
Chapter 12: Derived Classes

A consequence of inheritance:

The sins of the father are to be laid upon the children.
. . . Euripides, Exodus, and Shakespeare.
. . . And so are the strengths and skills of the father, in C++.

12.1 How Derivation is Used

Purposes. A class may be derived from another class for several possible reasons:

1. To add functions to those defined by an existing class.

2. To extend and specialize the actions of a function defined in an existing class.

3. To mask a function in an existing class and prevent further access to it.

4. To create a different interface for an existing class.

5. To add data members to those included by an existing class.

6. To further restrict the protection level of data members that belong to an existing class.

Declaration syntax.

1. The first line of the class declaration declares the derivation relationship. The following two lines are taken
from the demo program below.

class Printed : private Pubs { ... };

class Book : public Printed { ... };

2. The style of derivation (public or private) will be clarified later. It affects future derivation steps but not
the current derived class.

3. The base class must be defined first; in this case, it is Pubs. The second class (Printed) was derived from
Pubs using private derivation. The third class, Book, was derived from Printed by public derivation.

Usage patterns and rules.

1. Typically, more than one class is derived from a base class, but the derived classes form a bush, not a
chain.

2. Inheritance chains such as Pubs -�-- Printed -�-- Book do occur in real programs but are not the
most important use of derivation.

3. Two or more derived classes at the same level (brothers) are used to implement polymorphic types and/or
multiple interfaces for the same type.

4. It is also possible to derive one class from two or more printed classes. When that is done, an object of
each base class is a part of the derived class.

UML for derived classes. To diagram a derived class, we use a line and a triangle with its point toward
the printed class and its flat side toward the derived class. The sign written on the lines (+, #, or -) denotes
public, protected, or private derivation, respectively. Figure 12.1 gives a UML diagram for the Publications
demo program, below. (Note: the Online and Periodical classes are not implemented.)

137

138 CHAPTER 12. DERIVED CLASSES

Publication

-

 Online Printed

Periodical Book

+

Base Class

Derived Classes

.................Private Derivation

.................Public Derivation

Figure 12.1: UML diagram for private and public inheritance.

12.1.1 Resolving Ambiguous Names

It is normal for a base class and a derived class to have methods with the same name (purposes 2 and 3, above).
In this case, we say that the method in the derived class overrides the base method. This relationship is the
basis of polymorphism (covered in a later chapter). Most of the time, it causes no confusion to have two methods
(or data members) in the same class hierarchy that share the same name. When a function method in class A
refers to a class member named mem, the instance of mem in class A will be used if there is one. Otherwise, the
compiler will look for an inherited instance of mem. (It will look in A’s base class and continue searching up the
hierarchy until a definition of mem is found.)

Sometimes, however, a class may contain a definition for mem but one of its methods must refer to a different
instance of mem defined in the base class. For example, suppose you wish to print the data for a Book, and class
Book is derived from class Printed. To print all the Book data, we first tell the base class to print all its data,
then we output the local data. To do this, we must be able to call the print method in the base class. This is
the purpose of the scope-resolution operator, which is written with two colons (::).

In the demo program that follows, all three classes have members named serial, name, and print(), so these
names are ambiguous. Line 69 shows the :: operator used to call the base-class Pubs::print() from within
the print method of the derived class, Printed::print(). On line 93 of Book::print, we write <<name to print
Book::name. On the next line, we want to print the name from the base class, so we write <<Printed::name.

93 out <<name <<" #" <<serial
94 <<"\n\tis " <<Printed::name <<endl
95 <<"\tmy Pubs name is hidden from me." <<endl;

On line 100 we want to print Pubs::name, but this member is not visible to the Book functions because of the
private derivation step even though this member is public for the world at large (a strange combination). In
earlier versions of standard C++, the Pubs data could be accessed by using a relabeling cast to convert this to
a Pubs* and use the result to access the name. In the current ISO standard C++, even this cast is prohibited,
and there seems to be no way that a function in the Book class can access data in the Pubs class, even when
that data is public.

12.1.2 Ctor Initializers

The difference between initialization and assignment is important in both C and C++ because the rules for
initialization are more liberal than the rules for assignment. For example, you can and must initialize a const
variable but you cannot assign a new value to it.

In C++, the differences are even more important because operator= and the copy constructor may have
different definitions. Thus, ctor initializers are a necessary part of C++, and we must be able to use ctors
to initial the base-class portion of an object in a derived class. Construction and initialization happen in this
order:

• Space on the run-time stack is allocated for the core portion of the new object. This includes space for
the core portion of all inherited and new data members of the class. Base class members come first in this
object, followed by members declared in the derived classes, in order.

