
CS427a: Object-Oriented Programming
Design Patterns for Flexible and Reusable design

Michael J. Fischer
(from slides by Y. Richard Yang)

Lecture 20
November 16, 2010

Reusability, Flexibility, and
Maintainability

• One thing constant in software development
is CHANGE

• For software that is used over a period of
years, the cost of keeping it current in the face
of changing needs often exceeds the cost of
originally developing it.

• A key need in software design is the ability for
maintenance and modification to keep
abreast of changes.

The Waterfall Software Process
time

Requirements
Analysis

Design

Milestone(s)

Phases (activities)

Implementation

Testing

Maintenance

Release product X

Two phases may occur at the
same time for a short period

Why a Pure Waterfall Process is Usually Not Practical

 Don’t know up front everything wanted and needed
– Usually hard to visualize every detail in advance

 To gain confidence in an estimate, we need to
design and actually implement parts,
especially the riskiest ones, this may probably
lead to modify requirements as a result

 We often need to execute intermediate builds
– Stakeholders need to gain confidence
– Designers and developers need confirmation they're

building what’s needed and wanted

 Team members can't be idle while the requirements
are being completed

The Spiral Process time

 1
Requirements
analysis

Design

Coding

Testing

1Iteration #

 1

1

2

 2

 2

3

 3

 3

Product released XIntermediate version* completed X

*typically a prototype

M I L E S T O N E S

 2 3

2 3 1

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

Advantage of OO Design

OO systems exhibit recurring structures that promote
– Abstraction
– Modularity
– Flexibility
– Extensibility
– Elegance

Aspect of Reusability

• Classes – in source code form
– Thus, we write generic code whenever possible

• Assemblies of related classes
 A toolkittoolkit is a library of reusable classes designed to provide useful,

general-purpose functionality.

• E.g., C++ standard library, Boost
 An application framework application framework is a specific set of classes that

cooperate closely with each other and together embody a
reusable design for a category of problems.
• E.g., Java APIs (Applet, Thread, etc), gtkmm

• Design pattern

Making a Class Re-usable

Define a useful abstraction

– attain broad applicability

Reduce dependencies on other classes

…

Reducing Dependency Among Classes

Student

Replace …

Course

with …

Student CourseEnrollment

Aspect of Flexibility

• Making small variation to existing
functionality

• Adding new kinds of functionality

• Changing functionality

Some Techniques to Achieve Flexibility

Flexibility Aspect: ability to … Some techniques
… create objects in variable
configurations determined at runtime “Creational” design patterns

… create variable trees of objects or
other structures at runtime “Structural” design patterns

… change, recombine, or otherwise
capture the mutual behavior of a set
of objects

“Behavioral” design patterns

… create and store a possibly
complex object of a class. Component

… configure objects of predefined
complex classes – or sets of classes
– so as to interact in many ways

Component

Roadmap

• We will focus on flexibility and reusability
– It is important to remember that real systems also

need to consider efficiency and robustness

• We will start with design patterns, and then look
into the design of some OO
libraries/toolkit/framework

• We will learn by examples:
– Example is not another way to teach, it is the only

way to teach. -- Albert Einstein

What is a Design Pattern

• Abstracts a recurring design structure
• Comprises class and/or object

 dependencies
 structures
 interactions
 conventions

• Distills design experience
• Names & specifies the design structure explicitly

• Language- & implementation-independent
• A “micro-architecture”

14

UML/OMT Notation

Example: Duck Game

• A startup produces a duck-pond simulation
game

• The game shows a large variety of duck
species swimming and making quacking
sounds

Initial Design

MillardDuck

display() {
 looks like a mallard
}

RedheadDuck

display() {
 looks like a redhat
}

Other types of ducks

Duck

quack()
swim()
display() = 0
// Other duck-like method

Design Change: add fly()
Duck

quack()
swim()
display() = 0
fly()
// Other duck-like method

MillardDuck

display() {
 looks like a mallard
}

RedheadDuck

display() {
 looks like a redhat
}

Other types of ducks

Problem
• Generalization may lead to

unintended behaviors:
a rubber duck is flying and
quacks

Duck

quack()
swim()
display() = 0
// Other duck-like method

RubberDuck

display() {looks like a rubber duck}
quack() { // sqeak }
fly() { // cannot fly }

MillardDuck

display() {
 looks like a mallard
}

Anticipating Changes

• Identify the aspects of your application that
may vary
– What may change?

• Anticipate that
– new types of ducks may appear and
– behaviors (quack, swimming, and flying) may

change, even change at run time (swirl flying,
circular flying, …)

Handling Varying Behaviors
• Solution: take what varies and “encapsulate”

it
– Since fly() and quack() vary across ducks, separate

these behaviors from the Duck class and create a
new set of classes to represent each behavior

super class of all ducks
Varying and run-time
changeable behaviors

Design

• Each duck object has a fly behavior

FlyWithWings

fly() {
 //
}

FlyNoWay

fly() {
 // cannot fly
}

<<interface>>
FlyBehavior

fly()

Programming to implementation vs.
interface/supertype

• Programming to an implementation
– Dog d = new Dog();
– d.bark();

• Programming to an interface/supertype
– Animal a = new Dog();
– a.makeSound();

Implementation

FlyWithWings

fly() {
 //
}

FlyNoWay

fly() {
 // cannot fly
}

<<interface>>
FlyBehavior

fly()

MallardDuck

display() {
 looks like a mallard
}

RedheadDuck

display() {
 looks like a redhat
}

Duck

quack()
swim()
display() = 0
// Other duck-like method

Exercise

• Add rocket-powered flying?

