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Time and Uncertaint

States and observations

» discrete-time models, in which the world is viewed as a series of
snapshots or time slices

 the time interval A between slices is assumed to be the same for every interval.

* X denotes the set of state variables at time ¢, which are assumed to be
unobservable

* E: denotes the set of observable evidence variables.

e The observation at time ¢ 1s E (=€

Transition and sensor models

* The transition model specifies the probability distribution over the latest state
variables, given the previous values: P(X, | X 1)

* Problem: the set X _, is unbounded in size as # increases.

» Solution: Markov assumptlon [the current state depends on only a
finite fixed number of previous states]

* First order, P(X, | X _,); Second order, P(X | X ,, X .);

* P(E, | X) is our sensor model, sensor Markov assumption:

P(Et | XO:t’ El:t—l) = P(Et | Xt)
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Time and Uncertaint

* the prior probability distribution at time 0, P(X,).
I
P(Xo;.E1) = P(Xo) [ [P(Xi|Xiz1) P(Ei| X)).
i=1

« Umbrella World: first-order Markov process—the probability of rain is
assumed to depend only on whether it rained the previous day

» The first-order Markov assumption says that the state variables contain
all the information needed to characterize the probability distribution for
the next time slice.

« Ways to improve the accuracy of the approximation
* Increasing the order of the Markov process mode

 Increasing the set of state variables

© 2021 Pearson Education Ltd.



Time and Uncertaint
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(a) Bayesian network structure corresponding to a first-order Markov
process with state defined by the variables X,
(b) A second-order Markov process.
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Time and Uncertaint
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Bayesian network structure and conditional distributions describing the um-
brella world. The transition model is P(Rain, |Rain, ) and the sensor model
is P(Umbrella, |Rain ).
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Inference in Temporal Models

« formulate the basic inference tasks that must be solved:

 Filtering or state estimation is the task of computing the belief state P(X t
le.)

. Prlétdiction: This is the task of computing the posterior distribution
over the future state, given all evidence to date.

 Smoothing: This is the task of computing the posterior distribution
over a past state, given all evidence up to the present

* Most likely explanation: Given a sequence of observations, we
might wish to find the sequence of states that is most likely to have
generated those observations

 Besides inference tasks:

* Learning: The transition and sensor models, if not yet known, can
be learned from observations

© 2021 Pearson Education Ltd. 7
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Inference in Temporal Models

 Filtering and prediction

P(X;+1]|e1141) = f(er+1,P(Xs | €14))

P(X;i1|e1r+1) =P(Xi+1|e1+.€,41) (dividing up the evidence)
= aP(e+1|Xi+1,e14)P(X;+1|e1:) (using Bayes’ rule, given e;.;)
= aP(ey|Xi+1) P(X;+1|e14) (by the sensor Markov assumption).
N e S —— pr—

update prediction

P(X;t1]err+1) = aP(ery |Xr+l)ZP(Xr+l |X;. €1 ) P(X; | @)
X¢

= aPe1Xi41)) P(Xi1|x:) P(x|er;) (Markov assumption).
S o —— Sl I ey

Xy .. g
sensor model transition model recursion
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Inference in Temporal Models

« Smoothing
P(Xi|err) = P(Xk|eqx. €r1:)
= aP(Xi|eix)P(ex+1+ | Xk.e1:x) (using Bayes’ rule, given e.x)
= aP(Xy|eix)P(ex+1+ | Xxk) (using conditional independence)

= afjx X bk+l:r .

