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The Basis of Utility Theory

Constraints on rational preferences
An agent chooses among prizes (A, B, etc.)and lotteries, i.e., situations  
with uncertain prizes

A
p

L
1−p
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B
Lottery L = [p, A;  (1 − p), B]

Notation:
A <; 
BA ∼<; 
BA 
∼ B

A preferred to B
indifference between A and 
B  B not preferred to A
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Rational preferences

Idea: preferences of a rational agent must obey constraints.
Rational preferences ⇒

behavior describable as maximization of expected utility

Constraints:
Orderability

(A <; B) ∨ (B <; A) ∨ (A ∼ B)
Transitivity

(A <; B) ∧ (B <; C) ⇒ (A <; C)
Continuity

A <; B <; C ⇒ ∃ p [p, A; 1 − p, C] ∼ B
Substitutability

A ∼ B ⇒ [p, A;  1 − p, C] ∼ [p, B; 1 − p, C]
Monotonicity

A <; B ⇒ (p ≥ q ⇔ [p, A;  1 − p, B] <;
∼ [q, A;  1 − 

q, B])

© 2021 Pearson Education Ltd.



Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to 
give  away all its money

If  B <; C,  then  an  agent  who  has  
Cwould pay (say) 1 cent to get B

If  A <; B,  then  an  agent  who  has  
Bwould pay (say) 1 cent to get A

If  C <; A,  then  an  agent  who  has  
Awould pay (say) 1 cent to get C

A

B C

1c
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Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints  
there exists a real-valued function U such 
that

U (A) ≥ U (B) ⇔ A <;
∼ B

U ([p1, S1;  . . .  ;  pn, Sn]) = Σi  piU (Si)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)  
without ever representing or manipulating utilities and 
probabilities

E.g., a lookup table for perfect tictactoe
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Utility Functions

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery Lp that has  

“best possible prize” uT with probability p
“worst possible catastrophe” u

⊥ with probability (1 − 
p)

adjust lottery probability p until A ∼ Lp

L
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continue as before

instant death

pay $30 ~
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Utility scales

Normalized utilities: uT = 1.0, u
⊥ = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, 
etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation

U t(x) = k1U (x) + k2 where k1 > 0

With deterministic prizes only (no lottery choices), only  
ordinal utility can be determined, i.e., total order on 
prizes
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Money

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV (L),  
usually U (L) < U (EMV (L)), i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x 
and  a lottery [p, $M ; (1 − p), $0] for large M ?

Typical empirical data, extrapolated with risk-prone behavior:
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Multiattribute Utility Functions

How can we handle utility functions of many variables X1 . . . 
Xn?  E.g., what is U (Deaths, N oise, Cost)?

How can complex utility functions be assessed 
from  preference behaviour?

Idea 1: identify conditions under which decisions can be made without 
com-  plete identification of U (x1, . . . , xn)

Idea 2: identify various types of independence in preferences  
and derive consequent canonical forms for U (x1, . . . , xn)
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Strict dominance

Typically define attributes such that U is monotonic in 
each

Strict dominance: choice B strictly dominates choice A iff
∀ i Xi(B) ≥ Xi(A) (and hence U (B) ≥ U (A))

X1

X2

A

BC

D

X1

X2

A

B

C

This region  
dominates A

Deterministic attributes Uncertain attributes

Strict dominance seldom holds in 
practice
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Stochastic dominance

Distribution p1 stochastically dominates distribution p2 
iff
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   t 1∀ tp (x)dx ≤
 t

−∞ −∞ p2(t)dt

If U is monotonic in x, then A1 with outcome distribution p1
stochastically dominates A2 with outcome distribution p2:

 
−
∞ p1(x)U (x)dx ≥  

−
∞ p2(x)U (x)dx

Multiattri∞bute case: stochastic∞dominance on all attributes ⇒
optimal
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Stochastic dominance contd.

Stochastic dominance can often be determined 
without  exact distributions using qualitative 
reasoning

E.g., construction cost increases with distance from city
S1 is closer to the city than S2

⇒S1 stochastically dominates S2 on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:

X −
+
→ Y (X positively influences Y ) means 

that  For every value z of Y ’s other parents Z
∀ x1, x2 x1  ≥ x2  ⇒ P(Y |x1, z) stochastically dominates P(Y |x2, 
z)
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Preference structure: Deterministic

X1 and X2 preferentially independent of X3 iff  
preference between (x1, x2, x3) and (xt

1, x
t
2, 

x3)  does not depend on x3

E.g., (N oise, Cost, Saf ety):
(20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its com-  
plement, then every subset of attributes is P.I of its complement: mutual  
P.I..

Theorem (Debreu, 1960): mutual P.I.  ⇒  ∃ additive value function:

V (S) = ΣiVi(Xi(S))

Hence assess n single-attribute functions; often a good approximation
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Preference structure: Stochastic

Need to consider preferences over lotteries:
X is utility-independent of Y iff

preferences over lotteries in X do not depend on y

Mutual U.I.: each subset is U.I of its complement
⇒∃ multiplicative utility function:

U = k1U1 + k2U2 + k3U3
+ k1k2U1U2 + k2k3U2U3 + k3k1U3U1
+ k1k2k3U1U2U3

Routine procedures and software packages for generating preference 
tests to  identify various canonical families of utility functions
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Decision networks

Decision network represents information about the agent’s current state, 
its possible actions, the state that will result from the agent’s action, and 
the utility of that state.

