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Representing Knowledge in an Uncertain Domain

Bayesian networks: represents dependencies among
variables.

A simple, directed graph in which each node is annotated
with quantitative probability information

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link =“directly influences”)
a conditional distribution for each node given its parents:
P(X | Parents(X))

In the simplest case, conditional distribution
represented as a conditional probability table (CPT)
giving the distribution over X for each combination
of parent values
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Topology of network encodes conditional independence

assertions:
Toothache @

W eather is independent of the other variables

T oothache and Catch are conditionally independent given
Cavity

4
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I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it's set off by minor
earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, J ohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call
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Example contd.
P(E)

P(B)
001 Earthquake 002

B E |P(AB,E)
T T 95

T F 94

F T 29

F F 001

P(J|A) A |P(M|A)
F .05 F | .01
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Compactness

A CPT for Boolean X with k Boolean parents has

2* rows for the combinations of parent values /@)
Each row requires one number p for X = true }ZA‘I
(the number for X = falseis just 1 — p) @ @

If each variable has no more than k parents,
the complete network requires O(n - 2% numbers

I.e., grows linearly with n, vs. O2™ for the full joint

Egrt%l?frlag?y net, 1 + 1+ 4+ 2+ 2=10numbers (vs. 2°—1 =

31)



Global semantics defines the full joint
distribution as the product of the local
COI’}§|I |onaI dIStI‘BbUtIOI’\S

— =P (x|parents(X))
eg,P(]/\m/\aA-'b

N\ —e)

. ono
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(slobal semantics

“Global” semantics defines the full joint

distribution as the product of the local /@)
COI’}§|I |onaI dIStI‘BbUtIOI’\S
Iy — i=1P (x|parents(X)) ;A:{

e PG A mAa-bAne g ®

= P(jlayP (m|a)P (a|-b, ~e)P (-b)P

(e

= 0.9x0.7x0.001 x0.999 x 0.998

~ (0.00063
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Local semantics

Local semantics: each node is conditionally

independent of its nondescendants given its
parents

Theorem: Local semantics < global
semantics
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Markov blanket

Each node is conditionally independent of all others
given its Markov blanket: parents + children +
children’s parents

@ Pearson © 2021 Pearson Education Ltd.
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Constructing Bayesian networks

Need a method such that a series of locally testable

assertions of conditional independence guarantees the
required global semantics

1. Choose an ordering of variables X, . . ., X
2. Fori=1ton

add X to the network
select parents from X, . .., X such that
P(X|Parents(X)) = P(X|X, ..., X_)
This ghoice of parents gugraptees the glgbal serpantics: )
=[1"_ P(X |Parents(X)) (by
construction)

12
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Suppose we choose the ordering M, J, A,

B E
Mary;alls

JohnCalls

PJIM)=PJ
)?

13
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Suppose we choose the ordering M, J, A,
B E

MaryCalls

JohnCalls

C O

Alarm

PWJ|M)=PU)? No
P(A|J, M) =P (AlJ)? P(AlJ, M)=P
(A)?

14
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Example

Suppose we choose the ordering M, J, A,
B E

Burglary

P(J|M)=PJ)? No
PA|J, M) =P A|J)? PA|d, M) =P A?
No
P(B|A, J, M) = P (B|A)?
P(B|A, J, M) =P (B?
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Example

Suppose we choose the ordering M, J, A,
B E

P(J|M)=PJ)? No

PA|J, M)=PA|J)? PA|Jd, M)=PA?
No
P(B|A, J, M) =P (B|A? Yes
P(B|A, J, M) =P (B? No
P(E|B, A, J, M) = P (E|A)?
P(E|B, A, J, M) =P (E|A, B?
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Example

Suppose we choose the ordering M, J, A,
B E

PJ|M)=P(J)? No

PA|J, M)=PA|J)? PA|Jd, M)=PA?
No
P(B|A, J, M) =P (B|A? Yes
P(B|A, J, M) =P (B? No

P(E|B, A, J, M) =P (E|A)?No
P(E|B, A, d, M) =P (E|A, B? Yes
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Example contd.

Burglary

Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for

humans!) Assessing conditional probabilities is hard in noncausal
directions

18
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Example: Car insurance

SocioEcon
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( ExtraCar )
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Compact conditional distributions

CPT grows exponentially with humber of parents
CPT becomes infinite with continuous-valued parent
or child

Solution: canonical distributions that are defined
compactly Deterministic nodes are the simplest

Case.

