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Sequential Decision Problems

* Markov decision process (MDP): a sequential decision problem for a

fully

observable, stochastic environment

* MDP consists of:
* aset of states (with an initial state s);
« aset ACTIONS(s) of actions in each state;
* a transition model P(s | s, a); and
 areward function R(s, a, s ). Methods for

« MDP solutions usually involve dynamic programming simplifying a

prob

lem by recursively breaking it into smaller pieces and remembering

the optimal solutions to the pieces.

» A solution called policy.

specify what the agent should do for any state that the agent might
reach

the quality of a policy is measured by the expected utility of possible
environment histories generated

optimal policy: highest expected utility
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Sequential Decision Problems
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(a) (b)

a) A simple, stochastic 43 environment that presents the agent with a
sequential
decision problem.

(b) lllustration of the transition model of the environment: the “intended”
outcome occurs with probability 0.8, but with probability 0.2 the agent
moves at right angles to the intended direction. A collision with a wall
results in no movement. Transitions into the two terminal states have
reward +1 and —1, respectively, and all other transitions have a reward of
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Sequential Decision Problems

 Ulilities over time
« Not only possibility for the utility function on environment histories
» Utilities: U ([s, ay s, a, - - -, 5 ]).

01 "

> | | > | |
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2 4 ‘ = r< —1.6497 —0.7311 < r < —0.4526
bl el +{+ [~ [

1| A | - J - ‘ 1= - —=

Lo b =]=ft] [HHH

—-0.0274 <r<0 r>0
(a) (b)

(a) The optimal policies for the stochastic environment with » = 0.04
for transitions between nonterminal states. There are two policies
because in state (3,1) both Left and Up are optimal. (b) Optimal
policies for four different ranges of r.
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Sequential Decision Problems

* Finite horizon: fixed time N after which nothing matters
* Uh([so, a0, S1, a1, .. ., sSN-K]) = Uh([so, ao, S1, a1, ..., sN])
« optimal action in a given state may depend on how much time is left
* Nonstationary: A policy that depends on the time

* infinite horizon: no fixed time limit
 there is no reason to behave differently in the same state at different
times.

« Optimal action depends only on the current state, and the optimal policy is
stationary.
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Sequential Decision Problems

 Additive discounted rewards:
_ 2
U(ls, ay sy, ap, 5, .. .1) = R(sy, ay, s.) + YR(s,, a,, 5,) + VR(s), a

where the discount factor y is a number between 0 and 1.

2,S3)+"',

y close to 0, not willing wait
y close to 1, willing wait long term reward

» Additive discounted rewards makes sense: empirical, economical,
uncertainty about true rewards, preferences over histories.

« Reduces complexity of infinite sequence due to utility is finite.

 if y < | and rewards are bounded by =R __, we have

3 E R
UI’([SO.UOHS']”"D = Z A."rR(SI-”r--Yr+I) < Z Y Rmax = [ Tlf :
£=1) t=0

* Proper policy: guaranteed to reach a terminal state

* Infinite sequences can be compared in terms of the average reward obtained
per time

) PP .
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Sequential Decision Problems

« Utility of a state is the expected reward for the next transition plus the
discounted utility of the next state, assuming that the agent chooses the
optimal actio~

U(s) = max ZP(.&" |s,a)[R(s,a,s') +~U(s")].

« This is called the Bellman equation, after Richard Bellman (1957).
e Action-utility function, or Q-function: O(s, a)
 the expected utility of taking a given action in a given state.

e related to v** ¢~ et ~lineem gy
U(s) =max Q(s.a).
a

« The optimal pc ™ . ' ~ 77" om the Q-function
Py P " (s) = argmax Q(s,a) Q-funct

(i

* The Q-

function Q-VALUE(mdp. s.a. U) returns a utility value
return Y P(s'|s,a)[R(s,a,s") + v U[s]]
st
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Sequential Decision Problems

3 0.8516 | 0.9078 | 0.9578

2 0.8016 0.7003 -1

1 0.7453 | 0.6953 | 0.6514 | 0.4279

1 2 3 4

The utilities of the states in the 4 3 world with y = 1 and r = 0.04
for transitions to nonterminal states.

