
Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 16
November 2, 2010

CPSC 427a 1/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Multiple Inheritance

Handling Circularly Dependent Classes

Template Example

The C++ Standard Library

CPSC 427a 2/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Multiple Inheritance

CPSC 427a 3/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

What is multiple inheritance

Multiple inheritance simply means deriving a class from two or
more base classes.

Example:
class Item : public Exam, public Ordered { ... };

See demo 16-Multiple

CPSC 427a 4/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Object structure

Suppose class A is multiply derived from both B and C.
We write this as class A : B, C { ... };.

Each instance of A has “embedded” within it an instance of B and
an instance of C.

All data members of both B and C are present in the instance, even
if they are not visible from within A.

Derivation from each base class can be separately controlled with
privacy keywords, e.g.:
class A : public B, protected C { ... };.

CPSC 427a 5/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Diamond pattern

One interesting case is the diamond pattern.

class D { ... x ... };
class B : public D { ... };
class C : public D { ... };
class A : public B, C { ... };

Each instance of A contains two instances of D—one in B and one
in C.

These can be distinguished using qualified names.
Suppose x is a public data member of D.
Within A, can write B::D::x to refer to the first copy, and
C::D::x to refer to the second copy.

CPSC 427a 6/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Handling Circularly Dependent Classes

CPSC 427a 7/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Tightly coupled classes

Class B depends on class A if B refers to elements declared within
class A or to A itself.

The class B definition must be read by the compiler after reading A.

This is often ensured by putting #include "A.hpp" at the top of
file B.hpp.

A pair of classes A and B are tightly coupled if each depends on the
other.

It is not possible to have both read after the other.
Whichever the compiler reads first will cause the compiler to
complain about undefined symbols from the other class.

CPSC 427a 8/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Example: List and Cell
Suppose we want to extend a cell to have a pointer to a sublist.

class Cell {
int data;
List* sublist;
Cell* next;
...

};
class List {
Cell* head;
...

};

This won’t compile, because List is used (in class Cell) before
it is defined. But putting the two class definitions in the opposite
order also doesn’t work since then Cell would be used (in class
List) before it is defined.

CPSC 427a 9/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Circularity with #include
Circularity is less apparent when definitions are in separate files.

File list.hpp:
#pragma once
#include "cell.hpp"
class List { ... };

File cell.hpp:
#pragma once
#include "list.hpp"
class Cell { ... };

File main.cpp:
#include "list.hpp"
#include "cell.hpp"
int main() { ... }

CPSC 427a 10/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

What happens?

In this example, it appears that class List will get read before
class Cell since main.cpp includes list.hpp before cell.hpp.

Actually, the opposite occurs. The compiler starts reading
list.hpp but then jumps to cell.hpp when it sees the #include
"cell.hpp" line.

It jumps again to list.hpp when it sees the #include
"list.hpp" line in cell.hpp, but this is the second attempt to
load list.hpp, so it only gets as far as #pragma once. It then
resumes reading cell.hpp and processes class Cell.

When done with cell.hpp, it resumes reading list.hpp and
processes class List.

CPSC 427a 11/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Resolving circular dependencies
Several tricks can be used to allow tightly coupled classes to
compile. Assume A.hpp is to be read first.

1. Suppose the only reference to B in A is to declare a pointer.
Then it works to put a “forward” declaration of B at the top
of A.hpp, for example:

class B;
class A { B* bp; ... };

2. If a function defined in A references symbols of B, then the
definition of the function must be moved outside the class and
placed where it will be read after B has been read in, e.g., in
the A.cpp file.

3. If the function needs to be inline, this is still possible, but it’s
much trickier getting the inline function definition in the right
place.

CPSC 427a 12/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Template Example

CPSC 427a 13/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

16-Multiple-template

To illustrate templates, I converted 16-Multiple to use template
classes.

There is much to be learned from this example.
Today I point out only a few features.

CPSC 427a 14/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Container class hierarchy

As before, we have PQueue->Linear->Container.
Now, each of these are template classes with parameter <T>.
T is the item type; the queue stores elements of type T*.

The main program creates a priority queue using
PQueue<Item > P;

CPSC 427a 15/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Item class hierarchy

As before, we have Item->Exam, Ordered.

Item is an adaptor class.
It bridges the requirements of PQueue<T> to the Exam class.

CPSC 427a 16/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Ordered template class

Ordered describes an abstract interface for an abstract key type.
It becomes a template class with type parameter KeyType.

Item derives from Ordered<int>.

CPSC 427a 17/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Alternative Ordered interfaces

The code presents two alternative interfaces:

1. The primary interface requires every client to define < and ==
with elements of type KeyType.

2. The alternative interface requires only comparison operators
on abstract elements (of type Ordered). However, to define
those operators one must also have available some function
for obtaining the data to be used in the comparison – hence
the key() function.

A real application would choose one interface or the other and go
with it.
Both are in the code for comparison.

CPSC 427a 18/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

The C++ Standard Library

CPSC 427a 19/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

A bit of history

C++ standardization.

I C++ standardization began in 1989.

I ISO and ANSI standards were issued in 1998, nearly a decade
later.

I The standard covers both the C++ language and the standard
library (everything in namespace std).

I The standardization process continues as the language evolves
and new features are added.

The standard library was derived from several different sources.

STL (Standard Template Library) portion of the C++ standard was
derived from an earlier STL produced by Silicon Graphics (SGI).

CPSC 427a 20/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Containers

A container stores a collection of objects of arbitrary type T.

The basic containers in STL are:

I vector – a dynamic array

I deque – a double-ended queue

I list – a doubly linked list

I map – an associative array of key/value pairs with unique keys

I set – a sorted collection of unique values

I multimap – an associative array of key/value pairs with
duplicate keys allowed

I multiset – a sorted collection of values with multiplicity

CPSC 427a 21/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

Common container operations

All containers share a large number of operations.

Operations include creating an empty container, inserting, deleting,
and copying elements, scanning through the container, and so
forth.

Liberal use is made of operator definitions to make containers
behave as much like other C++ objects as possible.

Containers implement value semantics, meaning type T objects are
copied freely within the containers.

If copying is a problem, store pointers instead.

CPSC 427a 22/23



Outline Multiple Inheritance Circularity Template Example The C++ Standard Library

vector<T>
A vector<T> is a growable array of elements of type T.

You must #include <vector>.

Elements can be accessed using standard subscript notion.

Inserting at the beginning or middle of a vector takes time O(n).

Example:
vector<int> tbl(10); // creates length 10 vector of int
tbl[5] = 7; // stores 7 in slot #5
cout << tbl[5]; // prints 7
tbl[10] = 4; // illegal, but not checked!!!
cout << tbl.at(5); // prints 7
tbl.at(10) = 4; // illegal and throws an exception
tbl.push_back(4); // creates tbl[10] and stores 4
cout << tbl.at(10); // prints 4

CPSC 427a 23/23


	Outline
	Multiple Inheritance
	Handling Circularly Dependent Classes
	Template Example
	The C++ Standard Library

