Artificial Intelligence: A Modern
Approach

Fourth Edition

Chapter 15

Probabilistic Programming

4 dbh A
' ?
{ 4
{23 aY
LS KED©
Wy’ |
@ |
TN A
\ L2
| AEERE
| ! ! fprepwfd]
= . :

russell SAficial Intelligence
Norvig A Modern Approach

P Fourth Edition

@Pearson Copyright © 2021 Pearson Education, Inc. All Rights Reserved

Relational Probability Models

Open-Universe Probability Models

Keeping Track of a Complex World

® & o o

Programs as Probability Models

@ Pearson © 2021 Pearson Education Ltd. 2

* Relational Probability Models (RPM) have no closed-world assumptions.

Syntax and semantics
» Constant, function, and predicate symbols
* type signature for each function: specification of the type of each
argument and the function’s value
» Eliminates possible worlds

« Book-recommendation domain:
* The types = Customer and Book
» Type signatures for functions & predicates:
Honest : Customer — {true, false}
Kindness : Customer — {1, 2, 3, 4, 5}
Quality : Book — {1, 2, 3, 4, 5}
Recommendation : CustomerxBook — {1, 2, 3, 4, 5}

© 2021 Pearson Education Ltd. 3

Basic random variables of the RPM are obtained by instantiating
each function with each possible combination of objects

Honesz‘(Cl), Quality(Bz), Recommendation(Cl, Bz),

One dependency statement for each function

for any customer ¢ and book b, the score depends on the honesty
and kindness of the customer and the quality of the book:

Recommendation(c, b) ~ RecCPT(Honest(c), Kindness(c), Quality(b))

RecCPT 1s a separately defined conditional probability table with2 x 5 x 5 =
50 rows, each with 5 entries.

© 2021 Pearson Education Ltd.

* context-specific independence

Recommendation(c, b) if Honest(c) then
HonestRecCPT(Kindness(c), Quality(b))
else (0.4, 0.1, 0.0, 0.1, 0.4) .

e Further elaboration

Recommendation(c, b) if Honest(c) then
if Fan(c, Author(b)) then Exactly(5)
else HonestRecCPT(Kindness(c), Quality(b))
else (0.4, 0.1, 0.0, 0.1, 0.4)

© 2021 Pearson Education Ltd.

@endaﬁon(cz, B;)
@mendaﬁon(Cz, B,

Q ’ | RecommendaHOD

Recommendanon(Cl, By) Recommendation(Cy, B,)

(a) (b)

(a) Bayes net for a single customer C, recommending a single book B,. Honest(C,) is
Boolean, while the other variables have integer values from 1 to 5. (b) Bayes net with
two customers and two books.

© 2021 Pearson Education Ltd. 6

@wndaﬁon(c 1 B1) Recommendation(Cy, B,)

Fragment of the equivalent Bayes net for the book recommendation RPM when
Author(B,) is unknown.

© 2021 Pearson Education Ltd. 7

RPM Inference approach: construct the equivalent Bayesian network,
given the known constant symbols belonging to each type
(grounding/unrolling)

Example:

for b=1to Bdo
add node Quality, with no parents, prior { 0.05,0.2,0.4,0.2,0.15)
forc=1toCdo
add node Honest. with no parents, prior (0.99.0.01)
add node Kindness. with no parents, prior (0.1,0.1,0.2,0.3,0.3)
for b=1to Bdo
add node Recommendation,. ;, with parents Honest ., Kindness.., Quality,,
and conditional distribution RecCPT (Honest .. Kindness,, Quality,)

@ Pearson

© 2021 Pearson Education Ltd.

Drawbacks of grounding:
« Large Bayes net
« Many parents of variables

Countermeasures:

» Elimination algorithm, chaining from query and evidence

* Repeated stubstrucutre

« MCMC inference algorithms: sampling complete possible worlds.

* Resolution theorem provers: instantiating the logical variables only as
needed

© 2021 Pearson Education Ltd.

Example: ISBN for books ID, may have several IDs for same book
differentiated by hardcover paperback, large print, etc.

Sybils: multiple IDs
Sybil attack: confound a reputation system

Existence uncertainty eg: what are the real books and customers
underlying the observed data?

Identity uncertainty eg: which logical terms really refer to the same object

© 2021 Pearson Education Ltd. 10

Open universe probability model (OUPM): allows generative steps compared
to RPM

« add objects to the possible world under construction, where the
number and type of objects may depend on the objects that are
already in that world and their properties and relations

o # Customer ~ UniformInt(1, 3)
* # Book ~ Uniformint(2, 4) .

