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Representing Knowledge in an Uncertain Domain

Bayesian networks: represents dependencies among 
variables.

A simple, directed graph in which each node is annotated 
with quantitative probability information

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi|Parents(Xi))

In the simplest case, conditional distribution 
represented as  a conditional probability table (CPT) 
giving the  distribution over Xi for each combination 
of parent values
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Example

Topology of network encodes conditional independence 
assertions:

Weather Cavity

Toothache Catch

 4

W eather is independent of the other variables

T oothache and Catch are conditionally independent given 
Cavity
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but 
neighbor  Mary doesn’t call. Sometimes it’s set off by minor 
earthquakes. Is there a  burglar?

Variables: Burglar, Earthquake, Alarm, J ohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example contd.
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Compactness

B E

J

A

M
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A CPT for Boolean Xi with k Boolean parents has
2k  rows for the combinations of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1 − p)

If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint 
distributionFor burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 − 1 = 
31)
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The Semantics of Bayesian Networks

Global semantics defines the full joint 
distribution  as the product of the local 
conditional distributions:

B E

J

A

M
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1 nP (x , . . . , x ) = 
Πn

i = 1P (xi|parents(Xi))

e.g., P (j ∧ m ∧ a ∧ ¬b 
∧ ¬e)

=
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Global semantics

“Global” semantics defines the full joint 
distribution  as the product of the local 
conditional distributions:

B E

J

A

M
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1 nP (x , . . . , x ) = 
Πn

i = 1P (xi|parents(Xi))

e.g., P (j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b, ¬e)P (¬b)P 
(¬e)
= 0.9 × 0.7 × 0.001 × 0.999 × 0.998
≈ 0.00063
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Local semantics

Local semantics: each node is conditionally 
independent  of its nondescendants given its 
parents

. . .
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Theorem: Local semantics ⇔ global 
semantics
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Markov blanket

Each node is conditionally independent of all others 
given its  Markov blanket: parents + children + 
children’s parents

. . .

 11

. . .U1

X

Um

Yn

Z
nj

Y1

Z 
1j

© 2021 Pearson Education Ltd.



 12

Constructing Bayesian networks

Need a method such that a series of locally testable 
assertions of  conditional independence guarantees the 
required global semantics

1. Choose an ordering of variables X1, . . . , Xn
2. For i = 1 to n

add Xi to the network
select parents from X1, . . . , Xi−1  such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:
1 nP(X , . . . , X )  =  Πn

i = 1 i 1 i−1P(X |X , . . . , X) (chain rule)
(by 
construction)

i = 1 i i= Πn P(X |Parents(X ))
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Example

Suppose we choose the ordering M , J , A, 
B, E

MaryCalls

JohnCalls

 13

P (J |M ) = P (J 
)?
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Example

Suppose we choose the ordering M , J , A, 
B, E

MaryCalls

JohnCalls

Alarm

 14

P (J |M ) = P (J )? No
P (A|J, M ) = P (A|J )? P (A|J, M ) = P 
(A)?
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Example

Suppose we choose the ordering M , J , A, 
B, E

MaryCalls

JohnCalls

Alarm

Burglary

P (J |M ) = P (J )? No
P (A|J, M ) = P (A|J )? P (A|J, M ) = P (A)?
No
P (B|A, J, M ) = P (B|A)?
P (B|A, J, M ) = P (B)?

 15

© 2021 Pearson Education Ltd.



Example

Suppose we choose the ordering M , J , A, 
B, E

MaryCalls

JohnCalls

Alarm

 16

Burglary

Earthquake

P (J |M ) = P (J )? No
P (A|J, M ) = P (A|J )? P (A|J, M ) = P (A)?
No
P (B|A, J, M ) = P (B|A)? Yes
P (B|A, J, M ) = P (B)? No
P (E|B, A, J, M ) = P (E|A)?
P (E|B, A, J, M ) = P (E|A, B)?
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Example

Suppose we choose the ordering M , J , A, 
B, E

MaryCalls

JohnCalls

Alarm
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Burglary

Earthquake

P (J |M ) = P (J )? No
P (A|J, M ) = P (A|J )? P (A|J, M ) = P (A)?
No
P (B|A, J, M ) = P (B|A)? Yes
P (B|A, J, M ) = P (B)? No
P (E|B, A, J, M ) = P (E|A)?No
P (E|B, A, J, M ) = P (E|A, B)? Yes
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Example contd.