The expression for U (1, 1) is

max{ [0.8(—0.04 + yU (1, 2)) + 0.1(=0.04 + yU (2, 1)) +0.1(-0.04 + yU (1, 1))],
[0.9(-0.04 + yU (1, 1)) + 0.1(=0.04 + yU (1, 2))],
[0.9(-0.04 + yU (1, 1)) + 0.1(=0.04 + yU (2, 1))],
[0.8(=0.04 + yU (2, 1)) + 0.1(-0.04 + yU (1, 2)) + 0.1(-0.04 + yU (1, 1)1}
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Reward scales

* Transformation of rewards will leave the optimal policy unchanged in an MDP:

R(s,a,s) =mR(s, a,s) + b.

a

O(s.a)y= ZP(.&" |s,a)[R(s,a,s") +~ max Q(s".d")].

Q' (s.a)

ZP(.\" |s,a)[R(s.a,s") +7yP(s") — D(s) +1 max Q'(s'.d")]

— ZP(S’ |s,a)[R (s,a,s") +~ maxQ'(s'.d")].
K, a
« Extract the optimal policy for M/

myp () = argmax Q' (s,a) = argmax Q(s,a) — D(s) = argmax Q(s,a) = 7y (s).

a a a

 The function ®(s) is often called a potential,
 if ®(s) has higher value in states that have higher utility, the addition of
v®(s) — ®(s) to the reward has the effect of leading the agent “uphill” in utility.
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Representing MDPs

* Dynamic decision networks, or DDNs are factored representations

Plug/ Unplug, Plug/Unplugy,,
LeftWheel, LeftWheel,
RightWheel, RightWheel,

Charging, \ . Chargingy. \

%

-
&

Battery »( Battery
It Y+l

Xt / Xt+l /

A dynamic decision network for a mobile robot with state variables for battery level,
charging status, location, and velocity, and action variables for the left and right wheel
motors and for charging.
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Representing MDPs

The state S, decomposed into four state variables

* X, consists of the two-dimensional location on a grid plus the orientation;

* X, is the rate of change of X,;

* Charging,is true when the robot is plugged in to a power source;

* Battery,is the battery level, which we model as an integerin the rangeO, ..., 5.
The state space for the MDP is the Cartesian product of the ranges of these four
variables.

The action 1s now a set A, Unplug, which has three values (p/ug, unplug, and no p);
LeftWheel for the power sent to the left wheel; and RightWheel for the power sent to
the right wheel.

The overall transition model is the conditional distribution P(X,_;|X,, A,), computed
as a product of conditional probabilities from the DDN
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Representing MDPs
Next

F

mEn

(a) (b)

The game of Tetris. The T-shaped piece at the top center can be dropped in any orientation
and in any horizontal position. If a row is completed, that row disappears and the rows above
it move down, and the agent receives one point. The next piece (here, the L-shaped piece at
top right) becomes the current piece, and a new next piece appears, chosen at random from
the seven piece types. The game ends if the board fills up to the top.

The DDN for the Tetris MDP.
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Value lteration

The Bellman equation is the basis of the value iteration

If there are n possible states, then there are n Bellman equations,

The n equations contain » unknowns—the utilities of the states.

The equations are nonlinear, because the “max” operator is not a
linear operator.

start with arbitrary initial values for the utilities, calculate the right-hand
side of the equation, and plug it into the left-hand side—thereby
updating the utility of each state from the utilities of its neighbors.
Repeat this until reach an equilibrium.

The iteration step, called a Bellman update, looks like this

Ui+1(s) + max ZP s'|s.a )[R(s,a,s "4~y Ui(s )]
acA(s)

update is assumed to be applied simultaneously to all the states at
each iteration

@ Pearson © 2021 Pearson Education Ltd.