12.2. VISIBILITY AND PROTECTION LEVEL 139

Once the core space exists, the extensions must be created and both core portions and extensions must
be initialized. These tasks are always done in the same order, starting at the first data member and
progressing downward (in the source code) or to higher addresses (in memory).

• If the object is of a derived class, the members of the base class must be initialized first, since other parts
of the object might refer to them. To do this, one of the constructors for the base-class is selected and run.
It initializes the core portion of the base-class object (which has already been allocated). In the process,
it constructs the extensions for this part of the new object.

• If the constructor for the base class requires parameters, they must be supplied by a ctor of this form:

BaseClassName(argument-list)

If the base class has more than one constructor, the compiler will select the one whose parameter list
matches the list of agruments given by the ctor. If no ctor is given for the base class, the compiler will
use the default constructor, if it exists.

If an object (like a Book object) has a base class (such as Printed) that is also a derived class, the
constructor for the middle-level class must pass on parameters to the constructor of the original base
class.

• Next, the remaining ctor initializers are used to initialize the data members of the object. These ctors
have the form:

member_name(initial_value)

• Finally, the code portion of the object constructor is run. This code can do anything. It is usually used
to allocate the extension portion of the object, set various fields to 0, and connect pointers into a legal
and meaningful data structure.

12.2 Visibility and Protection Level

Protected members. Previously, we have used just two protection levels: private and public. A third level,
protected, is intermediate between these two. A public member can be read or written by any part of the
program in which its name is known. A private member can be used only by the functions in the same class. A
protected class member can also be used by functions of any derived class. In “family” terminology, a Printed
keeps his bedroom private, shares protected resources (the home) with his Bookren and his grandBookren but
not with strangers, and may provide some resources (such as a sidewalk) for public use.

Public and private derivation. Members of a base class can be declared as private, protected, or public.
During a derivation step, the protection level can be kept the same (by using public derivation) or tightened
up (by using private or protected derivation). If public derivation is used, inherited members have the same
protection in the derived class as in the base class. With protected derivation, public members become protected
in the derived class. With private derivation, all inherited members become private.

The chart in Figure 12.3 summarizes the effects of each of the possible protection combinations. In it, the
first column lists members of the Pubs class with protection levels, the second lists the three ways the Printed
class can be derived from the Pubs class. In all cases, the Book class is derived publicly from the Printed. The
fourth and sixth columns show which members of the Pubs class are visible in the derived class after the first
and second derivation steps. From the chart you can see:

• The protection level of a member in a derived class (Printed or Book) is the maximum of the protection
level in the base class (Pubs) and the styles of all following derivation steps.

• Accessibility in the second (Printed) is determined by the protection level of a member in the first class
(Pubs). The functions of the derived Printed class can access the public and protected members that have
been inherited, but not the private members. The inherited private members are there and take up space
in a Printed object, but they are “invisible” to the functions of the Printed class. To use such members,
a Printed class function would call a public or protected Pubs function.

140 CHAPTER 12. DERIVED CLASSES

• Accessibility in the third class, (Book), is determined by the style of the first derivation (Printed:Pubs).
For example, suppose we tried to write the following code in Book::print():

cout <<"\n\tMy Pubs is " << Pubs::name<<’\n’;

If Printed is derived privatly from Pubs, this code generates a compile-time protection error: “member
‘Pubs::name’ is private in this context”. However, the same code in Printed::print() is legal because in
the context of the Printed class, name is public.
In earlier versions of standard C++, the Pubs data could be accessed by using a relabeling cast to convert
this to a Pubs* and use the result to access the name:

out <<" my Pubs is " <<((Pubs*)this)->name <<endl;

In the current ISO standard C++, even this cast is prohibited, and there seems to be no way that a
function in the Book class can access data in the Pubs class, even when that data is public.
In contrast, if protected derivation is used to derive Printed from Pubs, the same code is legal in the Book
class. It is OK because Pubs::name is protected in the Printed class and, therefore, visible within Book.

Original Style of After 1st derivation After 2nd derivation
protection level 1st Accessible Protection Accessible Protection
in Pubs Derivation in Printed in Printed in Book in Book
Grands (private) public No private No private
serial (protected) Yes protected Yes protected
name (public) Yes public Yes public
Grands (private) protected No private No private
serial (protected) Yes protected Yes protected
name (public) Yes protected Yes protected
Grands (private) private No private No private
serial (protected) Yes private No private
name (public) Yes private No private

Figure 12.3: How derivation affects protection level.

12.2.1 Inherited Functions

Functions (as well as data members) are inherited, and the protection rules for inherited functions are the same
as for inherited data members. Inherited functions play an important role in maintaining privacy: they enable
an object to use its inherited private parts that otherwise would be “invisible” to objects in the derived class.
The derived class can use the inherited function without modification or redefine it. A redefinition can take the
form of an extension or an override.

