
1

Artificial Intelligence: A Modern 
Approach
Fourth Edition

Chapter 17

Making Complex Decisions

Copyright © 2021 Pearson Education, Inc. All Rights Reserved



2

Outline

♦ Sequential Decision Problems

♦ Basic Probability Notation

♦ Bandit Problems

♦ Partially Observable MDPs

♦ Algorithms for Solving POMDPs

© 2021 Pearson Education Ltd.



Sequential Decision Problems

3

• Markov decision process (MDP): a sequential decision problem for a 
fully observable, stochastic environment

• MDP consists of:
• a set of states (with an initial state s0); 
• a set ACTIONS(s) of actions in each state; 
• a transition model P(s | s, a); and
• a reward function R(s, a, s ). Methods for

• MDP solutions usually involve dynamic programming simplifying a 
problem by recursively breaking it into smaller pieces and remembering 
the optimal solutions to the pieces.

• A solution called policy. 
• specify what the agent should do for any state that the agent might 

reach
• the quality of a policy is measured by the expected utility of possible 

environment histories generated
• optimal policy: highest expected utility

© 2021 Pearson Education Ltd.



Sequential Decision Problems

4

a) A simple, stochastic 43 environment that presents the agent with a 
sequential
decision problem. 

(b) Illustration of the transition model of the environment: the “intended” 
outcome occurs with probability 0.8, but with probability 0.2 the agent 
moves at right angles to the intended direction. A collision with a wall 
results in no movement. Transitions into the two terminal states have 
reward +1 and –1, respectively, and all other transitions have a reward of 
–0.04.

© 2021 Pearson Education Ltd.



Sequential Decision Problems

5

• Utilities over time
• Not only possibility for the utility function on environment histories
• Utilities: Uh([s0, a0, s1, a1 . . . , sn]).

(a) The optimal policies for the stochastic environment with r = 0.04 
for transitions between nonterminal states. There are two policies 
because in state (3,1) both Left and Up are optimal. (b) Optimal 
policies for four different ranges of r.

© 2021 Pearson Education Ltd.



Sequential Decision Problems

6

• Finite horizon: fixed time N after which nothing matters
• Uh([s₀, a₀, s₁, a₁, . . . , sN₊k]) = Uh([s₀, a₀, s₁, a₁, . . . , sN])
• optimal action in a given state may depend on how much time is left
• Nonstationary: A policy that depends on the time

• infinite horizon: no fixed time limit
• there is no reason to behave differently in the same state at different 

times.

• Optimal action depends only on the current state, and the optimal policy is 
stationary.

© 2021 Pearson Education Ltd.



Sequential Decision Problems

7

• Additive discounted rewards:
Uh([s0, a0, s1, a1, s2, . . .]) = R(s0, a0, s1) + γR(s1, a1, s2) + γ2R(s2, a2, s3) + · · · ,
where the discount factor γ is a number between 0 and 1.

γ close to 0, not willing wait
γ close to 1, willing wait long term reward

• Additive discounted rewards makes sense: empirical, economical, 
uncertainty about true rewards, preferences over histories.

• Reduces complexity of infinite sequence due to utility is finite. 
• if γ < 1 and rewards are bounded by ±Rmax, we have

• Proper policy: guaranteed to reach a terminal state

• Infinite sequences can be compared in terms of the average reward obtained 
per time

© 2021 Pearson Education Ltd.



Sequential Decision Problems

8

• Utility of a state is the expected reward for the next transition plus the 
discounted utility of the next state, assuming that the agent chooses the 
optimal action

• This is called the Bellman equation, after Richard Bellman (1957).
• Action-utility function, or Q-function: Q(s, a)

• the expected utility of taking a given action in a given state. 
• related to utilities in the obvious way:

• The optimal policy can be extracted from the Q-function

• The Q-function is in algorithms for solving MDPs

© 2021 Pearson Education Ltd.



Sequential Decision Problems

9

The utilities of the states in the 4 3 world with γ = 1 and r = 0.04 
for transitions to nonterminal states.

The expression for U (1, 1) is
max{ [0.8(−0.04 + γU (1, 2)) + 0.1(−0.04 + γU (2, 1)) +0.1(−0.04 + γU (1, 1))],
        [0.9(−0.04 + γU (1, 1)) + 0.1(−0.04 + γU (1, 2))],
        [0.9(−0.04 + γU (1, 1)) + 0.1(−0.04 + γU (2, 1))],
        [0.8(−0.04 + γU (2, 1)) + 0.1(−0.04 + γU (1, 2)) + 0.1(−0.04 + γU (1, 1))]}

© 2021 Pearson Education Ltd.



Reward scales

10

• Transformation of rewards will leave the optimal policy unchanged in an MDP:

R (s, a, s ) = mR(s, a, s ) + b.

• Extract the optimal policy for M!

• The function Φ(s) is often called a potential,
• if Φ(s) has higher value in states that have higher utility, the addition of 

γΦ(st) − Φ(s) to the reward has the effect of leading the agent “uphill” in utility.

© 2021 Pearson Education Ltd.