14



function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp. an MDP with states S, actions A(s). transition model P(s'|s,a).

rewards R(s,a,s"). discount ~
e, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in S, initially zero
0, the maximum relative change in the utility of any state

repeat
U+—U"5<0
for each state s in S do
U'[s] «—maxX,c4(5) Q-VALUE(mdp, s,a,U)
if |U'[s] — U[s]| > o then d+ |U'[s] — Uls]|
until 6 < €(1 —~)/v
return U

The value iteration algorithm for calculating utilities of states.

© 2021 Pearson Education Ltd.
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(a) (b)

(a) Graph showing the evolution of the utilities of selected states using value
iteration.

(b) The number of value iterations required to guarantee an error of at most £ =
c R for different values of ¢, as a function of the discount factor y.
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Policy Iteration

* Alternates the following two steps beginning from some initial policy 7z:
* Policy evaluation: given a policy 1, calculate U, =U "i > the utility of
each state if it were to be executed.
* Policy improvement: Calculate a new MEU policy 1, , using one-step
look-ahead based on U,
The algorithm terminates when the policy improvement step yields no change
in the utilities.’
Action in each state is fixed by the policy. At the ith iteration, the policy .
specifies the action 1z(s) in state s.
Simplified version of the Bellman equation relating the utility of s (under 1)
to the utilities of its neighbors:

= L PR 7i(5):5) + 2 U)

For large state spaces, time is prohibitive. Simplified Bellman update
modified policy iteration

Ui+q(s <—ZPs]s“, )[R(s, mi(s),s") +yUi(s')]

@ Pearson © 2021 Pearson Education Ltd.

17



function POLICY-ITERATION(mdp) returns a policy
inputs: mdp. an MDP with states S, actions A(s), transition model P(s'|s,a)
local variables: U, a vector of utilities for states in S, initially zero
m. a policy vector indexed by state, initially random

repeat
U <+ POLICY-EVALUATION(7, U, mdp)
unchanged’! +true
for each state s in S do
a* + argmax Q-VALUE(mdp,s,a,U)
acA(s)
if Q-VALUE(mdp,s,a*,U) > Q-VALUE(mdp,s,n[s],U) then
m[s]<—a*; unchanged? +false
until unchanged?!
return m

The policy iteration algorithm for calculating an optimal policy.
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Linear programming (LP)
* General approach for formulating constrained optimization problems
« Minimize U(s) for all s subject to the inequalities for every state s and

every action a.

>ZPs|su (s,a.s") +~U(s")]

» |In practice, it turns out that LP solvers are seldom as efficient as
dynamic programming for solving MDPs.

* linear programming is solvable in polynomial time polynomial however the
number of states is often very large.

@ Pearson © 2021 Pearson Education Ltd. 19



Online Algorithms

EXPECTIMAX algorithm builds a tree of alternating max and chance
nodes

An evaluation function can be applied to the nonterminal leaves of the
tree, or they can be given a default value.

A decision can be extracted from the search tree by backing up the
utility values from the leaves, taking an average at the chance nodes
and taking the maximum at the decision nodes.

The explored states actually constitute a sub-MDP of the original
MDP, and this sub-MDP can be solved using any of the algorithms in
this chapter.

This approach is called real-time dynamic programming (RTDP)

@ Pearson © 2021 Pearson Education Ltd.
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Part of an expectimax tree for the 43 MDP rooted at (3,2).
The triangular nodes are max modes and the circular nodes
are chance nodes.

@ Pearson © 2021 Pearson Education Ltd.
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Bandit Problems

* In Las Vegas, a one-armed bandit is a slot machine.
* An n-armed bandit has n levers.

« Behind each lever is a fixed but unknown probability distribution of
winnings.