X = f(Parents(X)) for some function f

E.g., Boolean functions

é}ig&tel}American & Canadian V US NV M
@%pea-n' = inflow + precipitation - outflow -
; in

evaporation | _
E.g., numerical relationships among continuous

variables

20
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting
causes
1) Parents U, . .. U, include all causes (can add leak

nede)P X|U ... U, U, ...-Uy=1-1l g, ;

) Independent failure probability g.for each cause
Cald~ Flu Malaria| P (F ever) P (-F ever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02=0.2x0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6 x 0.1
T T F 0.88 0.12=0.6 x0.2
T T T 0.988 0.012=10.6 x 0.2 x 0.1

Number of parameters linear in number of
parents

21
@ Pearson © 2021 Pearson Education Ltd.



Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and

Subsidy?

Cost)

(Cost>

Option 1: discretization—possibly large errors, large
CPTs Option 2: finitely parameterized canonical
families

1) Continuous variable, discrete+continuous parents (e.g.,
Cost)

@1>(-;1.-.<(?,) Discrete variable, continuous parents (e.g., Buys?) 2

© 2021 Pearson Education Ltd.



Continuous child variables

Need one conditional density function for child variable given

continuous parents, for each possible assignment to discrete
parents

Most common is the linear Gaussian model, e.g.,:

P (Cost = c|Harvest = h, Subszdy> = true)
N(E t bg: xﬂ@)h+ b) (- %

0]

27t
Mean Cost varies linearly with Harvest, variance is

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is
narrow

23
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Continuous child variables

P(Cost|Har6%s§,_Subsidy?=true)

031
0.25]
0.2[
0.15}
0.1F =2
0.05[ ==
0

0

10

5 Harvest
Cost 10 0

All-continuous network with LG distributions
= full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network
l.e.,, @ multivariate Gaussian over all continuous variables for each
combination of discrete variable values

24
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Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a “soft”

0.5 - 1 1 ‘
Logit
Probit =—=—=—-
04 08 | robt
03 S 8
0.2 x 0.4
0.1 0.2
0 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Cost ¢ Costc

(@) (b)

(a) A normal (Gaussian) distribution for the cost threshold, centered on uy =
6.0 with standard deviation 0 = 1.0. (b) Expit and probit models for the
probability of buys given cost, for the parameters y = 6.0 and g = 1.0.

Probit distribution uses integral of
Gaudsstar: '*, NV (0,
P (Buys? =1twelkCost = ¢) = O((—c +
1)/ 0) .
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Why the probit?

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject

to noise /\
G @D G

Buys? I

@ Pearson © 2021 Pearson Education Ltd.
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Discrete variable contd.

Sigmoid (or logit) distribution also used in neural

networks:

P (Buys? = true | Cost = ¢

Sigmoid has similar shape to problt but much

longer tails:

=false|Cost=c)

P(Buys?

1

0.9 r
0.8
0.7 r
0.6
0.5 r
04 r
03 r
0.2 r
0.1 r

1+ exp(—2-

5 )

© 2021 Pearson Education Ltd.
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Simple queries: compute posterior marginal P(X|E = e)
e.g., P (N oGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P(X, XJ.IE =e) = P(X|E = e)P(XJ.IXi, E=¢

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome|action,
evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most
critical? Explanation: why do I need a new starter

motor?

Chapter 14.4-5 28
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without
actually constructing its explicit representation

Simple query on the burglary network:

P(Blj, m) (B)
=P(B, j, m)/P (j, m) ‘\ @
= aP(B, j, m) }ZA\I
—a 26 Za P(B, e, a, j, m) @ @

Re r,itgeﬂ gull joint entries using product of CPT
=a Zeﬁla P(B)P (eP(alB, e)P (jla)P (m|a)
= aPB) % _P (e X _P(alB, eP (jla)P (m|a)

Recursive depth-first enumeration: O(n) space, O(d")
time

Chapter 14.4-5 29
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Enumeration algorithm

function Enumeration-Ask(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X ) < a distribution over X, initially empty
for each value x; of X do

extend e with value x; for X

Q(x,) <« Enumerate-All(Vars[bn], e)

return Normalize(Q(X ))

function Enumerate-All(vars, e) returns a real number
if Empty?(vars) then return 1.0
Y « First(vars)
if Y has value yine
then return P (y | Pa(Y)) x Enumerate-All(Rest(vars), e) else
return P(y | Pa(Y)) x Enumerate-All(Rest(vars), ey)

where eyis e extended with Y=y

Chapter 14.4-5 30
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Evaluation tree

