
Outline Visibility Polymorphic Derivation Craps

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 10
October 5, 2010

CPSC 427a 1/32



Outline Visibility Polymorphic Derivation Craps

Name Visibility

Polymorphic Derivation

PS2 Craps Game Revisited

CPSC 427a 2/32



Outline Visibility Polymorphic Derivation Craps

Name visibility

CPSC 427a 3/32



Outline Visibility Polymorphic Derivation Craps

Private derivation (default)

class B : A { ... }; specifies private derivation of B from A.

A class member inherited from A become private in B.
Like other private members, it is inaccessible outside of B.

If public in A, it can be accessed from within A or B or via an
instance of A, but not via an instance of B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

CPSC 427a 4/32



Outline Visibility Polymorphic Derivation Craps

Private derivation example
Example:

class A {
private: int x;
public: int y;
};
class B : A {

... f() {... x++; ...} // privacy violation
};
//-------- outside of class definitions --------
A a; B b;
a.x // privacy violation
a.y // ok
b.x // privacy violation
b.y // privacy violation

CPSC 427a 5/32



Outline Visibility Polymorphic Derivation Craps

Public derivation

class B : public A { ... }; specifies public derivation of B
from A.

A class member inherited from A retains its privacy status from A.

If public in A, it can be accessed from within B and also via
instances of A or B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

CPSC 427a 6/32



Outline Visibility Polymorphic Derivation Craps

Public derivation example
Example:

class A {
private: int x;
public: int y;
};
class B : public A {

... f() {... x++; ...} // privacy violation
};
//-------- outside of class definitions --------
A a; B b;
a.x // privacy violation
a.y // ok
b.x // privacy violation
b.y // ok

CPSC 427a 7/32



Outline Visibility Polymorphic Derivation Craps

The protected keyword

protected is a privacy status between public and private.

Protected class members are inaccessible from outside the class
(like private) but accessible within a derived class (like public).

Example:

class A {
protected: int z;
};
class B : A {

... f() {... z++; ...} // ok
};

CPSC 427a 8/32



Outline Visibility Polymorphic Derivation Craps

Protected derivation

class B : protected A { ... }; specifies protected
derivation of B from A.

A public or protected class member inherited from A becomes
protected in B.

If public in A, it can be accessed from within B and also via
instances of A but not via instances of B.

If protected in A, it can be accessed from within A or B but not
from outside.

If private in A, it can only be accessed from within A.
It cannot be accessed from within B.

CPSC 427a 9/32



Outline Visibility Polymorphic Derivation Craps

Privacy summary

Class A



Kind of Derivation
public protected private

public public protected private
protected protected protected private
private invisible invisible invisible

Visibility in derived class B.

CPSC 427a 10/32



Outline Visibility Polymorphic Derivation Craps

Polymorphic Derivation

CPSC 427a 11/32



Outline Visibility Polymorphic Derivation Craps

Polymorphism and Type Hierarchies

Consider following simple type hierarchy:

class B { public: int f(); ... };
class U : B { int f(); ... };
class V : B { int f(); ... };

We have a base class B and derived classes U and V.

Declare B* bp; U* up = new U; V* vp = new V.
Can write bp = up; or bp = vp;.

Why does this make sense?
*up has an embedded instance of B.
*vp has an embedded instance of B.

Relationships: A U is a B (and more). A V is a B (and more).

CPSC 427a 12/32



Outline Visibility Polymorphic Derivation Craps

Polymorphic pointers

Recall:

class B { public: int f(); ... };
class U : B { int f(); ... };
class V : B { int f(); ... };
B* bp;

bp can point to objects of type B, type U, or type V.
Say bp is a polymorphic pointer.

Want bp->f() to refer to U::f() if bp contains a U pointer.
Want bp->f() to refer to V::f() if bp contains a V pointer.
In this example, bp->f() always refers to B::f().