MaryCalls

JohnCalls

Alarm
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Burglary

Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for 

humans!)  Assessing conditional probabilities is hard in noncausal 

directions

Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed© 2021 Pearson Education Ltd.



Example: Car insurance

SocioEcon
Age

GoodStudent
ExtraCar

VehicleYear

Mileage
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivQuality

DrivingHist

Antilock

Airbag CarValue HomeBase AntiTheft

Theft
OwnDamage

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost
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Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent 
or child
Solution: canonical distributions that are defined 

compactly  Deterministic nodes are the simplest 

case:

X = f (Parents(X)) for some function f

E.g., Boolean functions
N orthAmerican ⇔ Canadian ∨ US ∨ M 
exican

E.g., numerical relationships among continuous 
variables

∂Level
∂t

 20

= inflow + precipitation - outflow - 
evaporation
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Compact conditional distributions contd.

1⇒ P (X|U . . . U , 
¬

j j+1U . . . ¬ k

Noisy-OR distributions model multiple noninteracting 
causes

1) Parents U1 . . . Uk include all causes (can add leak 
node)

2) Independent failure probability qi for each cause 
alone

j

i = 1U ) = 1 − Π q i

Cold Flu Malaria P (F ever) P (¬F ever)
F
F
F  
F  
T  
T  
T  
T

F
F
T  
T  
F  
F  
T  
T

F
T
F  
T  
F  
T  
F  
T

0.0
0.9
0.8
0.98
0.4
0.94
0.88
0.988

1.0
0.1
0.2
0.02 = 0.2 × 0.1
0.6
0.06 = 0.6 × 0.1
0.12 = 0.6 × 0.2
0.012 = 0.6 × 0.2 × 0.1

Number of parameters linear in number of 
parents
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Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and 
Cost)

Buys?

HarvestSubsidy?

Cost

Option 1: discretization—possibly large errors, large 
CPTs  Option 2: finitely parameterized canonical 
families

1) Continuous variable, discrete+continuous parents (e.g., 
Cost)

2) Discrete variable, continuous parents (e.g., Buys?)  22
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Continuous child variables

Need one conditional density function for child variable given 
continuous  parents, for each possible assignment to discrete 
parents

Most common is the linear Gaussian model, e.g.,:

P (Cost = c|Harvest = h, Subsidy? = true)
=  N (ath + bt, σt)(c)
= √

σ
2π




exp−






t t

2 σ

 23

t t

 2

1 1 c − (a h + b ) 
  

Mean Cost varies linearly with Harvest, variance is 
fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is 
narrow
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Continuous child variables

0

 24

10 0

5

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

5
Cost

10

Harvest

P(Cost|Harvest,Subsidy?=true)

All-continuous network with LG distributions
⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network 
i.e., a  multivariate Gaussian over all continuous variables for each 
combination of  discrete variable values
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Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a “soft” 
threshold:

 25

Probit distribution uses integral of 
Gaussian:Φ(x) = J x

−∞ N (0, 
1)(x)dxP (Buys? = true | Cost = c) = Φ((−c + 

µ)/σ)

(a) A normal (Gaussian) distribution for the cost threshold, centered on µ = 
6.0 with standard deviation σ = 1.0. (b) Expit and probit models for the 
probability of buys given cost, for the parameters µ = 6.0 and σ = 1.0.
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Why the probit?

1. It’s sort of the right shape

2. Can view as hard threshold whose location is subject 
to noise

Buys?

Cost Cost Noise

 26
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Discrete variable contd.

Sigmoid (or logit) distribution also used in neural 
networks:

P (Buys? = true | Cost = c) 
=

1
1 + exp(−2 −c+µ

σ )

Sigmoid has similar shape to probit but much 
longer tails: 1

0.9
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0.7

0.6

0.5
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0.1

0
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Exact Inference in Bayesian Networks

Simple queries: compute posterior marginal P(Xi|E = e)
e.g., P (N oGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P(Xi, Xj|E = e) = P(Xi|E = e)P(Xj|Xi, E = e)

Optimal decisions: decision networks include utility information;  
probabilistic inference required for P (outcome|action, 
evidence)

Value of information: which evidence to seek next?  