Function redefinition. The functions of a class are closely tied to the representation of the class. Also,
certain functions should be defined for every class (print, operator<<) using the same name and with the
same general meaning (output the values of all data members in an appropriate format). Taking these two facts
together, we see that function-naming conflicts will almost always occur between a derived class and its base
class.

An extension is a redefinition of the function that calls the inherited version and also does additional work.
Almost every class needs to have a redefinition of the print() function. Normally, this redefinition will call the
inherited function using the scope-resolution operator, like this: return Pubs::print(out);

An override is a redefinition that fundamentally changes or adds to the meaning of the inherited function
or blocks access to it completely, preventing any further derived classes from using it. In each of the two derived
classes above, a new method for print is defined that overrides the inherited method. As is typical, the function
in the derived class prints some data itself, then calls the inherited function to print the rest of the data.

In a derivation hierarchy, a middle-level class sometimes overrides an inherited function in this way. The
effect is to remove that function from the set of functions available to classes further down the inheritance
hierarchy. This is a powerful tool, but rarely used.

12.3. CLASS DERIVATION DEMO 141

12.3 Class Derivation Demo

The main program. We instantiate some Pubs, Printeds and Books and use them to illustrate the syntax
and semantics of derivation and inheritance.

1 //--
2 // Class Derivation and Static Class Members file: main.cpp
3 // A. Fischer March 2, 2009
4 //--
5 #include "Pubs.h"
6 #include "Printed.h"
7 #include "Book.h"
8
9 int Pubs::pubCount = 0; // Number of Pubs objects that now exist.

10 int Printed::prinCount = 0; // Number of Printed objects that now exist.
11 int Book::bookCount = 0; // Number of Book objects that now exist.
12
13 //--
14 int main(void) {
15 Pubs A("A-Wesley");
16 Printed B("Trade Books", "Pearson");
17 Book D("Anatomy", "Out-of-print", "P-Hall");
18 Book G("Applied C", "Textbook", "McGraw-Hill");
19 cout <<"\nThe population is:\n"<< A << B << D << G;
20 bye();
21 return 0;
22 }

23 /* --
24 * Pubs: the base class. file: Pubs.h
25 * Created by Alice Fischer on 3/2/09.
26 */
27 #pragma once;
28 #include "tools.hpp"
29
30 class Pubs {
31 private: static int pubCount; // Number of Pubs that exist.
32 protected: const int serial; // Serial number of this instance.
33 public: const char* name; // Name given in the declaration.
34
35 //--
36 Pubs(char* g): serial(++pubCount), name(g) {
37 cerr <<"Creating " <<name <<endl;
38 }
39 ~Pubs(){
40 cerr <<"deleting "<<name
41 <<", leaving " <<--pubCount <<" Pubs\n";
42 }
43 ostream& print(ostream& out) const { // Name, rank, serial number.
44 out <<name <<" #" <<serial <<" out of " <<pubCount <<’\n’;
45 return out;
46 }
47 };
48 inline ostream& operator<< (ostream& out, const Pubs& x){ return x.print(out); }

12.3.1 Inherited Data Members

Each derivation step adds members to the ones present in the base class. We say that the base-class members
are inherited by the derived class. An object of the derived class starts with the data members of the base class,
followed by the new members declared within the derived class. You could say that the derived object is an
extension of the base object. (To do the same derivation in Java, you would write class Printed extends
Pubs.) Some classes have static data members that are allocated in a non-contiguous part of memory. These
members are also inherited.

142 CHAPTER 12. DERIVED CLASSES

For example, the first part of a Printed object is a Pubs object. In addition, a Printed has three more data
members (name, serial, and prinCount) making a total of six data members in a printed object. Similarly, as
shown in the diagram below, the first part of a Book object is a Printed object, to which Book adds another
static member (bookCount) and two more ordinary members (name, serial), for a total of nine data members.
A book has all these members even though some of them are allocated remotely and others are private and
cannot be accessed from methods in the Book class.

4Pubs::pubCount

Static Storage Area

3Printed::prinCount

2Book::bookCount

Pubs::serial
Pubs::name

Book::serial
Book::name

Printed::serial
Printed::name

G
4

3

2

McGraw-Hill\

Textbook\

Applied C\

3
D

2

Anatomy\

P-Hall\
1

Out-of-
print\

Figure 12.2: A derived object contains an object of its base class.

The data diagram in Figure 12.2 shows the last two objects allocated by main(), two Books named D and
G. Each has nine data members: three shared members in the static storage area and six instance members.
Medium gray denotes the members that were inherited from the Pubs class; those that came from the Printed
class are light gray. Null characters are denoted by a backslash. This diagram is complicated by that fact that
all three classes have static members that are stored in another area of storage. The three static members are
shared by all Book objects in the program.