* The gambler must choose which lever to play on each successive coin

» Tradeoff between exploitation of the current best action to obtain
rewards and exploration of previously unknown states and actions to
gain information

 Formal model for real problems important areas, such as
 deciding which of n possible new treatments to try to cure a
disease,
» which of n possible investments to put part of your savings into,
» which of n possible research projects to fund

@ Pearson © 2021 Pearson Education Ltd.
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Bandit Problems

Bandit problems definitions

“Each arm M, i1s a Markov reward process or MRP, that is, an MDP
with only one possible action a.. It has states S, transition model P (s’ s,
a), and reward R (s, a, s'). The arm defines a distribution over
sequences of rewards Ri,O’ Rl.,l, Ri,2’ . . ., where each Rl., t 1S a random
variable.”

“The overall bandit problem is an MDP: the state space i1s given by the
Cartesian product § = §| S the actions are a,, . . ., a; the transition
model updates the state of whichever arm M. is selected, according to its
specific transition model, leaving the other arms unchanged; and the
discount factor is y.”

* The key property is that the arms are independent, only one arm can
work at a time.

@ Pearson

© 2021 Pearson Education Ltd.
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Bandit Problems

= _J,1 0,2, 0,72, 0, 0,0,... Bl

M M

l.i ‘JI] Lok By Byl 1y Ly o Ili

M, M,

N

(a)

(b)

(a) A simple deterministic bandit problem with two arms. The arms
can be pulled in any order, and each yields the sequence of rewards

shown.

(b) A more general case of the bandit in (a), where the first arm gives
an arbitrary sequence of rewards and the second arm gives a fixed

reward A.

@ Pearson © 2021 Pearson Education Ltd.
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Bandit Problems

Computing the utility (total discounted reward) for each arm:

UM) = (1.0x0)+(0.5x2)+(0.5°x0)+ (0.5’ x7.2) = 1.9
UMy = Y 05=20.
=0

Starting with M and then switching to M after the fourth reward gives
the sequence S=0, 2,0, 7.2, 1, 1, 1, . . ., for which

ro

U(S) = (1.0x0)+ (0.5 x2) + (0.5* x 0) + (0.5° x 7.2) + }_ 0.5 = 2.025.
=4

The strategy S that switches from M to M1 at the right time is better
than either arm individually

@ Pearson © 2021 Pearson Education Ltd. 25



Bandit Problems

Optimal strategy is to run arm M up to time 7 and then switch to M, for

the rest of time.

Gittins Index:

A = max

E(X, _o7"R)

T>0 E (L, 507)

value describes the maximum obtainable utility per unit of
discounted time.

T HE 3 4 5 6
R, 0 |2 0 72 0 0

Y AR ([0.0] 1.0 1.0 1.9 1.9 1.9
Y |1.0/1.5 1.75 | 1.875 [1.9375|1.9687
ratio [[0.0]0.6667[0.5714]1.0133]0.9806|0.9651

© 2021 Pearson Education Ltd.

26



Bandit Problems

The Bernoulli bandit

simplest and best-known instance of a bandit problem

where each arm M, produces a reward of 0 or 1 with a fixed but
unknown probability (.

The state of arm M. is defined by s, and f,, the counts of successes (1s)
and failures (0s) so far for that arm;

the transition probability predicts the next outcome to be 1 with
probability (s.)/(s, + f,) and 0 with probability ( f)/(s, + f,).

The counts are initialized to 1 so that the initial probabilities are 1/2
rather than O .

@ Pearson © 2021 Pearson Education Ltd.
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Bandit Problems

The Bernoulli bandit

(1.1) -
R=1 R=0 Gattins mdex
p=1/2 p=1/2 g -
0.8 -
(2.1) (1.2) 0.6 -
0.4 -
/\ A 0z
; p=2/3 1% .
(3 1) (2.2 (1.3) \
/\ /\ /\ 10
f
P‘ 4 p=3/4
(4.1) (3.2) (2.3) (1.4)
(@) (b)

(a) States, rewards, and transition probabilities for the Bernoulli
bandit.

(b) Gittins indices for the states of the Bernoulli bandit process.
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Partially Observable MDPs

» Partially observable MDPs (POMDPs)

* MDPs [the transition model P(s’ s, a), actions A(s), and reward function R(s,
a, s')]

« POMDPs are MDPs with sensor model P(e|s).