P(jla)
.90

P(m|a)
.70

O

O

P(m| e
01

O

P(m|a)
.70

Enumeration is inefficient: repeated

computation e.g., computes P (jla)P (m|a)

for each value of e

@ Pearson
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Inference by variable elimination

Variable elimination: carry out summations
right-to-left, storing intermediate results (factors) to
avoid recomputation

P(B|j, ma P(B) X_P (e) ~_P(alB, e) P (jla) P_(ml Q)

_ 5 A oa M
= aP(BE P (eX P(alB, eP (jla)f,, (@)
aP(B)ZeP (e)ZaP(aIB, of (af, (@
aP(BX P (X f,(a, b, ef (af, (@
aP(BX°P (e)f ffA (b, e (Sum olt A)

aP(B)f ¢ _  (b/{5um out E)

EAJM

= afB(b) Xf-- (b

EAJM

Chapter 14.4-5 32
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Variable elimination: Basic operations

Summing out a variable from a product of
factors: move any constant factors outside
the summation
add up submatrices in pointwise product of remaining factors

fo...xf:fx...xfz:f x...xf:fx...x
x 1 k 1 i x i+1 k 1

fxXf-

l X

assuming f,, . . ., f;do not depend on X

Pointwise product of factors 7, and f:
fl(x,...,xj,yl,...,yk)xfz(yl,...,yk,zl,...,zl)
=f(x1,...,xj,yl,...,yk,zl,...,zl)

E.g. fi(a, b) X f,(b, ) =f(a, b, ¢

Chapter 14.4-5 33

© 2021 Pearson Education Ltd.
Pearson



Variable elimination algorithm

function Elimination-Ask(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event

bn, a belief network specifying joint distribution P(X, . . .,
X))
n

factors < [ ]; vars < Reverse(Vars[bn))

for each var in vars do
factors « [Make-Factor(var, e)|factors]
if var is a hidden variable then factors « Sum-Out(var,
factors)

return Normalize(Pointwise-Product(factors))

Chapter 14.4-5 34
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Irrelevant variables

Consider the query P (J ohnCalls|Burglary =
true) @
PWJIh=aP () P(e  Pb, ePJla Pmla }E{
Sum over m is identically 1; M is irrelevant to the @ @
query
Thm 1: Y isirrelevant unless Y € Ancestors{X} U E)
Here, X = J ohnCalls, E = {Burglary}, and

AncestorsiX} U E) = {Alarm,
Earthquake} so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn
clause KBs)

Chapter 14.4-5 35
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Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral

graph Thm 2: Y is irrelevant if m-separated from X by E

03'@

For P (J ohnCalls|Alarm = true), (A)
Bothylary and Earthquake are
irrelevant O QO

Chapter 14.4-5 36
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Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one
(undirected) path
— time and space cost of variable elimination are O(d*n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 35AT modgls = #P-complete

1.AvBvC
2. CvDv A
3. BvCv D

Chapter 14.4-5 37
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Basic idea:

1) Draw N samples from a sampling

distribution S

2) Compute an approximate posterior
Outlin@robability P
3) Sanawiinaisrepn i een e, thetvbaprobability

— RBjection sampling: reject samples disagreeing with
evidence
— Meekboathaweiiytdirtg :Gasto \NHEMED: teawgilghfreamgple®chastic
process whose stationary distribution is the true posterior

Chapter 14.4-5 38
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Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution P(X,, . . . , X )

X «— an event with n elements
fori = 1tondo
x, «—a random sample from P(X. | parents(X))
given the values of Parents(X) in x
return x

Chapter 14.4-5 39
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Example

C |P(s|C)
T| .10
F| .50

P(C)

50

Wet

Grass

P(W|S,R)

4 3| ®»
o4 4|

99
90

90
01
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C [P(RIC)
T| .80
F| .20
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Example

C |P(s|C)
T| .10
F| .50

P(C)

50

Wet

Grass

P(W|S,R)

4 3| ®»
o4 4|

99
90

90
01
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C [P(RIC)
T| .80
F| .20
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Example

C |P(s|O)
T | .10
F| .50

P(C)

50

Wet

Grass

P(W|S,R)

