probit but much Optimal decisions: decision networks include utility information;
longer tails: o probabilistic inference required for P (outcomelaction,

08 evidence)
T Value of information: which evidence to seek next?
S 0.6 . . . o
ER Sensitivity analysis: which probability values are most
: - critical? Explanation: why do I need a new starter
02 motor?
0.1
0
0 2 4 6 8 10 12
Cost ¢
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l Inference by enumeration | l Enumeration algorithm |

Slightly intelligent way to sum out variables from the joint without

R .. . function Enumeration-Ask(X, e, bn) returns a distribution over X
actually constructing its explicit representation

inputs: X, the query variable

Simple query on the burglary network: e, observed values for variables E

P(BU m) @ E) bn, a Bayesian network with variables {X} UE UY
_ P(é Jj, m/P (j, m) Q(X) < a distribution over X, initially empty
_ aP(}S’ ’. m) ’ Q for each value x; of X do
S . @ @ extend e with value x; for X
=a Ze Za PB, e, a,j m Q(x,) < Enumerate-All(Vars[bn], e)

return Normalize(Q(X ))

Rewrite full joint entries using product of CPT
Ertiied?

function Enumerate-All(vars, e) returns a real number
if Empty?(vars) then return 1.0

=aX T PBP©P@B, P ({laP (mla

= aP(B) Ze P (e ZaP(a|B, e)P (jlayP (mla) Y « First(vars)

if Yhas value yine
Recursive depth-first enumeration: O(n) space, O(d") then return P (y | Pa(Y)) x Enumerate-All(Rest(vars),e) else
time return P(y| Pa(Y)) x Enumerate-All(Rest(vars), ey)

where e, is e extended with Y=y

Chapter 1445 29 Chapter 1445 30
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Evaluation tree

P(albe)

P(m|a)
.70

Enumeration is inefficient: repeated

computation e.g., computes P (jla)P (m|a)

for each value of e
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Chapter 14.4-5
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l Variable elimination:

Basic operations

Summing out a variable from a product of
factors: move any constant factors outside

the summation

add up submatrices in pointwise product of remaining factors

fo...xf:fx...xfzf X - o
k 1

x1
fxf-
i X

i ox i+l

assuming f;, . . ., f;do not depend on X

Pointwise product of factors f and f,:
SYNX LYy Y 2 -

DAC TR SV

=f(x1,...,x,
E.g. fi(a, b) X f5(b, ¢

@ Pearson
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.xf
k

:yl;---,yk,zl,...,zl)
=f(a, b, 0

:fx..
1

.,z])

Chapter 14.4-5
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l Irrelevant variables

Consider the query P (J ohnCalls|Burglary =

true)

P (J|b) = aP (b) .P@ ., P(alb, eP Jla

2P (ma

Sum over m is identically 1; M is irrelevant to the

query

(A)
O

Thm 1: Y isirrelevant unless Y € Ancestors{X} U E)

Here, X = J ohnCalls, E

Ancestors{X} U E) =

={Burglary}, and
{Alarm,

Earthquake} so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn

clause KBs)
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l Inference by variable elimination |

Variable elimination: carry out summations
right-to-left, storing intermediate results (factors) to
avoid recomputation

PBlj, maP(B) X P (e X, P(alB, e P (la) Pf(ml o))

M

- aP(BE P (&5, PaB, P (laif, (@
= aP(BZ P (eX P(alB, ef,(af, (@

aP( ZPeZ a, b, of,(af,, (@)
an))ZP( lff((b e)(]siﬁ(m](;ﬂﬂ%A)

aP(B) f Ab)]&um out E)
7af(b)><f, )

EAJM

Chapter 1445 32
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l Variable elimination algorithm |

function Elimination-Ask(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X,, . . .,
X))
factors [ ]; vars < Reverse(Vars[bn])
for each varin vars do
factors «— [Make-Factor(var , e)|factors]
if var is a hidden variable then factors «— Sum-Out(var,
factors)

return Normalize(Pointwise-Product(factors))

Chapter 1445 34
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l Irrelevant variables contd. |

Defn: moral graph of Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral

graph Thm 2: Y s irrelevant if m-separated from X by E

@-@

For P (J ohnCalls|Alarm = true), (A)
Bothylary and Earthquake are
irrelevant O W)

Chapter 1445 36
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l Complexity of exact inference |

Singly connected networks (or polytrees):
— any two nodes are connected by at most one
(undirected) path
— time and space cost of variable elimination are O(d*n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3§ﬁT modggs = gf-complg;e

1.AvBvC
2. CvDv A
3. BvCv D

Chapter 1445 37
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l Sampling from an empty network |

function Prior-Sample(bn) returns an event sampled from bn

inputs: br, a belief network specifying joint distribution P(X, . . . , X))

X «— an event with n elements
fori = 1tondo
X, < a random sample from P(X; | parents(X)))
given the values of Parents(X;) in x

return x
@ P(';”'S()n 2021 Pearson Education Ltd.
l Example |
P(O)
.50
C |P(S|C) C |P(R|C)
F | .50 F| .20