Three types of nodes used:
• Chance nodes (ovals): random variables, just as they do in Bayesian 

networks
• Decision nodes (rectangles): points where the decision maker has a 

choice of actions
• Utility nodes (diamonds): agent’s utility function.
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Decision networks
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A decision network for the 
airport-siting problem.

A simplified representation of the airport-siting 
problem. Chance nodes corresponding
to outcome states have been factored out.
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Decision networks
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The algorithm for evaluating decision networks is the following

1. Set the evidence variables for the current state.

2. For each possible value of the decision node:
(a) Set the decision node to that value.
(b) Calculate the posterior probabilities for the parent nodes of the 
utility node, using a standard probabilistic inference algorithm.
(c) Calculate the resulting utility for the action.

3. Return the action with the highest utility.
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The Value of information

Idea: compute value of acquiring each possible piece of 
evidence  Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k  
Prior probabilities 0.5 each, mutually exclusive  

Current price of each block is k/2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information  

minus expected value of best action without 
information

Survey may say “oil in A” or “no oil in A”, prob. 0.5 each (given!)
= [0.5 × value of “buy A” given “oil in A”

+ 0.5 × value of “buy B” given “no oil in A”]
– 0

= (0.5 × k/2) + (0.5 × k/2) − 0 = k/2
© 2021 Pearson Education Ltd.
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General formula

Current evidence E, current best action α
Possible action outcomes Si, potential new evidence Ej

EU (α|E) = maax Σi  U (Si) P (Si|E, a)

Suppose we knew Ej = ejk, then we would choose αejk  s.t.

EU (αejk |E, Ej = ejk) = maax Σi U (Si) P (Si|E, a, Ej = 

ejk)  Ej is a random variable whose value is currently 

unknown

⇒ must compute expected gain over all possible values:

V PIE (Ej) =  Σk P (Ej = ejk|E)EU (αejk |E, Ej = ejk)  − EU (α|E)

(VPI = value of perfect information)
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Properties of VPI

Nonnegative—in expectation, not post hoc

∀ j, E V PIE (Ej) ≥ 0

Nonadditive—consider, e.g., obtaining Ej twice

V PIE (Ej, Ek)  = V PIE (Ej) + V PIE (Ek)

Order-independent

V PIE (Ej, Ek) = V PIE (Ej) + V PIE,Ej (Ek) = V PIE (Ek) + V PIE,Ek (Ej)

Note: when more than one piece of evidence can be 
gathered,  maximizing VPI for each to select one is not 
always optimal
⇒evidence-gathering becomes a sequential decision problem
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Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a 

lot
c) Choice is nonobvious, information worth 

little

P ( U | E j  
)P ( U | E j  

)P ( U | E j  
)

(a)

U U U
U2 U1

(c)

U2 U1

(b)

U1U2
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Unknown Preferences

Imagine that you are at an ice-cream shop in Thailand and they have only two 
flavors left: vanilla and durian. Both cost $2. You know you have a moderate 
liking for vanilla and you’d be willing to pay up to $3 for a vanilla ice cream on 
such a hot day, so there is a net gain of $1 for choosing vanilla. On the other 
hand, you have no idea whether you like durian or not, but you’ve read on 
Wikipedia that the durian elicits different responses from different people: 
some find that “it surpasses in flavour all other fruits of the world” while others 
liken it to “sewage, stale vomit, skunk spray and used surgical swabs.”
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Unknown Preferences
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let’s say there’s a 50% chance you’ll find it sublime (+$100) and a 50% 
chance you’ll hate it (-$80 if the taste lingers all afternoon).

We can simply replace the uncertain value of the durian with its 
expected net gain below however the decision will still not changed.

(0.5 × $100) − (0.5 × $80) − $2 =$8

Rather than saying there is uncertainty about the utility function, we move 
that uncertainty “into the world,” so to speak. That is, we create a new 
random variable LikesDurian with prior probabilities of 0.5 for true and false 
in (c)
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Unknown Preferences

(a) A decision network for the ice cream choice with an uncertain utility 
function.
(b) The network with the expected utility of each action.
(c) Moving the uncertainty from the utility function into a new random variable
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Summary
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•  Probability theory describes what an agent should believe on the basis of 
evidence, utility theory describes what an agent wants, and decision 
theory puts the two together to describe what an agent should do.

• Utility theory shows that an agent whose preferences between lotteries 
are consistent with a set of simple axioms can be described as possessing a 
utility function

• Multiattribute utility theory deals with utilities that depend on several 
distinct attributes of states. 

• Stochastic dominance is a particularly useful technique for making 
unambiguous decisions, even without precise utility values for attributes.

• Decision networks provide a simple formalism for expressing and solving 
decision problems. 

• The value of information is defined as the expected improvement in utility
compared with making a decision without the information