CPSC 427a 13/32



Outline Visibility Polymorphic Derivation Craps

Virtual functions

Solution: Polymorphic derivation

class B { public: virtual int f(); ... };
class U : B { virtual int f(); ... };
class V : B { virtual int f(); ... };
B* bp;

A virtual function is dispatched at run time to the class of the
actual object.

bp->f() refers to U::f() if bp points to a U.
bp->f() refers to V::f() if bp points to a V.
bp->f() refers to B::f() if bp points to a B.

Here, the type refers to the allocation type.

CPSC 427a 14/32



Outline Visibility Polymorphic Derivation Craps

Unions and type tags

We can regard bp as a pointer to the union of types U and V.

To know which of U::f() or V::f() to use for the call bp->f()
requires runtime type tags.

If a class has virtual functions, the compiler adds a type tag field
to each object.
This takes space at run time.

The compiler also generates a vtable to use in dispatching calls on
virtual functions.

CPSC 427a 15/32



Outline Visibility Polymorphic Derivation Craps

Virtual destructors

Consider delete bp;, where bp points to a U but has type B*.

The U destructor will not be called unless destructor B::~B() is
declared to be virtual.

Note: The base class destructor is always called, whether or not it
is virtual.

In this way, destructors are different from other member methods.

Conclusion: If a derived class has a non-empty destructor, the base
class destructor should be declared virtual.

CPSC 427a 16/32



Outline Visibility Polymorphic Derivation Craps

Uses of polymorphism

Some uses of polymorphism:

I To define an extensible set of representations for a class.

I To allow containers to store mixtures of different but related
types of objects.

I To support run-time variability of within a restricted set of
related types.

CPSC 427a 17/32



Outline Visibility Polymorphic Derivation Craps

Multiple representations

Might want different representations for an object.

Example: A point in the plane can be represented by either
Cartesian or Polar coordinates.

A Point base class can provide abstract operations on points.
E.g., virtual int quadrant() const returns the quadrant of
*this.

For Cartesian coordinates, quadrant is determined by the signs of
the x and y coordinates of the point.
For polar coordinates, quadrant is determined by the angle θ.

Both Cartesian and Polar derived classes should contain a
method for int quadrant() const.

CPSC 427a 18/32



Outline Visibility Polymorphic Derivation Craps

Heterogeneous containers

One might wish to have a stack of Point objects.

The element type of the stack would be Point*.

The actual values would have type either Cartesian* or Polar*.

The automatically generated type tags and dynamic dispatching
obviates the need to cast the result of pop() to the correct type.

Example:

Stack st; Point* p;
p = st.pop(); // no need to cast result
p->quadrant(); // automatic dispatch

CPSC 427a 19/32



Outline Visibility Polymorphic Derivation Craps

Run-time variability

Two types are closely related; differ only slightly.

Example: Company has several different kinds of employees.

I Employee base class has a large and complicated payroll
function.

I Payroll is same for all kinds of employees except for a function
pay() that computes the actual weekly pay.

I Each employee kind has its own pay() function.

I Big payroll function is in base class.

I It calls pay() to get the actual pay for this Employee.

CPSC 427a 20/32



Outline Visibility Polymorphic Derivation Craps

Pure virtual functions

Suppose we don’t want B::f() and never create instances of B.
We make B::f() into a pure virtual function by writing =0.

class B { public: virtual int f()=0; ... };
class U : B { virtual int f(); ... };
class V : B { virtual int f(); ... };
B* bp;

A pure virtual function is sometimes called a promise.
It tells the compiler that a construct like bp->f() is legal.
The compiler requires every derived class to contain a method f().

CPSC 427a 21/32



Outline Visibility Polymorphic Derivation Craps

Abstract classes

An abstract class is a class with one or more pure virtual functions.

An abstract class cannot be instantiated.
It can only be used as the base for another class.

The destructor can never be a pure virtual function but will
generally be virtual.

A pure abstract class is one where all member functions are
abstract (pure virtual) and there are no data members,

Pure abstract classes define an interface à la Java.

An interface allows user-supplied code to integrate into a large
system.