Wet
Gras:

P(W|S,R)

T 3|
M|
\O
(=]

Chapter 1445 41
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Basic idea:
1) Draw N samples from a sampling

distribution S

2) Compute an approximate posterior
Outlingrobability P
3) SehepiitbiFrepn\aTeeniE, thetivoaprobability
— RBjection sampling: reject samples disagreeing with
evidence
— Meekboathaweittuitg :GastoNEMCY: teawigilghfreamplsochastic
process whose stationary distribution is the true posterior

Chapter 1445 38
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l Example |

P(C)
50

C |pes|o) C PRI

Wi (e
F .50 F| .20
Wet
Gras:

P(W|S.R)

—
—

T 3|
M|
O
(=]

Chapter 1445 40
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l Example |

P(C)
50

C |P(S|C) C |P(R|C)

10 @ @ 80

F .50 F .20
Wet
Gras:

P(W|S,R)

—
—

T 3|
= N N
\O
(=]

Chapter 1445 42
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l Example |

P(©)
.50

C [P(S|C) C |P(R|C)

T .10 @ T .80

F .50 F .20
Wet
Gras:

P(W|S.R)

g 4| »
e Il ]
O
(=)

Chapter 1445 43
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l Example |
P(C)

C |ps|o)  |PRIO)
10 80
50 F| 20

Wet
Gras

P(W|S.R)

—

o 3

oI I )
TS| =
o
S

Chapter 1445 45
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|  Sampling from an empty network contd. |

Probability that PriorSample generates a particular
evelfs(q . ». x) =11  P(x|parents(X)) =P (x

i.e., thetrue prior probability

E.gy Sps(t i, =0.5x0.9%0.8X0.9=0.324=P(t, f; t, 1)

Let N,.(x, . . . x,) be the number of samples generated for event

X oo X,

Then we have
N—ow | N—o
lim P (x,, ..., X =SpdipNac () . ., x)/N
=P...x)
That is, estimates derived from PriorSample are

consistent Shorthand: PA(xl, ce,X)R PG LX)

Chapter 1445 47
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| Example |
P(O)
.50
c [Ps|0) cF®O)
T .10 T1 80
F| .50 Fl 20
Wet
Gras:
S R[P(WIS.R)
T T .99
T F .90
F T .90
F F .01
@ l’L’ZIl‘S(H] © 2021 Pearson Education Ltd.
| Example |
P(O)
.50
c |ps|o) cF®O)
T .10 T1 80
F| .50 Fl 20

P(W|S.R)

oI I )
TS| =
o
S

Chapter 14.4-5
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l Rejection sampling

PA(X]e) estimated from samples agreeing

NFur}]c%ion Rejection-Sampling(X, e, bn, N) returns an estimate of P (X |e)
local variables: N, a vector of counts over X, initially zero
forj=1to Ndo
X « Prior-Sample(bn)
if x is consistent with e then
N[x] < N[x]+| where x is the value of X in

x return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100
samples 27 samples have Sprinkler = true
Of these, 8 have Rain = true and 19 have Rain = false.

PA(RainI Sprinkler = true) = Normalize((8, 19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure

Chapter 14.4-5
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l Analysis of rejection sampling

) _ (algorithm defn.)
P Og‘f\)fps (C)%\I & %\72 € (normalized by N,
~ P(X, e)/P (e) ©)
= P(Xle) (defn. of cofipitpratypodirabditghmple)

Hence rejection sampling returns consistent posterior
estimates Problem: hopelessly expensive if P (e) is
small

P (e) drops off exponentially with number of evidence
variables!

2021 Pearson Education Ltd.
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l Likelihood weighting example |
C [P(s[C) C |PRIC)
T .10 T[ 80
F| .50 F| 20
S R|P(WIS.R)
T T 99
T F| 90
F T| .9
F F .01
w:
1.0
2021 Pearson Education Ltd.
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l Likelihood weighting example |
c [psio) P(R|C)
T .10 80
F| 50 20
S R|P(WIS,R)
T T 99
T F| 90
FT| 9
F F .01
w:
1.0

l Likelihood weighting

Idea: fix evidence variables, sample only nonevidence
variables, and weight each sample by the likelihood it

accords the evidence
function Likelihood-Weighting(X, e, bn, N) returns an estimate of P (X |e)
local variables: W, a vector of weighted counts over X, initially zero

forj=1to Ndo

X, w < Weighted-Sample(bn)

