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An agent assigns a probability P(s) to each possible current state s. There may also be
uncertainty about the action outcomes; the transition model is given by P(s? | s, a),
P(RESULT(a) = st) = Y., P(s)P(s'|s, a) .

The expected utility of an action given the evidence, EU(a), is just the average utility
value of the outcomes, weighted by the probability that the outcome occurs:

EU(a)= Y., P(RESULT(a) = s)U (s!) .

The principle of maximum expected utility (MEU) says that a rational agent should
choose the action that maximizes the agent’s expected utility:
action = argmax EU(a) .
a
If agent acts so as to maximize a utility function that correctly reflects the
performance measure, then the agent will achieve the highest possible performance
score (averaged over all the possible environments).
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Constraints on rational preferences

An agent chooses among prizes (A, B, etc.)and lotteries, i.e., situations
with uncertain prizes

A
P
Lottery L = [p, A; (1 — p), B L
I-p B
Notation:
A< A preferred to B
§ N indifference between A and
A ; B B not preferred to A
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Rational preferences

Idea: preferences of a rational agent must obey constraints.
Rational preferences =

behavior describable as maximization of expected utility

Constraints:

Orderability

A<; BV (B<;AV A-B
Transitivity

A<;BANB<0 = A< O
Continuity

A<;B<;,C= 3p [pA 1-p(-B
Substitutability

A~B = [pA1-p C~[p,B1-p,C
Monotonicity

A<;B = (p2q < [p,A 1-p, B
q, B))

<;,. g, A; 1 -
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Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to
give away all its money

If B<; C, then an agent who has -4

would pay (say) 1 cent to get B Ie \]c

If A <; B, then an agent who has )

would pay (say) 1 cent to get A B C
»

If C<; A, then an agent who has N————
Ic
would pay (say) 1 cent to get C
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Maximizing expected utilit

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function U such
that _
UA>2U®B & A~_B

U(p,S; ...;p,S])=2 pU(S)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and
probabilities

E.g., a lookup table for perfect tictactoe
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ilitv F'unctions

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery Lpthat has
“best possible prize” v, with probability p
“worst possible catastrophe” u , with probability (1 -
D)
adjust lottery probability p until A ~ Lp

0.999999 continue as before

pay $30 ~ L

instant death
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Utility scales

Normalized utilities: ur=1.0,u, =0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks,
etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation
t/on
U'(x) =k U(x + k, where k >0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on
prizes

@ Pearson © 2021 Pearson Education Ltd.
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Mone

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV (L),
usually U (L) < U (EMV (L)), i.e., people are risk-averse

Utility curve: for what probability p am | indifferent between a prize x
and a lottery [p, $M ; (1 — p), $0] for large M ?

Typical empirical data, extrapolated with risk-prone behavior:

+U
A [o)
o 5 o

+$

o
|

| |
-150,000 800,000
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How can we handle utility functions of many variables X . . .
X ? E.g., whatis U (Deaths, N oise, Cost)?

How can complex utility functions be assessed
from preference behaviour?

Idea 1: identify conditions under which decisions can be made without
com- plete identificationof U (x, . . ., x )

Idea 2: identify various types of independence in preferences
and derive consequent canonical forms for U (x, . . ., x )
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Strict dominance

Typically define attributes such that U is monotonic in
each

Strict dominance: choice B strictly dominates choice A iff
V1 X(B)z X(A) (and hence U (B) 2 U (A))

X This region X
Iy \
| 4/ dominates |
| | (B
C1 5 __1l__«©
ING A
°D I
»Xl »Xl
Deterministic attributes Uncertain attributes

Strict dominance seldom holds in
practice
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Stochastic dominance

0.6 1 12 q
0.5 1 1 1
|
= 04 1 | =z 08 1
£ 03 S, A 2 06 1
= - S
£ 02 £ 04
0.1 0.2
0 . . . - - 0 : . - -
-6 -55 -5 45 -4 35 -3 -25 -2 -6 -55 -5 -45 -4 -35 -3 -25 -2
Negative cost Negative cost

(a) (b)

Distribution p, stochastically dominates distribution p,
iff  V tpodx < " p(pdt

If U is monotonicin x, then A1 with outcome distribution p,
stochastically dominates A, with outcome distribution p.:

° p,U@dxz ° p,xUdx
Multiattri®bute case: stochastic®dominance on all attributes =
optimal
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Stochastic dominance contd.

Stochastic dominance can often be determined
without exact distributions using qualitative
reasoning

E.g., construction cost increases with distance from city
S, is closer to the city than S,
= S, stochastically dominates S, on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:

X_+_) Y (X positively influences Y ) means
that For every value z of Y’s other parents Z

vV x, x,x = x, = P(Y|x, z) stochastically dominates P(Y |x,

Chapter 16
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Preference structure: Deterministic

X, and X, preferentially independent of X, iff
preference between (x1, X,, x3) and (o
x,) does not depend on x,

x

17 772

E.g., (IV oise, Cost, Saf ety):
(20,000 suffer, S4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its com-

plement, then every subset of attributes is P.I of its complement: mutual
P.l..