CPSC 427a 22/32



Outline Visibility Polymorphic Derivation Craps

PS2 Craps Game Revisited

CPSC 427a 23/32



Outline Visibility Polymorphic Derivation Craps

Extending existing code

To test and debug randomized code, one needs to control the
“random” data on which it depends in order to:

I have repeatable runs in which to track down manifest bugs.

I be able to force unlikely cases to occur.

Demo 10-Craps-extended is a significant refactoring of
PS2-craps, the posted solution to problem set 2.

CPSC 427a 24/32



Outline Visibility Polymorphic Derivation Craps

Summary of extensions

The following significant changes were made to the PS2 code:

1. Dice::roll() can now use either rand() or a named file in
order to determine the outcome of a dice roll.

2. The command line interface was changed to allow
specification of the kind of dice to use.

3. The command line parser was moved into a new Params class.

4. The ’_’ suffix of data member names was dropped. The same
name is now used for corresponding parameters to
constructors. Ambiguity is not a problem in ctors. It is
resolved in assignment using the this-> prefix.

5. A print function useful for debugging was added to each class,
and the output operator << extended to use it.

CPSC 427a 25/32



Outline Visibility Polymorphic Derivation Craps

1. Polymorphic dice

Dice are now represented by three classes:

I A base class Dice

I A derived class RandDice: public Dice

I A derived class FileDice: public Dice

A single Dice* pointer in Simulator holds the current dice. It
can point to either a RandDice object or a FileDice object.

Both kinds of dice support the virtual functions roll() and
printSummary().

CPSC 427a 26/32



Outline Visibility Polymorphic Derivation Craps

2. Command line interface

The new command line interface is
craps [-s seed | -f filename] num rounds

With no options, random dice are seeded by time of day.

With -s option, random dice with specified seed are used.

With -f option, dice rolls come from specified file.

The two options are mutually exclusive; specifying both is an error.

CPSC 427a 27/32



Outline Visibility Polymorphic Derivation Craps

3. Command line parser

Command line is parsed using the getopt() library function.

The parser code was moved to a new Params class.

Reasons for doing so:

I This unclutters main().

I The simulator control parameters are grouped together as
data members rather than being local variables in main().

I Passing a Params object to the simulator is simpler and
cleaner than passing the parameters individually.

CPSC 427a 28/32



Outline Visibility Polymorphic Derivation Craps

4. Naming convention with underscores

In PS2 solution, I used the convention of appending an underscore
character to the end of every data member name.

Pros: I Allows name without underscore to be used for
corresponding constructor parameter and/or
get-function.

I Data members easily distinguished from other
program elements.

Cons: I Underscores are difficult to see on many screens.
I Adds unnecessary visual complexity to method

definitions.

CPSC 427a 29/32



Outline Visibility Polymorphic Derivation Craps

4. Naming convention without underscores
In 10-Craps-extended, I changed to a convention without
underscores.

I Use same name for both data member and initializing
constructor parameter.

I No ambiguity in ctor, so no problem. Example: In
count(count), the first occurrence of count always refers to
the data member.

I Ambiguity in body of constructor is avoided by writing
this->count (or className::count) when referring to the
data member count in class className.

I Capitalize name and prefix with get for get-function name,
e.g., getCount(). This is a widely used convention for a
readonly method to access a data member.

CPSC 427a 30/32



Outline Visibility Polymorphic Derivation Craps

5. Print functions

It is very useful for debugging to add a print() function to each
class and to extend operator << to use it.

The print function should be declared as:

ostream& print(ostream& out) const;

and should return out as its result.

To extend the output operator to items of class T, put

inline ostream& operator<<(ostream& out, const T& t) {
return t.print(out);

}

in the .hpp file following the class definition.

CPSC 427a 31/32



Outline Visibility Polymorphic Derivation Craps

Other changes

There are several other minor changes to the code. Three that
come to mind are:

I Random is now a composed object in dice rather than an
aggregated object.

I I merged main.hpp and main.cpp since main is not a class,
and nobody else should be including main.hpp.

I I separated setting up the simulator from running it.

CPSC 427a 32/32


	Outline
	Name Visibility
	Polymorphic Derivation
	PS2 Craps Game Revisited