Representing MDPs

11

• Dynamic decision networks, or DDNs are factored representations

.

A dynamic decision network for a mobile robot with state variables for battery level, 
charging status, location, and velocity, and action variables for the left and right wheel 
motors and for charging.

© 2021 Pearson Education Ltd.



Representing MDPs

12

 

© 2021 Pearson Education Ltd.



Representing MDPs

13

a) The game of Tetris. The T-shaped piece at the top center can be dropped in any orientation 
and in any horizontal position. If a row is completed, that row disappears and the rows above 
it move down, and the agent receives one point. The next piece (here, the L-shaped piece at 
top right) becomes the current piece, and a new next piece appears, chosen at random from 
the seven piece types. The game ends if the board fills up to the top. 

b) The DDN for the Tetris MDP.

© 2021 Pearson Education Ltd.



Algorithms for MDPs (Value Iteration)

14

Value Iteration
• The Bellman equation is the basis of the value iteration
• If there are n possible states, then there are n Bellman equations,
• The n equations contain n unknowns—the utilities of the states. 
• The equations are nonlinear, because the “max” operator is not a 

linear operator.
• start with arbitrary initial values for the utilities, calculate the right-hand 

side of the equation, and plug it into the left-hand side—thereby 
updating the utility of each state from the utilities of its neighbors. 

• Repeat this until reach an equilibrium.
• The iteration step, called a Bellman update, looks like this

• update is assumed to be applied simultaneously to all the states at 
each iteration

© 2021 Pearson Education Ltd.



15

The value iteration algorithm for calculating utilities of states.

Algorithms for MDPs (Value Iteration)

© 2021 Pearson Education Ltd.



Algorithms for MDPs (Value Iteration)

16

Value Iteration applied to 4 x 3 world

(a) Graph showing the evolution of the utilities of selected states using value 
iteration.

(b)  The number of value iterations required to guarantee an error of at most E = 
c Rmax

 for different values of c, as a function of the discount factor γ.

© 2021 Pearson Education Ltd.



Algorithms for MDPs (Policy Iteration)

17

Policy Iteration
• Alternates the following two steps beginning from some initial policy π0:

• Policy evaluation: given a policy πi, calculate Ui =U πi , the utility of 
each state if πi were to be executed.

• Policy improvement: Calculate a new MEU policy πi+1, using one-step 
look-ahead based on Ui

• The algorithm terminates when the policy improvement step yields no change 
in the utilities.’

• Action in each state is fixed by the policy. At the ith iteration, the policy πi 
specifies the action πi(s) in state s. 

• Simplified version of the Bellman equation relating the utility of s (under πi) 
to the utilities of its neighbors:

• For large state spaces, time is prohibitive. Simplified Bellman update 
modified policy iteration

© 2021 Pearson Education Ltd.



Algorithms for MDPs (Policy Iteration)

18

The policy iteration algorithm for calculating an optimal policy.

© 2021 Pearson Education Ltd.



Algorithms for MDPs (Linear programming)

19

Linear programming (LP)
• General approach for formulating constrained optimization problems
• Minimize U(s) for all s subject to the inequalities for every state s and 

every action a.

• In practice, it turns out that LP solvers are seldom as efficient as 
dynamic programming for solving MDPs.

• linear programming is solvable in polynomial time polynomial however the 
number of states is often very large.

© 2021 Pearson Education Ltd.



Algorithms for MDPs (Online algorithms)

20

Online Algorithms
• EXPECTIMAX algorithm builds a tree of alternating max and chance 

nodes
• An evaluation function can be applied to the nonterminal leaves of the 

tree, or they can be given a default value. 
• A decision can be extracted from the search tree by backing up the 

utility values from the leaves, taking an average at the chance nodes 
and taking the maximum at the decision nodes.

• The explored states actually constitute a sub-MDP of the original 
MDP, and this sub-MDP can be solved using any of the algorithms in 
this chapter.

• This approach is called real-time dynamic programming (RTDP)

© 2021 Pearson Education Ltd.



Algorithms for MDPs (Online algorithms)

21

Part of an expectimax tree for the 43 MDP rooted at (3,2). 
The triangular nodes are max modes and the circular nodes 
are chance nodes.

© 2021 Pearson Education Ltd.



Bandit Problems

22

• In Las Vegas, a one-armed bandit is a slot machine. 

• An n-armed bandit has n levers. 

• Behind each lever is a fixed but unknown probability distribution of 
winnings.

• The gambler must choose which lever to play on each successive coin

• Tradeoff between exploitation of the current best action to obtain 
rewards and exploration of previously unknown states and actions to 
gain information

• Formal model for real problems important areas, such as 
• deciding which of n possible new treatments to try to cure a 

disease,
• which of n possible investments to put part of your savings into,
• which of n possible research projects to fund

© 2021 Pearson Education Ltd.



Bandit Problems

23

Bandit problems definitions

• “Each arm Mi is a Markov reward process or MRP, that is, an MDP 
with only one possible action ai. It has states Si, transition model Pi(s

t s, 
ai), and reward Ri(s, ai, s

t). The arm defines a distribution over 
sequences of rewards Ri,0, Ri,1, Ri,2, . . ., where each Ri,t is a random 
variable.”