Sensitivity analysis: which probability values are most 

critical?  Explanation: why do I need a new starter 

motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without 
actually  constructing its explicit representation

Simple query on the burglary network:
B E

J

A

M

Chapter 14.4–5 29

P(B|j, m)
= P(B, j, m)/P (j, m)
= αP(B, j, m)
= α Σe  Σa  P(B, e, a, j, m)

Rewrite full joint entries using product of CPT 
entries:P(B|j, m)
= α Σe Σa P(B)P (e)P(a|B, e)P (j|a)P (m|a)
= αP(B) Σe P (e) Σa P(a|B, e)P (j|a)P (m|a)

Recursive depth-first enumeration: O(n) space, O(dn) 
time
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Enumeration algorithm

function Enumeration-Ask(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X ) ← a distribution over X, initially empty
for each value xi of X do

extend e with value xi for X
Q(xi ) ← Enumerate-All(Vars[bn], e)  

return Normalize(Q(X ))

function Enumerate-All(vars, e) returns a real number
if Empty?(vars) then return 1.0
Y ← First(vars)
if Y has value y in e

then return P (y | Pa(Y ))  ×  Enumerate-All(Rest(vars), e)  else 
return  y  P (y | Pa(Y ))  ×  Enumerate-All(Rest(vars), ey )

where ey is e extended with Y = y

Chapter 14.4–5 30
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Evaluation tree

P(j|a)
.90

P(m|a)
.70

P(m| a)
.01

P(j| a)
.05

P(j|a)
.90

P(m|a)
.70

P(m| a)
.01

P(j| a)
.05

P(b)
.001

P(e)
.002

P(
e)
.998

P(a|b,e)
.95

P( a|b,
e)
.06

P(
a|b,e)
.05

P(a|b,
e)

.94

Enumeration is inefficient: repeated 
computation  e.g., computes P (j|a)P (m|a) 
for each value of e

Chapter 14.4–5 31
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Inference by variable elimination

Variable elimination: carry out summations 
right-to-left,  storing intermediate results (factors) to 
avoid recomputation

P(B|j, m)
 

 
 B   

           E   
= α P(B) Σe P (e) Σa P(a|B, e) P (j|a) P (m|a)

            
  A     J     M   
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= αP(B)ΣeP (e)ΣaP(a|B, e)P (j|a)fM (a)

= αP(B)ΣeP (e)ΣaP(a|B, e)fJ (a)fM (a)
= αP(B)ΣeP (e)ΣafA(a, b, e)fJ (a)fM (a)
= αP(B)Σ

e
P (e)f

A¯J M 
(b, e) (sum out A)

= αP(B)f
E¯A¯J M 

(b) (sum out E)

= αf
B
(b) × f

E¯A¯J M 
(b)
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Variable elimination: Basic operations

Summing out a variable from a product of 
factors:  move any constant factors outside 
the summation
add up submatrices in pointwise product of remaining factors

Σ
x
f
1 
× · · · × f

k 
= f

1 
× · · · × f

i 
Σ

x 
f
i+1 

× · · · × f
k 

= f
1 
× · · · × 

f
i 
× f

X¯

assuming f1, . . . , fi do not depend on X

Pointwise product of factors f1 and f2:
f1(x1, . . . , xj, y1, . . . , yk) × f2(y1, . . . , yk, z1, . . . , zl)

= f (x1, . . . , xj, y1, . . . , yk, z1, . . . , zl)
E.g., f1(a, b) × f2(b, c) = f (a, b, c)
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Variable elimination algorithm

function Elimination-Ask(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1, . . . , 
Xn)

factors ← [ ]; vars ← Reverse(Vars[bn])
for each var in vars do

factors ← [Make-Factor(var , e)|factors]
if var is a hidden variable then factors ← Sum-Out(var, 
factors)

return Normalize(Pointwise-Product(factors))

Chapter 14.4–5 34
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Irrelevant variables

Consider the query P (J ohnCalls|Burglary = 
true) B E

J

A

M

Chapter 14.4–5 35

P (J |b) = αP (b)  
e  P (e)  

a  P (a|b, e)P (J |a)  
m P (m|a)

Sum over m is identically 1; M is irrelevant to the 
query

Thm 1: Y is irrelevant unless Y ∈ Ancestors({X} ∪ E)