« where “X” represents pointwise multiplication of vectors.
* backward message by, 1.; can be computed by recursive process that runs
backward from ¢

P(eir1: | Xk) = Z P(ers1s | Xk Xp+1)P(Xk+1 | Xk)  (conditioning on Xy 1)

Xk+1
= Z P(err1 | Xpr1)P(Xr+1 | Xx) (by conditional independence’
Xk+1

= ) P(exs1,€ct2r | Xt 1) P(Xer1 | Xi)

Xk+1

= ) Plertt [Xer1) Plerr [Xer1) P(xest [ Xe)

) (| ' ' v~

sensor model recursion transition model
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Inference in Temporal Models

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions

inputs: ev, a vector of evidence values for steps 1,..., t
prior, the prior distribution on the initial state, P(Xy)
local variables: fv, a vector of forward messages for steps 0. ..., t
b, a representation of the backward message, initially all Is
sv, a vector of smoothed estimates for steps 1,..., t

fv[0] < prior
fori= 1tordo
fv[i] <« FORWARD(fv[i — 1], ev]i])
for i=t down to | do
sv[i] <~ NORMALIZE(fv]i| x b)
b+ BACKWARD(b.ev][i])
return sv

The forward—backward algorithm for smoothing: computing posterior
probabilities of a sequence of states given a sequence of observations

© 2021 Pearson Education Ltd. 10
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Inference in Temporal Models

Finding the most likely sequence
« There is a linear-time algorithm for finding the most likely sequence

* |t relies on the same Markov property that yielded efficient algorithms for
filtering and smoothing

* view each sequence as a path through a graph whose nodes are the
possible states at each time step.

« likelihood of any path is the product of the transition probabilities along
the path and the probabilities of the given observations at each state

* there is a recursive relationship between most likely paths to each state x ,, and
most likely paths to each state x,

© 2021 Pearson Education Ltd. 11
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Inference in Temporal Models

Finding the most likely sequence

. :
Recursively computed message m

mi; = maxP(x;;_1,X;,e1:).

X1:—1
mi;+1 = ngaXP(Xl:r-XrH-el:rJrl) — n;!aXP(XI:r-XhLl-el:r-()r+l)
Al Al
= maxP(er+1 | X1, Xr41,€1:0)P(X1:1, Xe 41, €15)

X1

= P(ery |X,+l)1lgf}xP(X,+1e |X; )P (X1:,€1:¢)
= P(er41 IXr+l>

mXaXP(XHrIT ’Xr)Q131XP(Xl:r—l-Xr-el:r)

Ay Alr—1

* m_ _ will contain the probability for the most likely sequence reaching each of
the final states.

Viterbi algorithm:

» select the final state of the most likely sequence overall. In order to
identify the actual sequence, as opposed to just computing its
probability, the algorithm will also need to record, for each state, the
best state that leads to it

@ Pearson
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Inference in Temporal Models

Rain, Rain, Rain, Rain; Rain, Rains
true true true true true true
(a)
false false false false false false
Umbrella, true true false true true
0.500 0.315 0.198 0.0139 0.0129 0.00811
(b)
0.500 0.070 0.0189 0.0476 0.00667 0.000933
mj. m m,. m 3 m 4 m s

(a) Possible state sequences for Rain can be viewed as paths through a graph
of the possible states at each time step.

(b) Operation of the Viterbi algorithm for the umbrella observation
sequence [true; true; false; true; true], where the evidence starts at
time 1.

© 2021 Pearson Education Ltd. 13
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Hidden Markov Models

* Hidden Markov model, or HMM is a temporal probabilistic model in which the
state of the process is described by a single, discrete random variable

* No restrictionon the evidence variables. There can be many evidence
variables, both discrete and continuous

Simplified matrix algorithms
transition model P(X, | X,;) becomes an S X S matrix T where:

T, = PX,=j|X.=1)
T; ; is the probability of a transition from state 7 to state ;.
HMMs, the matrix formulation reveals opportunities for improved algorithms
* simple variation on the forward—backward algorithm that allows smoothing to

be carried out in constant space, independently of the length of the sequence
* Online smoothing with a fixed lag.