• “The overall bandit problem is an MDP: the state space is given by the 
Cartesian product S = S1 Sn; the actions are a1, . . . , an; the transition 
model updates the state of whichever arm Mi is selected, according to its 
specific transition model, leaving the other arms unchanged; and the 
discount factor is γ.”

• The key property is that the arms are independent, only one arm can 
work at a time.

© 2021 Pearson Education Ltd.



Bandit Problems

24

(a) A simple deterministic bandit problem with two arms. The arms 
can be pulled in any order, and each yields the sequence of rewards 
shown. 

(b) A more general case of the bandit in (a), where the first arm gives 
an arbitrary sequence of rewards and the second arm gives a fixed 
reward λ.

© 2021 Pearson Education Ltd.



Bandit Problems

25

Computing the utility (total discounted reward) for each arm:

Starting with M and then switching to M after the fourth reward gives 
the sequence S = 0, 2, 0, 7.2, 1, 1, 1, . . ., for which

The strategy S that switches from M to M1 at the right time is better 
than either arm individually

© 2021 Pearson Education Ltd.



Bandit Problems

26

Optimal strategy is to run arm M up to time T and then switch to Mλ for 
the rest of time.

Gittins Index:

value describes the maximum obtainable utility per unit of 
discounted time.

© 2021 Pearson Education Ltd.



Bandit Problems

27

The Bernoulli bandit
• simplest and best-known instance of a bandit problem
• where each arm Mi produces a reward of 0 or 1 with a fixed but 

unknown probability µi.
• The state of arm Mi is defined by si and fi, the counts of successes (1s) 

and failures (0s) so far for that arm; 
• the transition probability predicts the next outcome to be 1 with 

probability (si)/(si + fi) and 0 with probability ( fi)/(si + fi). 
• The counts are initialized to 1 so that the initial probabilities are 1/2 

rather than 0 .

© 2021 Pearson Education Ltd.



Bandit Problems

28

The Bernoulli bandit

(a) States, rewards, and transition probabilities for the Bernoulli 
bandit. 

(b) Gittins indices for the states of the Bernoulli bandit process.

© 2021 Pearson Education Ltd.



Partially Observable MDPs

29

• Partially observable MDPs (POMDPs)
• MDPs [the transition model P(st s, a), actions A(s), and reward function R(s, 

a, st)]
• POMDPs are MDPs with sensor model P(e|s).
• Obtain compact representations for large POMDPs by using dynamic 

decision networks
• We add sensor variables Et, assuming that the state variables Xt may not be 

directly observable. 
• Thus the sensor model is P(Et|Xt).

• Steps of decision cycle of a POMDP agent
• Given the current belief state b, execute the action a = π∗(b).
• Observe the percept e.
• Set the current belief state to FORWARD(b, a, e) and repeat.

© 2021 Pearson Education Ltd.



Partially Observable MDPs

30

P(bt |b, a) and ρ(b, a) define an observable MDP on the space of belief 
states.

© 2021 Pearson Education Ltd.



Algorithms for Solving POMDPs

31

A high-level sketch of the value iteration algorithm for POMDPs. The 
REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically 
implemented as linear programs.

Value iteration for POMDPs

© 2021 Pearson Education Ltd.



Algorithms for Solving POMDPs

32

(a) Utility of two one-step plans as a function of the initial belief state b(B) for the two-state world, with 
the corresponding utility function shown in bold. (b) Utilities for 8 distinct two-step plans. (c) Utilities for 
four undominated two-step plans. (d) Utility function for optimal eight-step plans.

© 2021 Pearson Education Ltd.



Algorithms for Solving POMDPs

33

Online algorithms for POMDPs
• Starts with some prior belief state; 
• It chooses an action based on some deliberation process centered on 

its current belief state; 
• After acting, it receives an observation and updates its belief state using 

a filtering
• Algorithm; and the process repeats.

• Excpectimax algorithm (belief states rather than physical states as 
decision nodes)

• The chance nodes in the POMDP tree have branches labeled by 
possible observations and leading to the next belief state, with transition 
probabilities

• The combination of particle filtering and UCT applied to POMDPs goes 
under the name of partially observable Monte Carlo planning or 
POMCP.

© 2021 Pearson Education Ltd.



Algorithms for Solving POMDPs

34

Part of an expectimax tree for the 43 POMDP with a uniform 
initial belief state. 
The belief states are depicted with shading proportional to the 
probability of being in each location.

© 2021 Pearson Education Ltd.



Summary

35

Sequential decision problems in stochastic environments, also called 
Markov decision processes, or MDPs, are defined by a transition model 

The solution of an MDP is a policy that associates a decision
with every state that the agent might reach.

The value iteration algorithm iteratively solves a set of equations
relating the utility of each state to those of its neighbors

Policy iteration alternates between calculating the utilities of states under 
the current

Partially observable MDPs, or POMDPs, are much more difficult to solve 
than are
MDPs.

© 2021 Pearson Education Ltd.