W[x ]« W[x] + w where x is the value of X in
x return Normalize(W[X])

function Weighted-Sample(bn, e) returns an event and a weight

X «— an event with n elements; w « |
fori=1tondo
if X has a value x;in e
then w < w x P(X;= x | parents(X;))

else x, < a random sample from P(X; | parents(X; ))

return x, w
Chapler1445 50
2021 Pearson Education Ltd.
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l Likelihood weighting example |
C |P(S|C) C |P(R[C)
T .10 T .80
F .50 F 20
S R|P(W|S,R)
TT .99
T F 90
F T 90
F F .01
w =
1.0
Chapler4as %2
2021 Pearson Education Ltd.
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l Likelihood weighting example |
C |P(S|C) P(R|C)
T .10 .80
F .50 20
S R|P(W|S,R)
TT .99
T F 90
F T 90
F F .01
w=10x
0.1
Chapleri445 54
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l Likelihood weighting example | l Likelihood weighting example |
[1te) P(RIC) [1te) C |PRIC)
T[ .10 80 T[ .10 T| 80
F| 50 20 F| 50 F| 20
S R S R[P(WSR)
T T[] 9 T T[] 9
T F| 9 T F| 9
F T| 9 F T| 9
F F .01 F F .01
w=1.0x w=1.0x
0.1 0.1
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l Likelihood weighting example | l Likelihood weighting analysis |

Sampling probability for WeightedSample
IS Swyz, e) =I1', _P (z |parents(Z))
Note: pays attention to evidence in ancestors
only = somewhere “in between” prior
and posterior distribution

Weight for a given sample z,
eisw(z, e) =11 P (e |parents(E

1
Weféhted sampling
probability is
SW§(ﬂ@l{4§Z:($]pqrerktS(Z m P (e|parents(E
¥ P (z, e) (by standard gIoE%I semantics of
network)

Hence likelihood weighting returns consistent
estimates

but performance still degrades with many evidence
variables because a few samples have nearly all the

@ I’v;uE(Qntal Welght

Chapter 1445 58
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C [Ps[C) P(RIC)
T| .10 80
F| 50 20
S R|P(WISR)
T T| 9
T F| .90
F T| .9
F F .01
w=1.0%0.1%0.99 =
0.099
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l Approximate inference using MCMC

The Markov chain |

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov
blanket Sample each variable in turn, keeping evidence
ixed

With Sprinkler = true, W etGrass = true, there are four
states:

function MCMC-Ask(X, e, bn, N) returns an estimate of P (X |e)
local variables: N[X ], a vector of counts over X, initially zero
Z, the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
forj=1to Ndo
for each Zin Z do
sample the value of Z, in x from P(Z, |mb(Z,))
given the values of MB(Z) in x
N[x ]« N[x]+ 1 where x is the value of X in
x_return Normalize(N[X])

Can also choose a variable to sample at random each time

2021 Pearson Education Ltd.
@ Pearson

Chapter 14.4-5

Wander about for a while, average what
you see

59 Chapter 1445 60
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l MCMC example contd.

Markov blanket sampling |

Estimate P(Rain|Sprinkler = true, W etGrass = true)

Sample Cloudy or Rain given its Markov blanket,
repeat. Count number of times Rain is true and false
in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

PA(RainI Sprinkler = true, W etGrass = true)
= Normalize((31, 69)) = (0.31, 0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is
exactly proportional to its posterior probability

Chapter 14.4-5

Markov blanket of Cloudy is
Sprinkler and Rain

Markov blanket of Rain is
Cloudy, Sprinkler, and W
etGrass

Probability given the Markov blanket is calculated as follows:
P (x lmb(X)) = P (x |parentsX)I1, _ ., aren(xyF
(zjl parents(2))

Easily implemented in message-passing parallel
systems, brains Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P (X|mb(X)) won't change much (law of large numbers)

61 Chapter 1445 62
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l Causal Networks ] l Causal Networks ]
Causal Networks: a restricted class of Bayesian networks that forbids Example:

all but causally compatible orderings.
Ple, 1,5, w, 8) = Pc) P(r ) P(s|c) P(wlr, 5) P(g|w)

C=1(U.,)
R=/(CU,)
s=/{CUy)
w=1,(RSU,)
G=f(WU,)

For example, suppose we turn the sprinkler on—do(Sprinkler = true)

P(c, r, w, gldo(S = true)) = P(c) P(r |c) P(w|r, s = true) P(g|w)

Chapter 14.4-5
2021 Pearson Education Ltd.

@ Pearson

Predict the effect of turning on the sprinkler on a downstream variable such as
GreenerGrass, but the adjustment formula must take into account not only the
direct route from Sprinkler, but also the “back door” route via Cloudy and Rain.

P(gldo(S = true) = Y, P(g|S = true, r)P(r)
we wish to find the effect of do(X; = x ;) on a variable X,

Back-door criterion
allows us to write an adjustment formula that conditions on any set of variables Z
that closes the back door, so to speak

6 Chapter 1445 64
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l Summary

Bayes nets provide a natural representation for (causally induced)
conditional independence
Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables = parameterized distributions (e.g., linear
Gaussian)

Exact inference by variable elimination:
—polytime on polytrees, NP-hard on general graphs
—space = time, very sensitive to topology

Random sampling techniques such as likelihood weighting and Markov chain
Monte

Carlo can give reasonable estimates of the true posterior probabilities in a
network and can cope with much larger networks than can exact algorithms.
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