The Strategy Pattern

• Defines a set of algorithms, encapsulates each
one, and makes them interchangeable by
defining a common interface

Exercise

Summary: Design Principles

• Identify the aspects of your application that
vary and separate them from what stay the
same

• Program to an interface not implementation

• Favor composition over inheritance

Example: KitchenViewer Interface

Wall
cabinet

Counter

Floor
cabinet

Modern Classic Antique Arts & Crafts

menu

display area

styles

Adapted from Software Design: From Programming to Architecture by Eric J. Braude (Wiley 2003), with permission.

KitchenViewer Example

Modern Classic Antique Arts & Crafts

Wall cabinets Floor cabinetsCountertop

Selecting Antique Style

Modern Classic Antique Arts & Crafts

KitchenViewer Using Standard Inheritance

Kitchen

Client
renderKitchen()

FloorCabinet

ModernWallCabinet

ModernFloorCabinet AntiqueFloorCabinet

AntiqueWallCabinet

WallCabinet

Aspect of the system that
may change/vary?

: Reference direction

AntiqueKStyle
getWallCabinet()
getFloorCabinet()

The Abstract Factory Idea

KitchenStyle
getWallCabinet()
getFloorCabinet()

ModernKStyle
getWallCabinet()
getFloorCabinet()

WallCabinet FloorCabinet

AntiqueWallCabinet AntiqueFloorCabinet

FloorCabinet getFloorCabinet()
{ return new AntiqueFloorCabinet(); }

……

FloorCabinet getFloorCabinet()
{ return new ModernFloorCabinet(); }

Abstract Factory Design Pattern Applied to KitchenViewer

KitchenStyle
getWallCabinet()
getFloorCabinet()

Kitchen
getWallCabinet()
getFloorcabinet()

Client
renderKitchen(KitchenStyle)

ModernKStyle
getWallCabinet()
getFloorCabinet()

ModernKStyle
getWallCabinet()
getFloorCabinet()

AntiqueKStyle
getWallCabinet()
getFloorCabinet()

WallCabinet FloorCabinet

ModernWallCabinet

ModernFloorCabinet

AntiqueWallCabinet

AntiqueFloorCabinet

Abstract Factory Design Pattern

Style
getComponentA()
getComponentB()

Client
doOperation(Style myStyle)

Style1
getComponentA()
getComponentB()

Style2
getComponentA()
getComponentB()

ComponentA ComponentB

Style1ComponentA

Style1ComponentB

Style2ComponentA

Style2ComponentB

Collection

Concrete and Abstract Layers

KitchenStyle

Kitchen

Client

ModernKStyle

AntiqueKStyle

WallCabinet

FloorCabinet

ModernWallCabinet

ModernFloorCabinet

AntiqueWallCabinet

AntiqueFloorCabinet

Abstract level

Concrete level

getWallCabinet()

Abstract Factory Application
Sequence Diagram

myStyle:KitchenStyleClient

myStyle:
ModernKStyle

myStyle:
AntiqueKStyle

renderKitchen
(myStyle)

wallCabinet1:
ModernWallCabinet

wallCabinet1:
AntiqueWallCabinet

ModernWallCabinet()
getWallCabinet()

AntiqueWallCabinet()

myStyle.
getWallCabinet()

-- IF myStyle BELONGS TO ModernKStyle --

-- IF myStyle BELONGS TO AntiqueKStyle --

Potential use of this Design Pattern?

Style
getComponentA()
getComponentB()

Client
doOperation(Style myStyle)

Style1
getComponentA()
getComponentB()

Style2
getComponentA()
getComponentB()

ComponentA ComponentB

Style1ComponentA

Style1ComponentB

Style2ComponentA

Style2ComponentB

Collection

	CS427a: Object-Oriented Programming Design Patterns for Flexible and Reusable design
	Reusability, Flexibility, and Maintainability
	The Waterfall Software Process
	Why a Pure Waterfall Process is Usually Not Practical
	The Spiral Process
	Advantage of OO Design
	Aspect of Reusability
	Making a Class Re-usable
	Reducing Dependency Among Classes
	Aspect of Flexibility
	Some Techniques to Achieve Flexibility
	Roadmap
	What is a Design Pattern
	UML/OMT Notation
	Example: Duck Game
	Initial Design
	Design Change: add fly()
	Problem
	Anticipating Changes
	Handling Varying Behaviors
	Design
	Programming to implementation vs interface/supertype
	Implementation
	Exercise
	The Strategy Pattern
	Slide 26
	Summary: Design Principles
	Example: KitchenViewer Interface
	KitchenViewer Example
	Selecting Antique Style
	KitchenViewer Using Standard Inheritance
	The Abstract Factory Idea
	Abstract Factory Design Pattern Applied to KitchenViewer
	Abstract Factory Design Pattern
	Concrete and Abstract Layers
	Abstract Factory Application Sequence Diagram
	Potential use of this Design Pattern?