Here, X = J ohnCalls, E = {Burglary}, and  
Ancestors({X} ∪ E) = {Alarm, 
Earthquake}  so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn 
clause KBs)
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Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral 

graph  Thm 2: Y is irrelevant if m-separated from X by E

B E

J

A

M

Chapter 14.4–5 36

For P (J ohnCalls|Alarm = true), 
bothBurglary and Earthquake are 
irrelevant
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Complexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one 

(undirected) path
– time and space cost of variable elimination are O(dkn)

Multiply connected networks:
– can reduce 3SAT to exact inference ⇒ NP-hard
– equivalent to counting 3SAT models ⇒ #P-complete

1 2 3

AND

Chapter 14.4–5 37

0.5

A
0.5

D
0.5

C
0.5

B

1. A v B v C

2. C  v  D  v A

3. B  v  C  v D
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Approximate Inference for Bayesian Networks

Basic idea:
1) Draw N samples from a sampling 

distribution S
2) Compute an approximate posterior 

probability Pˆ

3) Show this converges to the true probability 
P

Coin

Chapter 14.4–5 38

0.5

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with 

evidence
– Likelihood weighting: use evidence to weight samples– Markov chain Monte Carlo (MCMC): sample from a stochastic 

process  whose stationary distribution is the true posterior
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Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X1, . . . , Xn)

x ← an event with n elements
for i = 1 to n do

xi ← a random sample from P(Xi  | parents(Xi))
given the values of Parents(Xi) in x  

return x

Chapter 14.4–5 39
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Example

Cloudy

RainSprinkler

Wet  
Grass

Chapter 14.4–5 40

C P(R|C)
T .80
F .20

C P(S|C)
T .10
F .50

S R P(W|S,R)
T T .99
T F .90
F T .90
F F .01

P(C)
.50
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Example

Cloudy

RainSprinkler

Wet  
Grass
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C P(S|C)
T .10
F .50
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P(C)
.50
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S R P(W|S,R)
T T .99
T F .90
F T .90
F F .01

P(C)
.50
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Example
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Example
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S R P(W|S,R)
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Example

S R P(W|S,R)
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P(C)
.50
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Example

S R P(W|S,R)
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P(C)
.50
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Sampling from an empty network contd.

Probability that PriorSample generates a particular 
eventPS 1 n i = 

1
i i 1 nS (x . . . x ) = Πn P (x |parents(X )) = P (x . 

. . x )

N →∞ N →∞

i.e., the true prior probability

E.g., SPS (t, f, t, t) = 0.5 × 0.9 × 0.8 × 0.9 = 0.324 = P (t, f, t, t)

Let NPS (x1 . . . xn) be the number of samples generated for event 
x1, . . . , xn

Then we have

lim Pˆ(x1, . . . , xn)  = lim NPS (x1, . . . , xn)/N=  SPS (x1, . . . , xn)
=  P (x1 . . . xn)

That is, estimates derived from PriorSample are 

consistent  Shorthand: Pˆ(x1, . . . , xn) ≈ P (x1 . . . xn)
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Rejection sampling

Pˆ(X|e) estimated from samples agreeing 
with efunction Rejection-Sampling(X, e, bn, N) returns an estimate of P (X |e)

Chapter 14.4–5 48

local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x ← Prior-Sample(bn)
if x is consistent with e then

N[x] ← N[x]+1 where x is the value of X in 
x  return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 
samples  27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

Pˆ(Rain|Sprinkler = true) = Normalize((8, 19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

Pˆ(X|e) = αNPS (X, e)
= NPS (X, e)/NP S (e)
≈ P(X, e)/P (e)

(algorithm defn.)  
(normalized by NPS 
(e))

(property of PriorSample)= P(X|e) (defn. of conditional probability)
Hence rejection sampling returns consistent posterior 

estimates  Problem: hopelessly expensive if P (e) is 

small

P (e) drops off exponentially with number of evidence 
variables!
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Likelihood weighting

Idea: fix evidence variables, sample only nonevidence 
variables,  and weight each sample by the likelihood it 
accords the evidence

function Likelihood-Weighting(X, e, bn, N) returns an estimate of P (X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x, w ← Weighted-Sample(bn)
W[x ] ← W[x ] + w where x is the value of X in 

x  return Normalize(W[X ])

function Weighted-Sample(bn, e) returns an event and a weight

x ← an event with n elements; w ← 1
for i = 1 to n do

if Xi has a value xi in e
then w ← w ×  P (Xi =  xi  | parents(Xi ))
else xi ← a random sample from P(Xi | parents(Xi ))

return x, w

Chapter 14.4–5 50
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Likelihood weighting example