Theorem (Debreu, 1960): mutual P.I. = 3 additive value function:
V(S = 2, V(X(9)

Hence assess n single-attribute functions; often a good approximation
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Preference structure: Stochastic

Need to consider preferences over lotteries:
X is utility-independent of Y iff
preferences over lotteries in X do not depend ony

Mutual U.l.: each subset is U.l of its complement
= 3 multiplicative utility function:
U=kU+ kU + k.U,
+k kU U+ kkUU,+ kkUU,
+ k1k2k3U1 U,U,
Routine procedures and software packages for generating preference
tests to identify various canonical families of utility functions
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Decision networks

Decision network represents information about the agent’s current state,
its possible actions, the state that will result from the agent’s action, and
the utility of that state.

Three types of nodes used:

 Chance nodes (ovals): random variables, just as they do in Bayesian
networks

* Decision nodes (rectangles): points where the decision maker has a
choice of actions

» Utility nodes (diamonds): agent’s utility function.
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Decision networks

Airport Site Airport Site
N\

A decision network for the A simplified representation of the airport-siting
airport-siting problem. problem. Chance nodes corresponding
to outcome states have been factored out.
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Decision networks

The algorithm for evaluating decision networks is the following

1. Set the evidence variables for the current state.

2. For each possible value of the decision node:

(a) Set the decision node to that value.

(b) Calculate the posterior probabilities for the parent nodes of the
utility node, using a standard probabilistic inference algorithm.

(c) Calculate the resulting utility for the action.

3. Return the action with the highest utility.

© 2021 Pearson Education Ltd.
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Idea: compute value of acquiring each possible piece of
evidence Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is k/2

“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without
information
Survey may say “oil in A” or “no oil in A”, prob. 0.5 each (given!)
=[0.5 X value of “buy A” given “oil in A”
+ 0.5 X  value of “buy B” given “no oil in A”]
-0
=(0.5X k/2)+ (0.5X k/2)—-0=Kk/2
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(reneral formula

Current evidence E, current best action a
Possible action outcomes Sl., potential new evidence EJ

EU (alE) =m ax 2, U (S) P (S]E, a)

Suppose we knew Ej: € then we would choose a s-t.

EU (a|E, E=e;) =max2,U(S)P(S|E, a E =
ejk) Ejis a random variable whose value is currently

unknown

= must compute expected gain over all possible values:

VPI,(E)= 2, P(E=e,|EEU (a,l|E E = e, - EU(alE)

(VPI = value of perfect information)
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Properties of VPI

Nonnegative—in expectation, not post hoc
vV, E VPIE(EJ.) > 0
Nonadditive—consider, e.g., obtaining E.twice
V PI, (E E) =VPI (E]) + V PI(E))
Order-independent
V PI (E E)=VPI (EJ) + V PIL 55 (E)=VPI . (E)+ VPEEk(EJ)

Note: when more than one piece of evidence can be
gathered, maximizing VPI for each to select one is not
always optimal
= evidence-gathering becomes a sequential decision problem
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(Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a

lot
c) Choice is nonobvious, information worth
little
P(U|Ej) P(U|EA) P(U|Ej)

A A

U, Y, Uu,u, U,

(2) (b) (©)
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Imagine that you are at an ice-cream shop in Thailand and they have only two
flavors left: vanilla and durian. Both cost $2. You know you have a moderate
liking for vanilla and you’d be willing to pay up to $3 for a vanilla ice cream on
such a hot day, so there is a net gain of $1 for choosing vanilla. On the other
hand, you have no idea whether you like durian or not, but you've read on
Wikipedia that the durian elicits different responses from different people:
some find that “it surpasses in flavour all other fruits of the world” while others
liken it to “sewage, stale vomit, skunk spray and used surgical swabs.”
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let’s say there’s a 50% chance you’ll find it sublime (+$100) and a 50%
chance you’ll hate it (-$80 if the taste lingers all afternoon).

We can simply replace the uncertain value of the durian with its
expected net gain below however the decision will still not changed.

(0.5 x $100) — (0.5 x $80) — $2 =$8

Rather than saying there is uncertainty about the utility function, we move
that uncertainty “into the world,” so to speak. That is, we create a new
random variable LikesDurian with prior probabilities of 0.5 for true and false
in (c)
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Durian/Vanilla Durian/Vanilla Durian/Vanilla

o

D/V | LikesDurian| U

durian frue +$98

D/V || -$82]---| +$0 | +S1 |---| +$98]--- D/V U durian false -$82

durian |---| 0.5 |-=:] 0.0 | 0.0 |--] 0.5 |- durian | —+S8 vanilla frue +$1

vanilla]---] 0.0 |---] 0.0 | 1.0 |:--] 0.0 |- vanilla | =S1 vanilla false +$1
(a) (b) (c)

(a) A decision network for the ice cream choice with an uncertain utility
function.

(b) The network with the expected utility of each action.

(c) Moving the uncertainty from the utility function into a new random variable
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* Probability theory describes what an agent should believe on the basis of
evidence, utility theory describes what an agent wants, and decision
theory puts the two together to describe what an agent should do.

« Utility theory shows that an agent whose preferences between lotteries
are consistent with a set of simple axioms can be described as possessing a
utility function

« Multiattribute utility theory deals with utilities that depend on several
distinct attributes of states.

» Stochastic dominance is a particularly useful technique for making
unambiguous decisions, even without precise utility values for attributes.

* Decision networks provide a simple formalism for expressing and solving
decision problems.

» The value of information is defined as the expected improvement in utility
compared with making a decision without the information
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