* # LoginID(Owner = ¢) ~ if Honest(c) then Exactly(1)
else UniformInt(2, 5) .

Owner function is an origin function

© 2021 Pearson Education Ltd. 11
@ Pearson

UniformInt: Uniform distribution used in example, for nonnegative
integers, Poisson Distribution is commonly used:
P(X=k) = Xe/k!.

For large numbers, discrete log-normal distribution and order-of-magnitude
distribution where OM(3,1) =10° Standard deviation between 10? and 10*.

Number variables of an OUPM: number objects there are of each
type with each possible origin in each possible world

#LoginlD = 4, in world w, customer 2 owns 4 login IDs.

(Owner, (Customer,,2)) (w)

Basic random variables determine the values of predicates and
functions for all tuples of objects

Honest =true means that in world w, customer 2 is honest.

(Customer,,Z)(w)

© 2021 Pearson Education Ltd. 12

@ Pearson

Variable
#Customer
#Book

Honest (Customer, 1)

Honest (Customer, 2)
Ki”d’wss-::Cusmmer. 1)
Kindness {Customer, 2)
Quality (Book, 1)
Quality (Book, 2
Quality (Book, ;
#Log inlD {Owner {Customer, 1))

..J

o

#Log inlD (Owner.(Customer, 2))

Recommendation (LoginID,(Owner,{Customer, 1)),1).(Book,,1)
Recommendation (LoginID,{Owner,{Customer, 1)},1).(Book,.2)
Recomm"nd‘nion(:I.ogz'nll). (Owner (Customer, 1)),1),(Book, 3)
),(Book, 1)
),(Book, 2)

).(Book, 3)

Recommendutmn,::L(,g,-,,”)_ (Owner (Customer, 2}

Recommendation (LoginID,{Owner (Customer, 2))
Recommendation (LoginID,(Owner,{Customer, 2})

Recommendation (LoginID,{Owner {Customer, 2)))
Recomm"nd‘lnon(:I.ogz'nll). (Owner (Customer, 2)).2). 2)
Recommendunon{L(,g,-,,”)_ (Owner (Customer, 2}),2),(,3)

Value

L o

~
~

.
~
-
N

false

(00 bt e

h B o =

th thh — Lh h

[a—

Probability
0.3333
0.3333
0.99
0.01
0.3

0.1
0.05
04
0.15
1.0
0.25
0.5

0.5

0.5

0.4
0.4
0.4
0.4
04
0.4

One particular world for the book recommendation OUPM. The number variables and basic
random variables are shown in topological order, along with their chosen values and the

probabilities for those values.

@ Pearson

© 2021 Pearson Education Ltd.

13

Citation matching

type Researcher, Paper,

Citation random String Name(Researcher)
random String Title(Paper)

random Paper CitedPaper(Citation)
random String Text(Citation)

random Boolean Professor(Researcher)
origin Researcher Author(Paper)

#Researcher ~ OM(3, 1)

Name(r) ~ NamePrior()

Professor(r) ~ Boolean(0.2)

#Paper(Author = r) ~ if Professor(r) then OM(1.5, 0.5) else OM(1, 0.5)
Title(p) ~ PaperTitlePrior()

CitedPaper(c) ~ UniformChoice({Paper p})

Text(c) ~ HMMGrammar(Name(Author(CitedPaper(c))), Title(CitedPaper(c)))

An OUPM for citation information extraction. For simplicity the model
assumes

one author per paper and omits details of the grammar and error

models. © 2021 Pearson Education Ltd. 14

Nuclear treaty monitoring

#SeismicEvents ~ Poisson(T x \,)
Time(e) ~ UniformReal(0,T)
EarthQuake(e) ~ Boolean(0.999)
Location(e) ~ if Earthquake(e) then SpatialPrior() else UniformEarth()
Depth(e) ~ if Earthquake(e) then UniformReal(0,700) else Exactly(0)
Magnitude(e) ~ Exponential(log(10))
Detected(e,p.s) ~ Logistic(weights(s, p),Magnitude(e), Depth(e), Dist(e.s))
#Detections(site, = s) ~ Poisson(T x A¢(s))
#Detections(event=e, phase=p, station=s) = if Detected(e,p,s) then 1 else 0
OnsetTime(a,s) if (event(a) = null) then ~ UniformReal(0,T)
else = Time(event(a)) + GeoTT (Dist(event(a).s),Depth(event(a)),phase(a))
+ Laplace(jy (s),0:(s))
Amplitude(a.s) if (event(a) = null) then ~ NoiseAmpModel(s)
else = AmpModel(Magnitude(event(a)), Dist(event(a),s), Depth(event(a)), phase(a))
Azimuth(a.s) if (event(a) = null) then ~ UniformReal(0, 360)
else = GeoAzimuth(Location(event(a)),Depth(event(a)),phase(a), Site(s))
+ Laplace(0,04(s))
Slowness(a,s) if (event(a) = null) then ~ UniformReal(0,20)
else = GeoSlowness(Location(event(a)), Depth(event(a)).phase(a). Site(s))
+ Laplace(0,04(s))
ObservedPhase(a,s) ~ CategoricalPhaseModel(phase(a))

