
YALE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

CPSC 427a: Object-Oriented Programming Handout #2
Professor M. J. Fischer September 10, 2010

Problem Set 1

Due before midnight on Friday, September 17, 2010.

1 Assignment Goals

1. To familiarize yourself with the tools needed for this course: the Zoo computer facility,
your Zoo course account, a good text editor or IDE, the C++ compiler and linker (g++),
a Linux command shell, and basic Linux commands.

2. To learn how to compile, link, and run a multimodule C++ program.

3. To learn how to use the submit script to submit your assignment.

4. To learn to distinguish programming constructs for describing computation from those
used to control, modularize, and constrain the code.

5. To have the experience of repurposing existing code.

2 Problems

The class demo 02-InsertionSortCpp illustrates how a C++ class and multiple source files
can be used to put structure on a program. In this problem set, you will be asked to read
the code carefully in order to distinguish which parts of the program support modularity,
code reuse, and robustness, and which parts comprise the actual executable code. You will
then be asked to repurpose the code for a different but related application.

2.1 Written Part

Recall from class that the insertion sort demo does the following:

1. It prints a banner.

2. It prompts the user to enter a file name.

3. It opens the specified file name and reads up to LENGTH floats from it or until end-of-file
is reached (or a read error occurs), storing the list of numbers read.

4. It prints the list of numbers.

5. It uses insertion sort to sort the list. (N.B. Insertion sort is an O(n2) algorithm and
is only suitable for use on relatively short lists.)

6. It prints the sorted list.

7. It frees storage and exits.

http://zoo.cs.yale.edu/classes/cs427/2010a/lectures/02-InsertionSortCpp


2 Problem Set 1

This isn’t a particularly interesting application in its own right except to serve as a unit
test for verifying the correctness of the sort function.

Many people, when asked to write a program to do what is described above, would come
up with a monolithic program such as you will find in 02-InsertionSortMonolith, where
everything is contained in main() (which you will find in the file sort.cpp). Indeed, this
program does exactly the same thing as 02-InsertionSortCpp (with one minor difference),
but the code looks very different.

For this problem, I want you to print out files sort.cpp from 02-InsertionSort-
Monolith, and files main.cpp, datapack.hpp, and datapack.cpp from 02-Insertion-
SortCpp. Then for each line in sort.cpp, find whether or not that line appears in one of
the other files, and if so, highlight it there. If it appears but in a slightly altered form,
highlight it in a different color (or otherwise indicate that it corresponds but has been
changed slightly).

Now, the lines that are not highlighted in the demo files are the ones that do not appear
in the monolithic version. These lines are there for the purpose of putting structure on
the code. You will see that they define subunits such as classes, function declarations, and
function definitions. Now go back to sort.cpp and mark the lines that belong to the same
subunit in the demo program. For example, you might use the notation “sd” to mark all
of the lines in sort.cpp that came from the definition of DataPack::sortData(). I don’t
care what notation you use as long as it is clear and unambiguous.

After you have identified the code-structuring parts of the demo program, write a brief
paragraph on each, describing how its use contributes (or not) to the goals of modular,
reusable, robust programming. Also, for any lines that appear in both versions of the code
but with modifications, describe why the monolithic version of the program would not work
if the lines were the same as in the demo program.

2.2 Programming Part

You are to modify the demo program (not the monolithic code—I do want you to succeed
in getting your program to work) to change its behavior in two ways:

1. You should remove the limitation on the size of the file that the program can handle.
To do this, your program should check n before inserting a new number into the
DataPack. If the DataPack is full, it should allocate a new array of size to hold
2*max elements of type BT, copy the contents of store into the new array, delete the
old array, make store point to the new array, and adjust max accordingly. Now the
DataPack is no longer full and data reading can continue. For this assignment, LENGTH
should be set to 4 so that the code for expanding the DataPack can be easily tested.
(In practice, one might well wish to start with a considerably larger initial size.)

I have described the algorithm for expanding the DataPack. I will leave it to you to
decide how this code should be integrated into the DataPack class in as clean and
modular a way as possible. In thinking about where to put the code, you should ask
yourself the following questions:

• Where in the existing code is data inserted into the DataPack?

• Is the code for expanding the DataPack related to the code that is inserting the
data, or are they logically distinct?

http://zoo.cs.yale.edu/classes/cs427/2010a/assignments/ps1/02-InsertionSortMonolith


Handout #2—September 10, 2010 3

• Can you imagine future extensions that would also need to expand the DataPack?
If so, how should you write the expansion code so as to avoid code duplication,
both now and in the future?

2. You should repurpose the code to solve the following. Instead of reading one file into
one instance of a DataPack, your new program will read two files, each into its own
instance of a DataPack. It will then sort both, find those elements that are common
to both files, put them into a third DataPack, and print it out. The program should
print both files, before and after sorting as the original demo does, followed by a
printout of the DataPack containing the common elements. Then it should clean up
after itself, deleting all storage that has been explicitly allocated using new.

Common elements of two sorted lists can be found by a simple merge. Namely,
compare the first element of each list. If they are the same, then a common element
has been identified which should be put into the third DataPack. Discard the common
element (and any duplicates) from both lists and continue. If they are different, discard
the smaller element from its list and continue. Stop when either list is exhausted.

The code for carrying out the merge should go into a member function in either the
DataPack class or a new class. It should not be put into main() or into a global
(C-style) function. You should give some thought to this design decision and explain
it in the notes accompanying your submission.

As part of your testing, you should run your code under valgrind to make sure that
there are no storage leaks.

3 Deliverables

You will probably find it most convenient to submit the written part of your assignment
on paper rather than electronically unless you have annotation software available. Alterna-
tively, you can submit legible PDF scans of your paper solutions. Papers can be submitted
in class, given directly to the TA, or put in my AKW mailbox, #408 (in which case you
should write the date and time of submission on the paper). Remember to write your name
on your papers and to staple or clip them together.

You should subit the programming part of this assignment using the submit script that
you will find in /c/cs427/bin/ on the Zoo. Remember to submit the following items:

1. Source code and header files.

2. A makefile and any other files necessary to build your project (If you’re using Eclipse
with the default settings, the makefiles will be found in the directory Debug.).

3. One or more test files and corresponding output files showing that your program
correctly implements both of the required extensions.

4. A brief report named report.txt (or any other common format such as .pdf) de-
scribing the design choices you made in implementing the required code extensions.
You can also put any other information here that the TA should know about your
program.