© 2021 Pearson Education Ltd.
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Hidden Markov Models

function FIXED-LAG-SMOOTHING(e,, himm, d) returns a distribution over X,_,
inputs: ¢, the current evidence for time step ¢
hmm, a hidden Markov model with S x S transition matrix T
d, the length of the lag for smoothing
persistent: 7, the current time, initially 1
f, the forward message P(X; | ey, ), initially smm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
;41> double-ended list of evidence from # —d to ¢, initially empty
local variables: O,_,. O,, diagonal matrices containing the sensor model information

add ¢, to the end of ¢,_;,
O, < diagonal matrix containing P(e;
if > d then
f< FORWARD(f,e,_y)
remove ¢,_,_ from the beginning of ¢,_
O,_, +diagonal matrix containing P(e,_4|X;_4)
B« O T"'BTO,
else B+ BTO,
S e |
if 7 > d+ 1 then return NORMALIZE(f x B1) else return null

X;)

An algorithm for smoothing with a fixed time lag of d steps, implemented as an online
algorithm that outputs the new smoothed estimate given the observation for a new time step.

© 2021 Pearson Education Ltd.
@ Pearson
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Hidden Markov Models

(b) Posterior distribution over robot location after E; = 1011, E, =1010

@ Pearson

© 2021 Pearson Education Ltd. 16



Hidden Markov Models
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Performance of HMM localization as a function of the length of the
observation sequence for various different values of the sensor error
probability E; data averaged over 400 runs.
(a) The localization error, defined as the Manhattan distance from the true
location.
(b) The Viterbi path error, defined as the average Manhattan distance of
states on the Viterbi path from corresponding states on the true path
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Kalman Filters

« handling continuous variables
» current distribution P(X e, ) is Gaussian and the transition model P(X
linear—Gaussian, then the one-step predicted distribution given by

t+1 Xz) is

P(X;+1 |el:r) . / P(X+1 IXr)P(Xr |el:r)er
JX;

» If the prediction P(X , e, ) is Gaussian and the sensor model P(e, X . ) is
linear— Gaussian, then, after conditioning on the new evidence, the updated
distribution

P(_Xr+l |el:r+l> = “‘P(_er+l ’Xr+l)P(Xr+l ’elzr )

Thus, the FORWARD operator for Kalman filtering takes a Gaussian forward
message f, , specified by a mean u and covariance 2, and produces a new
multivariate Gaussian forward message f,. specified by a mean p — and
covariance 2 .

+1°

© 2021 Pearson Education Ltd.
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Kalman Filters

full multivariate Gaussian distribution

(=)= (x-p))

B =

N uX)=ae

Mean And Covariance

fiv1 = Fry +Kep1 (241 —HF )
(I— Kr+lH)(FZrFT + X

1
A
|

Kalman Gain Matrix

Ky =FLF' +2)H (HFLF' +Z)H' +%,)"!

© 2021 Pearson Education Ltd. 19
@ Pearson



Kalman Filters

P(x)

10

X position

Stages in the Kalman filter update cycle for a random walk with a prior given by y,
= 0.0 and g, = 1.5, transition noise given by 0_= 2.0, sensor noise given by 0, =
1.0, and a first observation z, = 2.5 (marked on the x-axis).

© 2021 Pearson Education Ltd. 20
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Kalman Filters
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(b)

Results of Kalman filtering for an object moving on the X —Y plane, showing the true
trajectory (left to right), a series of noisy observations, and the trajectory estimated by
Kalman filtering. Variance in the position estimate is indicated by the ovals.

The results of Kalman smoothing for the same observation sequence.
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Kalman Filters

A bird flying toward a tree (top views).
(a) A Kalman filter will predict the location of the bird using a single
Gaussian centered on the obstacle.
(b) A more realistic model allows for the bird’s evasive action, predicting
that it will fly to one side or the other

© 2021 Pearson Education Ltd.
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Dvnamic Bavesian Networks

 Dynamic Bayesian networks, or DBNs, extend the semantics of
standard Bayesian networks to handle temporal probability models

* Each slice of a DBN can have any number of state variables X and evidence
variables E

 every hidden Markov model can be represented as a DBN with a single
state variable and a single evidence variable

« Every HMM is a DBN and every DBN can be translated into an HMM

« By decomposing the state of a complex system into its constituent
variables, we can take advantage of sparseness in the temporal
probability model.