A simplified version of the NET-VISA model

© 2021 Pearson Education Ltd. 15
@ Pearson

Data association problem: problem of associating observation data
with the objects that generated them

Multitarget tracking

A, and A4, are guaranteed objects,

true positions be X (4 ,¢) and X (4,,¢), where ¢ is a nonnegative integer that
indexes the sensor update times.

the first observation arrives at ¢ = 1, and at time 0 the prior distribution for
every aircraft’s location is InitX().

assume that each aircraft moves independently according to a known
transition model

sensor model: again, we assume a linear—Gaussian model where an aircraft at

position x produces a blip b whose observed blip position Z(b) is a linear
function of x with added Gaussian noise.

guaranteed Aircraft Ay. A

X(a.t) ~ ift = 0 then InitX() else N(F X (a.t — 1), L)
#Blip(Source=a, Time=t) = 1

Z(b) ~ N(H X(Source(b).Time(b)), X.)

© 2021 Pearson Education Ltd. 16
@ Pearson

n known objects generating n observations

Real applications of data association are typically much more
complicated.

False alarms (clutter): not caused by real objects

Detection failures: no observation reported for real object

Many research studies simply try to work out the complex
mathematical details of the probability calculations

Practical point of view, complexity of inference of the OUPM

Simplest approach is to choose a single “best” assignment at each
time step, given the predicted positions of the objects at the current
time

» Using Nearest-neighbor filter

However fails under more difficult conditions.
Solution: MCMC algorithm, explores the space of assignment
histories

© 2021 Pearson Education Ltd. 17

@ Pearson

#Aircraft(EntryTime-=t) ~ Poisson(\,)
Exits(a,t) ~ if InFlight(a.t) then Boolean(c,)
InFlight(a.t) = (t=EntryTime(a)) V (InFlight(a,t —1) N — Exits(a,t —1))
X(a.t) ~ ift = EntryTime(a) then InitX ()
else if InFlight(a.t) then N (FX(a,t —1).X,)
#Blip(Source=a, Time=t) ~ if InFlight(a.t) then Bernoulli(DetectionProb(X (a.t)))
#Blip(Time=t) ~ Poisson(Ay)
Z(b) ~ if Source(b)=null then UniformZ(R) else N'(HX (Source(b),Time(b)).X.)

An OUPM for radar tracking of multiple targets with false alarms, detection
failure, and entry and exit of aircraft. The rate at which new aircraft enter the
scene is A , while the probability per time step that an aircraft exits the scene is
a . False alarm blips (i.e., ones not produced by an aircraft) appear uniformly in
space at a rate of A ,per time step. The probability that an aircraft is detected
(i.e., produces a blip) depends on its current position.

© 2021 Pearson Education Ltd.
@ Pearson

18

Images from (a) upstream and (b) downstream surveillance

cameras roughly two miles apart on Highway 99 in
Sacramento, California. The boxed vehicle has been identified

at both cameras.

© 2021 Pearson Education Ltd.

@ Pearson

19

Example: Traffic monitoring

function GENERATE-IMAGE() returns an image with some letters
letters <+— GENERATE-LETTERS(10)
return RENDER-NOISY-IMAGE(/etters, 32, 128)

function GENERATE-LETTERS(A) returns a vector of letters
n ~ Poisson(\)
letters + ||
fori=1tondo
letters|i| ~ UniformChoice({a,b,c,---})
return letters

function RENDER-NOISY-IMAGE(letters, width, height) returns a noisy image of the letters
clean_image +— RENDER(letters, width. height , text_top = 10, text_left = 10)
noisy_image ||
noise_variance ~ UniformReal(0.1, 1)
for row = 1 to width do
for col = 1 to height do
noisy_image(row,col| ~ N(clean_image[row,col|,noise_variance)
return noisy_image

Generative program for an open-universe probability model for optical character
recognition. The generative program produces degraded images containing sequences of

letters by generating each sequence, rendering it into a 2D image, and incorporating
additive

noise at each pixel.

