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States and observations
• discrete-time models, in which the world is viewed as a series of 

snapshots or time slices
• the time interval ∆ between slices is assumed to be the same for every interval.
• Xt: denotes the set of state variables at time t, which are assumed to be 

unobservable
• Et : denotes the set of observable evidence variables. 
• The observation at time t is Et = et

Transition and sensor models
• The transition model specifies the probability distribution over the latest state 

variables, given the previous values: P(Xt | X0:t−1).
• Problem: the set X0:t−1 is unbounded in size as t increases.
• Solution: Markov assumption [the current state depends on only a 

finite fixed number of previous states]
• First order, P(Xt | Xt−1); Second order, P(Xt | Xt-2, Xt−1); 
• P(Et | Xt) is our sensor model, sensor Markov assumption:

P(Et | X0:t, E1:t−1) = P(Et | Xt)
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•  the prior probability distribution at time 0, P(X0).

• Umbrella World: first-order Markov process—the probability of rain is 
assumed to depend only on whether it rained the previous day

• The first-order Markov assumption says that the state variables contain 
all the information needed to characterize the probability distribution for 
the next time slice.

• Ways to improve the accuracy of the approximation
• Increasing the order of the Markov process mode

• Increasing the set of state variables
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(a) Bayesian network structure corresponding to a first-order Markov 
process with state defined by the variables Xt

(b) A second-order Markov process.
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Bayesian network structure and conditional distributions describing the um- 
brella world. The transition model is P(Raint |Raint−1) and the sensor model 
is P(Umbrellat |Raint).
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• formulate the basic inference tasks that must be solved:
• Filtering or state estimation is the task of computing the belief state P(Xt 

| e1:t)
• Prediction: This is the task of computing the posterior distribution 

over the future state,  given all evidence to date.
• Smoothing: This is the task of computing the posterior distribution 

over a past state, given all evidence up to the present
• Most likely explanation: Given a sequence of observations, we 

might wish to find the sequence of states that is most likely to have 
generated those observations

• Besides inference tasks:
• Learning: The transition and sensor models, if not yet known, can 

be learned from observations
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• Filtering and prediction 
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• Smoothing
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The forward–backward algorithm for smoothing: computing posterior 
probabilities of a sequence of states given a sequence of observations
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Finding the most likely sequence

• There is a linear-time algorithm for finding the most likely sequence

• It relies on the same Markov property that yielded efficient algorithms for 
filtering and smoothing

• view each sequence as a path through a graph whose nodes are the 
possible states at each time step.

• likelihood of any path is the product of the transition probabilities along 
the path and the probabilities of the given observations at each state

• there is a recursive relationship between most likely paths to each state xt+1 and 
most likely paths to each state xt
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Finding the most likely sequence

• Recursively computed message m1:t

• m1:t will contain the probability for the most likely sequence reaching each of 
the final states.

Viterbi algorithm:
• select the final state of the most likely sequence overall. In order to 

identify the actual sequence, as opposed to just computing its 
probability, the algorithm will also need to record, for each state, the 
best state that leads to it
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(a) Possible state sequences for Rain can be viewed as paths through a graph 
of the possible states at each time step.

(b) Operation of the Viterbi algorithm for the umbrella observation 
sequence [true; true; false; true; true], where the evidence starts at 
time 1.
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An algorithm for smoothing with a fixed time lag of d steps, implemented as an online 
algorithm that outputs the new smoothed estimate given the observation for a new time step.
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Performance of HMM localization as a function of the length of the 
observation sequence for various different values of the sensor error 
probability E; data averaged over 400 runs. 

(a) The localization error, defined as the Manhattan distance from the true 
location.

(b) The Viterbi path error, defined as the average Manhattan distance of 
states on the Viterbi path from corresponding states on the true path
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• handling continuous variables
• current distribution P(Xt e1:t) is Gaussian and the transition model P(Xt+1 xt) is 

linear–Gaussian, then the one-step predicted distribution given by

• If the prediction P(Xt+1 e1:t) is Gaussian and the sensor model P(et+1 Xt+1) is 
linear– Gaussian, then, after conditioning on the new evidence, the updated 
distribution

Thus, the FORWARD operator for Kalman filtering takes a Gaussian forward 
message f1:t, specified by a mean µt and covariance Σt, and produces a new 
multivariate Gaussian forward message f1:t+1, specified by a mean µt+1 and 
covariance Σt+1. 
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full multivariate Gaussian distribution

Mean And Covariance

Kalman Gain Matrix
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Stages in the Kalman filter update cycle for a random walk with a prior given by µ0 
= 0.0 and σ0 = 1.5, transition noise given by σx = 2.0, sensor noise given by σz = 
1.0, and a first observation z1 = 2.5 (marked on the x-axis). 
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(a) Results of Kalman filtering for an object moving on the X –Y plane, showing the true 
trajectory (left to right), a series of noisy observations, and the trajectory estimated by 
Kalman filtering. Variance in the position estimate is indicated by the ovals. 

(b) The results of Kalman smoothing for the same observation sequence.
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A bird flying toward a tree (top views). 
(a) A Kalman filter will predict the location of the bird using a single 

Gaussian centered on the obstacle.
(b) A more realistic model allows for the bird’s evasive action, predicting 

that it will fly to one side or the other
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• Dynamic Bayesian networks, or DBNs, extend the semantics of 
standard Bayesian networks to handle temporal probability models

• Each slice of a DBN can have any number of state variables Xt and evidence 
variables Et

• every hidden Markov model can be represented as a DBN with a single 
state variable and a single evidence variable

• Every HMM is a DBN and every DBN can be translated into an HMM

• By decomposing the state of a complex system into its constituent 
variables, we can take advantage of sparseness in the temporal 
probability model.