Cloudy

RainSprinkler

Wet  
Grass
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C P(R|C)
T .80
F .20

C P(S|C)
T .10
F .50

S R P(W|S,R)
T T .99
T F .90
F T .90
F F .01

P(C)
.50

w = 
1.0
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Likelihood weighting example

Cloudy

RainSprinkler

Wet  
Grass
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Likelihood weighting example
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S R P(W|S,R)
T T .99
T F .90
F T .90
F F .01

P(C)
.50

w = 1.0 × 0.1 × 0.99 = 
0.099
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Likelihood weighting analysis

Sampling probability for WeightedSample 
is WS i = 

1
i iS (z, e) = Πl P (z |parents(Z ))

Note: pays attention to evidence in ancestors 
only

Cloudy

RainSprinkler

Wet  
Grass
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⇒ somewhere “in between” prior 
and  posterior distribution

Weight for a given sample z, 
e is i = 

1
i iw(z, e) = Πm P (e |parents(E 

))
Weighted sampling 
probability is

SWS (z, e)w(z, e)= Πl P (z |parents(Z 
)) Πmi = 1 i = 1i i i i P (e |parents(E 

))= P (z, e) (by standard global semantics of 
network)

Hence likelihood weighting returns consistent 
estimates
but performance still degrades with many evidence 
variables  because a few samples have nearly all the 
total weight
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Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov 
blanket  Sample each variable in turn, keeping evidence 
fixed

function MCMC-Ask(X, e, bn, N) returns an estimate of P (X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y  
for j = 1 to N do

for each Zi in Z do
sample the value of Zi  in x from P(Zi |mb(Zi ))

given the values of MB(Zi ) in x
N[x ] ← N[x ] + 1 where x is the value of X in 

x  return Normalize(N[X ])

Can also choose a variable to sample at random each time
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The Markov chain

With Sprinkler = true, W etGrass = true, there are four 
states:

Cloudy

RainSprinkler

Wet  
Grass

Cloudy

RainSprinkler

Wet  
Grass

Cloudy

RainSprinkler

Wet  
Grass

Cloudy

RainSprinkler

Wet  
Grass

Wander about for a while, average what 
you see
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MCMC example contd.

Estimate P(Rain|Sprinkler = true, W etGrass = true)

Sample Cloudy or Rain given its Markov blanket, 
repeat.  Count number of times Rain is true and false 
in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

Pˆ(Rain|Sprinkler = true, W etGrass = true)
= Normalize((31, 69)) = (0.31, 0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is 
exactly  proportional to its posterior probability
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Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain

Markov blanket of Rain is
Cloudy, Sprinkler, and W 
etGrass

Cloudy

RainSprinkler

Wet  
Grass

Chapter 14.4–5 62

Probability given the Markov blanket is calculated as follows:
P (x 

i|mb(Xi)) = P (x 
i|parents(Xi))ΠZj ∈Children(Xi)P 

(zj|parents(Zj))
Easily implemented in message-passing parallel 

systems, brains  Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)
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Causal Networks
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Causal Networks: a restricted class of Bayesian networks that forbids
all but causally compatible orderings.

P(c, r, s, w, g) = P(c) P(r |c) P(s|c) P(w|r, s) P(g|w)

C = fC(UC)
R = fR(C,UR) 
S = fS(C,US)
W = fW (R, S,UW )
G = fG(W,UG)

For example, suppose we turn the sprinkler on—do(Sprinkler = true)

P(c, r, w, g|do(S = true)) = P(c) P(r |c) P(w|r, s = true) P(g|w)
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Causal Networks

Chapter 14.4–5 64

 



 65

Summary

Bayes nets provide a natural representation for (causally induced)  
conditional independence
Topology + CPTs = compact representation of joint distribution  

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs  

Continuous variables ⇒ parameterized distributions (e.g., linear 

Gaussian)

Exact inference by variable elimination:
–polytime on polytrees, NP-hard on general graphs
–space = time, very sensitive to topology

Random sampling techniques such as likelihood weighting and Markov chain 
Monte
Carlo can give reasonable estimates of the true posterior probabilities in a 
network and can cope with much larger networks than can exact algorithms.
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