© 2021 Pearson Education Ltd. 20
@ Pearson

Probabilistic programming languages (PPL) built on the insight that
probability models can be defined using executable code in any
programming language that incorporates a source of randomness.
* inherit all of the expressive power

« computationally universal

Example: Reading text

Program that reads degraded text
 Dbuilt for reading text that has been smudged or blurred due to water

damage, or spotted due to aging of the paper on which it is printed.
» can also be built for breaking some kinds of CAPTCHAs.

» A generative program that has two components:
« a way to generate a sequence of letters
« a way to generate a noisy, blurry rendering of these letters using

an off-the-shelf graphics library.

© 2021 Pearson Education Ltd. 21

@ Pearson

Probabilistic programming languages (PPL) built on the insight that
probability models can be defined using executable code

* inherit all of the expressive power

« computationally universal

Example: Reading text
Program that reads degraded text
 Dbuilt for reading text that has been smudged or blurred due to water

damage, or spotted due to aging of the paper on which it is printed.
» can also be built for breaking some kinds of CAPTCHAs.

* A generative program: executable program in which every random
choice defines a random variable in an associated probability model

* Forreading text, a generative program that has two components:

« a way to generate a sequence of letters
« a way to generate a noisy, blurry rendering of these letters using

an off-the-shelf graphics library.

© 2021 Pearson Education Ltd. 22

@ Pearson

X, : random variable corresponding to the ith random choice made by the
program

x, : a possible valueof X'

w = {x.} : execution trace
» sequence of possible values for the random choices

Probability distribution over traces: product of the probabilities of each
individual random choice: P(w) = []. P(x|x, x,_)).

PPL modular in a way that makes it easy to explore improvements to the
underlying model.

Can be improved by incorporating a Markov Model

© 2021 Pearson Education Ltd. 23
@ Pearson

function GENERATE-IMAGE() returns an image with some letters
letters <+— GENERATE-LETTERS(10)
return RENDER-NOISY-IMAGE(/etters, 32, 128)

function GENERATE-LETTERS(A) returns a vector of letters
n ~ Poisson(\)
letters + ||
fori=1tondo
letters[i] ~ UniformChoice({a,b,c,---})
return letters

function RENDER-NOISY-IMAGE(letters, width, height) returns a noisy image of the letters
clean_image +— RENDER(letters, width, height , text_top = 10, text_left = 10)
noisy_image +— ||
noise_variance ~ UniformReal(0.1, 1)
for row = 1 to width do
for col = 1 to height do
noisy_image[row,col] ~ N(clean_image|[row,col|,noise_variance)

return noisy_image

Generative program for an open-universe probability model for
optical character recognition. The generative program produces
degraded images containing sequences of letters by generating each
sequence, rendering it into a 2D image, and incorporating additive

noise at each pixel.

@ Pearson

© 2021 Pearson Education Ltd. 24

uncertainty

uncertainty

uncertainty

Noisy input image (top) and inference results (bottom) produced by three
runs, each of 25 MCMC iterations, with the model from the previous

generative program. Note that the inference process correctly identifies the
sequence of letters.

© 2021 Pearson Education Ltd. 25
@ Pearson

function GENERATE-MARKOV-LETTERS(A) returns a vector of letters
n ~ Poisson(\)
letters <+ H
letter_probs +— M ARKOV-INITIAL()
fori=1tondo
letters[i] ~ Categorical(letter_probs)
letter_probs <+~ MARKOV-TRANSITION(letters|i])
return letters

Generative program for an improved optical character
recognition model that generates letters according to a
letter bigram model whose pairwise letter frequencies are
estimated from a list of English words

© 2021 Pearson Education Ltd. 26
@ Pearson

| gnucitainty

gncurtbinty

gncuftaintv

Top: extremely noisy input image. Bottom left: with three inference
results from 25 MCMC iterations with the independent-letter model from
previous generative program.

Bottom right: three inference results with the letter bigram model. Both
models exhibit ambiguity in the results, but the latter model’s results

uncertainty

uncsitainty

unchftsinty

reflect prior knowledge of plausible letter sequences

@ Pearson

© 2021 Pearson Education Ltd.

Relational probability models (RPMs) define probability models on
worlds derived from the database semantics for first-order languages

RPMs provide very concise models for worlds with large numbers of
objects and can handle relational uncertainty.

Open-universe probability models (OUPMs) build on the full semantics
of first-order logic, allowing for new kinds of uncertainty such as identity
and existence uncertainty.

Generative programs are representations of probability models—including
OUPMs— as executable programs in a probabilistic programming
language or PPL.

A generative program represents a distribution over execution traces of the
program.

PPLs typically provide universal expressive power for probability models.

© 2021 Pearson Education Ltd. 28

@ Pearson