* |n a Kalman filter, the current state distribution is always a single

multivariate Gaussian distribution. DBNs can model arbitrary
distributions

© 2021 Pearson Education Ltd. 23
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Dvnamic Bavesian Networks

 Dynamic Bayesian networks, or DBNs, extend the semantics of
standard Bayesian networks to handle temporal probability models

* Each slice of a DBN can have any number of state variables X and evidence
variables E

- DBN representation size O(nd*) if the number of parents of each variable is
bounded by £.

 every hidden Markov model can be represented as a DBN with a single
state variable and a single evidence variable

« Every HMM is a DBN and every DBN can be translated into an HMM

« By decomposing the state of a complex system into its constituent
variables, we can take advantage of sparseness in the temporal
probability model.

* |n a Kalman filter, the current state distribution is always a single
multivariate Gaussian distribution. DBNs can model arbitrary
diStI‘ibutionS © 2021 Pearson Education Ltd. 24
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Dvnamic Bavesian Networks

* To construct a DBN, one must specify three kinds of information:
» the prior distribution over the state variables, P(X)
» the transition model P(X | X))
» sensor model P(E | X).

t+1

* Transient failure: the sensor occasionally decides to send some nonsense

» for a system to handle sensor failure properly, the sensor model must include
the possibility of failure

* The simplest kind of failure model for a sensor allows a certain
probability that the sensor will return some completely incorrect value,
regardless of the true state of the world

* Persistent failure model: describes how the sensor behaves under
normal conditions and after failure

« This persistence arc has a CPT that gives a small probability of failure in
any given time step,

© 2021 Pearson Education Ltd. 25



Dyvnamic Bavesian Networks

Example:
monitoring a battery-powered robot moving in the X-Y plane

State variables, which will include both X, =(X,Y,) for position and
th(X £ Yt) for velocity.

assume some method of measuring position yielding measurements Z,,

Battery,: battery level
BMeter,: measures the battery charge level

© 2021 Pearson Education Ltd.
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E(Battery,)

Dyvnamic Bavesian Networks
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(a) Upper curve: trajectory of the expected value of Battery,
(b) The same experiment run with the transient failure model
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Dyvnamic Bavesian Networks
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BMBroken

BMeter

Battery , Battery,

(a) (b)

BMBroken

E(Battery,)
)

P(BMBroken,|...5555000000...)
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<1 . .
i) 20 25 30

Time step

(a) A DBN fragment showing the sensor status variable required for modeling
persistent failure of the battery sensor.

(b) Upper curves: trajectories of the expected value of Battery, for the
“transient failure” and “permanent failure” observations sequences. Lower
curves: probability trajectories for BMBroken given the two observation

sequences.
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Dvnamic Bavesian Networks

Exact inference in DBNs

Unrolling: construct the full Bayesian network representation of a DBN by
replicating slices until the network is large enough to accommodate the
observations

Once the DBN is unrolled, one can use any of the inference
algorithms—variable elimination, clustering methods

the filtering update: works by summing out the state variables of the
previous time step to get the distribution for the new time step (variable
elimination algorithm)

The maximum factor size is O(d"**) and the total update cost per step is
O(nd"**), where d is the domain size of the variables and & is the maximum
number of parents of any state variable.

even though we can use DBNs to represent very complex temporal processes
with many sparsely connected variables we cannot reason efficiently and
exactly about those processes.

© 2021 Pearson Education Ltd.
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Dvnamic Bavesian Networks
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0.7 f 0.3 0.7 f 0.3 f 0.3 fl 03

@ Rain, Rain, Rain;
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Unrolling a dynamic Bayesian network
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Dvnamic Bavesian Networks

Approximate inference in DBNs

Sequential importance sampling or SIS

use the samples themselves as an approximate representation of the
current state distribution.