4 3| ®»
o4 4|

99
90

90
01
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Example

C |P(s|O)
T | .10
F| .50

P(C)

50

Wet

Grass

P(W|S,R)

4 3| ®»
o4 4|

99
90

90
01
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Example

C |P(s|O)
T | .10
F| .50

P(C)

50

Wet

Grass

P(W|S,R)

4 3| ®»
o4 4|

99
90

90
01
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C [P(RIC)
T| .80
F| .20
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Example

C |P(s|O)
T | .10
F| .50

P(C)

50

Wet

Grass

P(W|S,R)

oo 3| ®»
-4 3|

99
90

90
01
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C [P(RIC)
T| .80
F| .20
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C |P(s|O)
T | .10
F| .50

Example

P(C)

50

)

P(W|S,R)

C [P(RIC)
T| .80
F| 20

o oH | »
o 3 ™ |

99
90

90
01
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Sampling from an empty network contd.

Probability that PriorSample generates a particular
evelts(q . . x) =112  P(x|parents(X)) = P (x
i.e., the)true prior probability

E.g., SPS t, f,t, ) =0.5%X09%x0.8%X09=0324=P(t, [, t, ¢

Let N, (x, . .. x ) be the number of samples generated for event

Xy, ooo, X

1’ n

Then we have
N—-0 = N-—>o
lim P (x,, . .., x 7 =opdl Ny (xX,) . ., x)/N
= P(x...x)
That is, estimates derived from PriorSample are

consistent Shorthand: PA(xl, Lo, X)) P(x ... x)

Chapter 14.4-5 47
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Rejection sampling

PA(X]e) estimated from samples agreeing

W%tur}m%on Rejection-Sampling(X, e, bn, N) returns an estimate of P (X |e)
local variables: N, a vector of counts over X initially zero

forj=1to Ndo
X «— Prior-Sample(bn)
if x is consistent with e then
N[x] < N[x]+| where x is the value of X in

x return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100
samples 27 samples have Sprinkler = true
Of these, 8 have Rain = true and 19 have Rain = false.

P (Rain|Sprinkler = true) = Normalize((8, 19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure

Chapter 14.4-5 48
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Analysis of rejection sampling

(algorithm defn.)
F m?\)TPS (X, %‘3§X N, (e (normalized by N

= P(X, e)/P (e) (©)

= P(Xle) (defn. of cofditbperatypoblrahditghmple)

Hence rejection sampling returns consistent posterior
estimates Problem: hopelessly expensive if P (e) is
small

P (e) drops off exponentially with number of evidence
variables!

Chapter 14.4-5 49
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Likelihood weighting

Idea: fix evidence variables, sample only nonevidence

variables, and weight each sample by the likelihood it

accords the evidence

function Likelihood-Weighting(X, e, bn, N) returns an estimate of P (X |e)
local variables: W, a vector of weighted counts over X initially zero

forj=1to Ndo

x, W «— Weighted-Sample(bn)

W[x ]« W[x ]+ w where x is the value of X in
x return Normalize(W[X ])

function Weighted-Sample(bn, e) returns an event and a weight

X «— an event with n elements; w « |
fori=1tondo
if X has a value x;in e
then w «— w x P(X.= x | parents(X.))
else x, «<— a random sample from P(X. | parents(X.))
return x, w

Chapter 14.4-5 50
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Likelihood weighting example

C [P(S|C)
T| .10
F| .50

P©)
.50

C [PRIC)
T| .80
F| 20

S R[P(W[S,R)
T T| .99
T F| .90
F T| .90
F F| .01

© 2021 Pearson Education Ltd.
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Likelihood weighting example

C [P(S|C)
T| .10
F| .50

P©)
.50

C [PRIC)
T| .80
F| 20

S R[P(W[S,R)
T T| .99
T F| .90
F T| .90
F F| .01
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Likelihood weighting example

P(SIC)

10
50

P©)
.50

P(R|C)

.80
20

S R[P(W[S,R)
T T| .99
T F| .90
F T| .90
F F| .01

© 2021 Pearson Education Ltd.
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Likelihood weighting example

w=1.0X
0.1

P(SIC)

10
50

P©)
.50

P(R|C)

.80
20

S R[P(W[S,R)
T T| .99
T F| .90
F T| .90
F F| .01

© 2021 Pearson Education Ltd.
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Likelihood weighting example

w=1.0X
0.1

P(SIC)

10
50

P©)
.50

P(R|C)

.80
20

S R[P(W[S,R)
T T| .99
T F| .90
F T| .90
F F| .01

© 2021 Pearson Education Ltd.