« Obtain compact representations for large POMDPs by using dynamic
decision networks

* We add sensor variables E , assuming that the state variables X may not be

directly observable.
* Thus the sensor model is P(E |X).

» Steps of decision cycle of a POMDP agent
 Given the current belief state b, execute the action a = 77(b).
* Observe the percept e.
* Set the current belief state to FORWARD(b, a, e) and repeat.

) VoI .
@ Pearson © 2021 Pearson Education Ltd.
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Partially Observable MDPs

P(el|a,b) ZP la,s’,b)P(s"|a,b)
ZP 2| s")P(s|a,b)
ZP 2| s") ZP s'|s,a)b(s

P(b'|b,a) ZP (b'|e,a,b)P(e|a,b)

ZP/)|( u/)ZP (s Z (s'|s,a)b(s).
p(b,a) Zh ZPs|sa s,a,s)

P(b' |b, a) and p(b, a) define an observable MDP on the space of belief
states.
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Algorithms for Solving POMDPs

Value iteration for POMDPs

function POMDP-VALUE-ITERATION(pomdp. €) returns a utility function
inputs: pomdp. a POMDP with states S, actions A(s), transition model P(s’|s,a).
sensor model P(e|s). rewards R(s,a,s"), discount
€. the maximum error allowed in the utility of any state
local variables: U, U’, sets of plans p with associated utility vectors

U’ < a set containing all one-step plans [a], with ajy(s)= Ly P(s'|s,a) R(s,a,s’)
repeat
U+U'
U’ +the set of all plans consisting of an action and, for each possible next percept.
a plan in U with utility vectors computed according to Equation (16.18)
U' + REMOVE-DOMINATED-PLANS(U)
until MAX-DIFFERENCE(U,U") < €(1—7)/~y
return U

A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically
implemented as linear programs.
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Algorithms for Solving POMDPs

2 1

2
1.5 1
e 2
R E [Go] [Stay] =
=} =}
0.5
0 - — - ' 0 - - - -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Probability of state B Probability of state B
(a) (b)
/) 6 1
IS 55
Z‘ 2
5 / =
05 1 45
0 r " - r 4 : " : -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Probability of state B Probability of state B

(c) (d)

(a) Utility of two one-step plans as a function of the initial belief state b(B) for the two-state world, with
the corresponding utility function shown in bold. (b) Utilities for 8 distinct two-step plans. (c) Utilities for
four undominated two-step plans. (d) Utility function for optimal eight-step plans.

@ Pearson © 2021 Pearson Education Ltd.

32



Algorithms for Solving POMDPs

Online algorithms for POMDPs

Starts with some prior belief state;

It chooses an action based on some deliberation process centered on
its current belief state;

After acting, it receives an observation and updates its belief state using
a filtering

Algorithm; and the process repeats.

Excpectimax algorithm (belief states rather than physical states as
decision nodes)

The chance nodes in the POMDP tree have branches labeled by
possible observations and leading to the next belief state, with transition
probabilities

The combination of particle filtering and UCT applied to POMDPs goes
under the name of partially observable Monte Carlo planning or
POMCP.
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Algorithms for Solving POMDPs

Up Right Down Left
71N M\ 7 'lu R /N
70N NN M\ \ / /1N [\ \\
1100 0110 1100 1010 0110

Part of an expectimax tree for the 43 POMDP with a uniform
initial belief state.

The belief states are depicted with shading proportional to the
probability of being in each location.
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Sequential decision problems in stochastic environments, also called
Markov decision processes, or MDPs, are defined by a transition model

The solution of an MDP is a policy that associates a decision
with every state that the agent might reach.

The value iteration algorithm iteratively solves a set of equations
relating the utility of each state to those of its neighbors

Policy iteration alternates between calculating the utilities of states under
the current

Partially observable MDPs, or POMDPs, are much more difficult to solve

than are
MDPs.
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