• In a Kalman filter, the current state distribution is always a single 
multivariate Gaussian distribution. DBNs can model arbitrary 
distributions
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• Dynamic Bayesian networks, or DBNs, extend the semantics of 
standard Bayesian networks to handle temporal probability models

• Each slice of a DBN can have any number of state variables Xt and evidence 
variables Et

• DBN representation size O(ndk) if the number of parents of each variable is 
bounded by k.

• every hidden Markov model can be represented as a DBN with a single 
state variable and a single evidence variable

• Every HMM is a DBN and every DBN can be translated into an HMM

• By decomposing the state of a complex system into its constituent 
variables, we can take advantage of sparseness in the temporal 
probability model.

• In a Kalman filter, the current state distribution is always a single 
multivariate Gaussian distribution. DBNs can model arbitrary 
distributions
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• To construct a DBN, one must specify three kinds of information:
• the prior distribution over the state variables, P(X0)
• the transition model P(Xt+1 | Xt )
• sensor model P(Et | Xt).

• Transient failure: the sensor occasionally decides to send some nonsense
• for a system  to handle sensor failure properly, the sensor model must include 

the possibility of failure
• The simplest kind of failure model for a sensor allows a certain 

probability that the sensor will return some completely incorrect value, 
regardless of the true state of the world

• Persistent failure model: describes how the sensor behaves under 
normal conditions and after failure

• This persistence arc has a CPT that gives a small probability of failure in 
any given time step,
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(a) Upper curve: trajectory of the expected value of Batteryt
(b) The same experiment run with the transient failure model
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(a) A DBN fragment showing the sensor status variable required for modeling 
persistent failure of the battery sensor.

(b) Upper curves: trajectories of the expected value of Batteryt for the 
“transient failure” and “permanent failure” observations sequences. Lower 
curves: probability trajectories for BMBroken given the two observation 
sequences.
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Exact inference in DBNs
• Unrolling: construct the full Bayesian network representation of a DBN by 

replicating slices until the network is large enough to accommodate the 
observations

• Once the DBN is unrolled, one can use any of the inference 
algorithms—variable elimination, clustering methods

• the filtering update: works by summing out the state variables of the 
previous time step to get the distribution for the new time step (variable 
elimination algorithm)

• The maximum factor size is O(dn+k) and the total update cost per step is 
O(ndn+k), where d is the domain size of the variables and k is the maximum 
number of parents of any state variable.

• even though we can use DBNs to represent very complex temporal processes 
with many sparsely connected variables we cannot reason efficiently and 
exactly about those processes.
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Unrolling a dynamic Bayesian network
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Approximate inference in DBNs

Sequential importance sampling or SIS
• use the samples themselves as an approximate representation of the 

current state distribution.
• “constant” time per update
• No need to unroll the DBN
• to maintain a given level of accuracy, we need to increase the number of 

samples exponentially with t
• Even with 100,000 samples, the SIS approximation fails completely 

after about 20 steps

Particle filtering
• focus the set of samples on the high-probability regions of the state 

space
• sequential importance sampling with resampling
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Particle filtering
• N(xt | e1:t): the number of samples occupying state xt after observations 

e1:t have been processed, we therefore have

• propagate each sample forward by sampling the state variables at t + 1,
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The particle filtering algorithm implemented as a recursive update operation 
with state (the set of samples). Each of the sampling operations involves sam- 
pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. 
The WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to 
run in O(N) expected time. 
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The particle filtering update cycle for the umbrella DBN with 
N=10, showing the sample populations of each state.
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The particle filtering algorithm weakness:
• Possible the initial guesses in each particle are never updated by the 

evidence.
• Best particles will come to dominate the total likelihood as time 

progresses and the diversity of the population of particles will collapse.
• all the particles agree on a single, incorrect map, the algorithm 

becomes convinced that that map is correct and never changes its 
mind

Rao-Blackwellization particle filter
• Exact inference is always more accurate than sampling, even if it’s 

only for a subset of the variables
• For the SLAM problem, we run particle filtering on the robot location 

and then, for each particle, we run exact HMM inference for each dirt 
square independently, conditioned on the location sequence in that 
particle
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(a) Performance of the standard particle filtering algorithm with 1,000 
particles, showing RMS error in marginal dirt probabilities compared to 
exact inference for different values of the dirt persistence p. 

(b) Performance of Rao-Blackwellized particle filtering (100 particles) 
compared to ground truth, for both exact location sensing and noisy wall 
sensing and with deterministic dirt. Data averaged over 20 runs.
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• The changing state of the world is handled by using a set of random 
variables to represent the state at each point in time.

• Representations can be designed to (roughly) satisfy the Markov 
property, so that the future is independent of the past given the present. 
Combined with the assumption that the process is time-homogeneous, 
this greatly simplifies the representation.

• A temporal probability model can be thought of as containing a transition 
model describing the state evolution and a sensor model describing the 
observation process.

• The principal inference tasks in temporal models are filtering (state 
estimation), prediction, smoothing, and computing the most likely 
explanation.

• In practice, the particle filtering algorithm and its descendants are an 
effective family of approximation algorithms


