
Outline Problem Sets BarGraph Demo

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 7
September 23, 2010

CPSC 427a 1/14

Outline Problem Sets BarGraph Demo

Remarks on Problem Sets
Problem Set 1
Problem Set 2

BarGraph Demo
graph.hpp

CPSC 427a 2/14

Outline Problem Sets BarGraph Demo

Remarks on Problem Sets

CPSC 427a 3/14

Outline Problem Sets BarGraph Demo

Problem Set 1

Problem Set 1

Seth Hamman

CPSC 427a 4/14

Outline Problem Sets BarGraph Demo

Problem Set 2

Problem Set 2

Random number generation and simulations

CPSC 427a 5/14

Outline Problem Sets BarGraph Demo

Problem Set 2

Pseudorandom number generators

You will need to generate random numbers in this assignment.
A few remarks on random number generation are in order.

I Pseudorandom numbers are not random. They are
predictable. This is both an asset and a curse.

I Since they are predictable, a simulation run can be repeated to
obtain the same results, particularly helpful during debugging.

I Since they are not random, they may have statistical
properties that differ from true random numbers.

I “Good” pseudorandom numbers should pass common
statistical tests for randomness.

CPSC 427a 6/14

Outline Problem Sets BarGraph Demo

Problem Set 2

Random numbers in C++

I rand() is standard random number generator in C and C++.

I rand() implementation on current Linux systems is good but
not on some other systems.

I Newer and better random number generators might be
preferable for real-world applications.

CPSC 427a 7/14

Outline Problem Sets BarGraph Demo

Problem Set 2

rand() and srand()

Basic properties

I int rand(void) generates next number in sequence using
hidden internal state.

I Not thread safe.

I void srand(unsigned int seed) initializes the state.

I Seed defaults to 1 if srand() not called.

I rand() returns an int in the range [0...RAND MAX].

I Must #include <cstdlib>

I RAND MAX is typically the largest positive number that can be
represented by an int, e.g., 231 − 1.

I The result from rand() is rarely useful without further
processing.

CPSC 427a 8/14

Outline Problem Sets BarGraph Demo

Problem Set 2

Generating uniform distribution over a discrete interval

To generate a uniformly distributed number u ∈ {0, 1, . . . , n − 1}:
I Naive way: u = rand()%n.

Problem: Result not uniformly distributed unless n |RAND MAX.

I Better way: See problem set.

int RandomUniform(int n) {
int top = ((((RAND_MAX - n) + 1) / n) * n - 1) + n;
int r;
do {
r = rand();

} while (r > top);
return (r % n);

}

CPSC 427a 9/14

Outline Problem Sets BarGraph Demo

Problem Set 2

Generating random doubles

To generate a double in the semi-open interval [0 . . . 1):
(double) rand() / ((double)(RAND MAX) + 1.0)

I Without + 1.0, result is in the closed interval [0 . . . 1].

I (double) rand() / (RAND MAX + 1)
might fail because of integer overflow.

CPSC 427a 10/14

Outline Problem Sets BarGraph Demo

Problem Set 2

Alternate method for generating uniform distribution over
a discrete interval

To generate a uniformly distributed number u ∈ {0, 1, . . . , n − 1}:
1. #include <cmath>.

2. Generate a uniformly distributed random double u in [0 . . . 1).

3. Compute trunc(n*u).

Question: Is this truly uniform over {0, 1, . . . , n − 1}?

CPSC 427a 11/14

Outline Problem Sets BarGraph Demo

Problem Set 2

Generating exponential distribution

[Not needed for PS2 but useful to know.]

To generate a double according to the exponential distribution
with parameter lambda:

1. #include <cmath>.

2. Generate a uniformly distributed random double u in [0 . . . 1).

3. Compute -log(1.0-u)/lambda.

Note: log(0.0) is undefined. Will return a special value that
prints as -inf.

CPSC 427a 12/14

Outline Problem Sets BarGraph Demo

Bar Graph Demo

We look at the Bar Graph demo from

Chapter 8 of the textbook.

CPSC 427a 13/14

Outline Problem Sets BarGraph Demo

graph.hpp

class Graph {
private:
Row* bar[BARS]; // List of bars (aggregation)
void insert(char* name, int score);

public:
Graph (istream& infile);
~Graph();
ostream& print (ostream& out);
// Static functions are called without a class instance
static void instructions() {
cout << "Put input files in same directory "

"as the executable code.\n";
}

};
inline ostream& operator<<(ostream& out, Graph& G) {

return G.print(out);
}

CPSC 427a 14/14

	Outline
	Remarks on Problem Sets
	Problem Set 1
	Problem Set 2

	BarGraph Demo
	graph.hpp