Chapter 14.4-5

55



Likelihood weighting example

w=1.0X
0.1

P(SIC)

10
50

P©)
.50

P(R|C)

.80
20

S R[P(W[S,R)
T T| .99
T F| .90
F T| .90
F F| .01
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Likelihood weighting example

P©)
.50

C |P(S|O) C [PRIC)
T| .10 T| .80
F| .50 F| 20

S R[P(W[S,R)
T T| .99
T F| .90
F T| .90
F F| .01

w=1.0x0.1X0.99=
0.099

Chapter 14.4-5 57
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Likelihood weighting analysis

Sampling probability for WeightedSample
IS Swyz, e) =I1'. P (z |parents(Z))
Note: pays attention to evidence in ancestors T

(CYauay:
G,

only = somewhere "“in between” prior
and posterior distribution

Weight for a given sample z,
eisw(z, e) =1L P (e |parents(E

1
We?%;hted sampling
probability is
Sys@le ykylparents(Z m P (e |parents(E
% P (z, e) (by standard glo]t%l sgmantics of
network)

Hence likelihood weighting returns consistent

estimates

but performance still degrades with many evidence

variables because a few samples have nearly all the
@ l’c;u‘sQJzaI We|g ht © 2021 Pearson Education Ltd.
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Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov

Lr e —y

function MCMC-Ask(X, e, bn, N) returns an estimate of P (X |e)
local variables: N[.X ], a vector of counts over X initially zero
Z, the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize X with random values for the variables in Y
for j=1to Ndo
for each Z.in Z do
sample the value of Z. in x from P(Z |mb(Z,))

given the values of MB(Z) in x
N[x ] < N[x ]+ 1 where x is the value of X in

X return Nnrmn]i7p(N[Y])

Can also choose a variable to sample at random each time

S © 2021 Pearson Education Ltd.
Pearson
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The Markov chain

With Sprinkler = true, W etGrass = true, there are four
states:

e%,,m/’} S arikier)

'}

Wander about for a while, average what
you see
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MCMC example contd.

Estimate P(Rain|Sprinkler = true, W etGrass = true)

Sample Cloudy or Rain given its Markov blanket,
repeat. Count number of times Rain is true and false
in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P (Rain|Sprinkler = true, W etGrass = true)
= Normalize((31, 69)) = (0.31, 0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is
exactly proportional to its posterior probability
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Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain

Markov blanket of Rain is
Cloudy, Sprinkler, and W
etGrass

Probability given the Markov blanket is calculated as follows:

P (x Jmb(X)) = P (x |parents(X)I1, _ . aren(xi)E
(ZJ.| parents(Z))

Easily implemented in message-passing parallel
systems, brains Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P (X|mb(X)) won't change much (law of large numbers)
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Causal Networks: a restricted class of Bayesian networks that forbids
all but causally compatible orderings.

P(c, r, s, w, g) = P(c) P(r |c) P(s|c) P(w|r, s) P(g|lw)

C=fU,)
R=f(CU,)
S=f(CU)
w=f£,(R, SU,)
G=f.(WU,)

For example, suppose we turn the sprinkler on—do(Sprinkler = true)

P(c, r, w, g|ldo(S = true)) = P(c) P(r |c) P(w|r, s = true) P(g|w)
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Example:

Predict the effect of turning on the sprinkler on a downstream variable such as
GreenerGrass, but the adjustment formula must take into account not only the
direct route from Sprinkler, but also the “back door” route via Cloudy and Rain.

P(g|do(S = true) = Y., P(g|S = true, r)P(r)

we wish to find the effect of do(X; = x ;) on a variable X,

Back-door criterion
allows us to write an adjustment formula that conditions on any set of variables Z

that closes the back door, so to speak
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Summa

Bayes nets provide a natural representation for (causally induced)
conditional independence
Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs
Continuous variables = parameterized distributions (e.g., linear
Gaussian)

Exact inference by variable elimination:
—polytime on polytrees, NP-hard on general graphs
—space = time, very sensitive to topology

Random sampling techniques such as likelihood weighting and Markov chain
Monte

Carlo can give reasonable estimates of the true posterior probabilities in a
network and can cope with much larger networks than can exact algorithms.
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