“constant” time per update

No need to unroll the DBN

to maintain a given level of accuracy, we need to increase the number of
samples exponentially with ¢

Even with 100,000 samples, the SIS approximation fails completely
after about 20 steps

Particle filtering

focus the set of samples on the high-probability regions of the state
space
sequential importance sampling with resampling

© 2021 Pearson Education Ltd.
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Dvnamic Bavesian Networks

Particle filtering

* N(x | e, ): the number of samples occupying state x, after observations
e, have been processed, we therefore have

N (X ’el:r)/N = P(x;]eq;)
* propagate each sample forward by sampling the state variables at # + 1,
N(Xi41|eri+1)/N = aW(Xiq1|e1141)

= (1‘P(e,+| |Xr+|)N(Xr+l |elzr)
= aP(e 41 IXr+I)ZP(XT+1 ’XI>N(XI lelzr)

Xy
= aNP(e |Xr+l)ZP(Xr+l | X;)P(X; | e:)
X;
= o/ P(es1 |Xr+l)ZP(Xr+l | X )P(X/ |er)
X

= P(X+1 ‘el:r+l)

© 2021 Pearson Education Ltd. 32
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Dvnamic Bavesian Networks

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence
N, the number of samples to be maintained
dbn, a DBN defined by P(Xj), P(X; | Xp), and P(E; | X)
persistent: S, a vector of samples of size N, initially generated from P(Xy)
local variables: W, a vector of weights of size N

fori=1toN do

S[i]«sample from P(X; | Xo= S[i]) // step 1

Wlil«<P(e| X, = S]i]) // step 2
S+ WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) // step 3
return S

The particle filtering algorithm implemented as a recursive update operation
with state (the set of samples). Each of the sampling operations involves sam-
pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE.
The WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to
run in O(N) expected time.

© 2021 Pearson Education Ltd.
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Dyvnamic Bavesian Networks

Rain, Rain, Rain,, Rain,
Y11 __ | eee cee ®
lrue ceee \_( e®e @
@ _,s o® ®® YY)
false ) > ee e (Y YY)
(a) Propagate (b) Weight  (c) Resample

The particle filtering update cycle for the umbrella DBN with
N=10, showing the sample populations of each state.
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Dvnamic Bavesian Networks

The particle filtering algorithm weakness:

« Possible the initial guesses in each particle are never updated by the
evidence.

» Best particles will come to dominate the total likelihood as time

progresses and the diversity of the population of particles will collapse.

 all the particles agree on a single, incorrect map, the algorithm
becomes convinced that that map is correct and never changes its
mind

Rao-Blackwellization particle filter

» Exact inference is always more accurate than sampling, even if it's
only for a subset of the variables

» For the SLAM problem, we run particle filtering on the robot location
and then, for each particle, we run exact HMM inference for each dirt
square independently, conditioned on the location sequence in that
particle

© 2021 Pearson Education Ltd.
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Dvnamic Bavesian Networks

Locationy

Dirt

Dirt,

Dirty;

0 OOO
¢ éeé

* A dynamic Bayes net for simultaneous localization and mapping in the
stochastic-dirt vacuum world. Dirty squares persist with probability p, and
clean squares become dirty with probability 1—p. The local dirt sensor 1s
90% accurate, for the square in which the robot is currently located.

© 2021 Pearson Education Ltd. 36
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Dvnamic Bavesian Networks

SRS Ra T S

RMS dirt error

RMS error in dirt probabilities

0 20 40 60 80 100 0 100 200 300 400 500

Number of observations Number of observations

(a) (b)

(a) Performance of the standard particle filtering algorithm with 1,000
particles, showing RMS error in marginal dirt probabilities compared to
exact inference for different values of the dirt persistence p.

(b) Performance of Rao-Blackwellized particle filtering (100 particles)
compared to ground truth, for both exact location sensing and noisy wall
sensing and with deterministic dirt. Data averaged over 20 runs.

© 2021 Pearson Education Ltd.
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» The changing state of the world is handled by using a set of random
variables to represent the state at each point in time.

* Representations can be designed to (roughly) satisfy the Markov
property, so that the future is independent of the past given the present.
Combined with the assumption that the process is time-homogeneous,
this greatly simplifies the representation.

» Atemporal probability model can be thought of as containing a transition
model describing the state evolution and a sensor model describing the
observation process.

» The principal inference tasks in temporal models are filtering (state
estimation), prediction, smoothing, and computing the most likely
explanation.

 |n practice, the particle filtering algorithm and its descendants are an

effective family of approximation algorithms

© 2021 Pearson Education Ltd. 38
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