49 /* --
50 * Illustrates private derivation and static class members file: Printed.h
51 * Created by Alice Fischer on 3/2/09.
52 */
53 #pragma once;
54 #include "Pubs.h"
55 //--
56 class Printed : Pubs {
57 private: static int prinCount; // Number of Printed objects that exist.
58 protected: const int serial; // Serial number of this instance.
59 public: const char* name; // Name given in the declaration.
60
61 Printed(char* np, char* pub): Pubs(pub), serial(++prinCount), name(np) {
62 cerr <<"Creating " <<name <<" based on #" <<Pubs::serial
63 <<" Pubs named " <<Pubs::name <<endl;
64 }
65 ~Printed(){ cerr <<"deleting "<<name <<", leaving " <<--prinCount <<" Printeds\n";}
66
67 ostream& print(ostream& out) const {
68 out <<name <<": " <<" #" <<serial <<"\n\twhose base object is ";
69 return Pubs::print(out);
70 }
71 };
72 inline ostream& operator<< (ostream& out, const Printed& x){ return x.print(out);}

73 /* --
74 * Public Derivation and static const class member. file: Book.h
75 * Created by Alice Fischer on 3/2/09.
76 */
77 #pragma once;
78 #include "Printed.h"
79 //--
80 class Book : public Printed {
81 private: static int bookCount; // Number of Book objects that exist.
82 protected: const int serial; // Serial number of this instance.
83 public: const char* name; // Name given in the declaration.
84
85 Book(char* b,char* np,char* pub): Printed(np,pub), serial(++bookCount), name(b){
86 cerr <<"Creating " <<name
87 <<" based on #" <<Printed::serial <<" Printed named " <<Printed::name

12.3. CLASS DERIVATION DEMO 143

88 <<endl;
89 }
90 ~Book(){cerr <<"deleting "<<name <<", leaving " <<--bookCount <<" Book\n";}
91
92 ostream& print(ostream& out) const {
93 out <<name <<" #" <<serial
94 <<"\n\tis " <<Printed::name <<endl
95 <<"\tmy Pubs’ name is hidden from me." <<endl;
96
97 // out << Pubs::name; // error: Pubs::name is inaccessible.
98 // Pubs pp = (Pubs)(*this); // error: Pubs is an inaccessible base of Book.
99 // Printed p = (Printed)(*this); // This line compiles, triggers copying.

100 // out << p.Pubs::name; // error: Pubs is an inaccessible base of Printed.
101 return out;
102 }
103 };
104 inline ostream& operator<< (ostream& out, const Book& x){ return x.print(out); }

Ctors Required. Every C++ object is built by constructing the base portion, then constructing the composed
parts, then calling the class constructor. This means that various parts must be initialized by ctors – doing it
in the constructor is too late. In this demo, the constructors for Printed and Book illustrate this principle.

• The constructor for Printed starts on line 61 and has three ctors, all required. The base class, Pubs, does
not have a default constructor, so we must pass parameters to it. This is done by a ctor giving the name
of the base class, with parentheses enclosing the appropriate arguments: Pubs(pub).

• The serial number is a const int, so it must be initialized in a ctor, not assigned later. This ctor must
follow the ctor for the base class, since the base class members form the first part of the object and the
ctors must be in order. We see code that increments the shared counter and initializes the serial number:
serial(++prinCount).

• The third ctor, name(np) initializes the name field to the string literal written in the program. This
does not work for strings read as input, since it does not allocate any new space to store the characters of
the string.

• The constructor for Printed starts on line 85, It also has three ctors for its three parts. Note that the ctor
for the base class (Printed) has two arguments in parentheses because the Printed constructor needs two
parameters.

Access to inherited members. Various methods in the Printed and Book classes access inherited members.

• The Printed constructor prints trace comments that include two data members from the base class:
Pubs::serial and Pubs::name. The scope-resolution operator must be used to print them because the
Printed class has members with the same names.

• These two inherited members are visible in the Printed class because Pubs::serial is protected (not
private) and Pubs::name is public. The derivation method was private derivation, but that does not
restrict visibility at this level.

• The Printed::print() method also uses the scope-resolution operator to call the inherited print() method.
Without the Pubs::, this would be a recursive call (a bug).

• The constructor and print() method in Book do similar things using Printed::.

• Since private derivation was used to create Printed, all the members of the Pubs class become private in
Printed. Therefore, Book cannot see any of them, even those that were originally public. The evidence
for this is on lines 97..100. The compiler will not compile anything in the Book class that tries to breach
the privacy of the Pubs class.

144 CHAPTER 12. DERIVED CLASSES

The output. The middle block of output is the “normal” program output. The first block of lines was printed
by the constructors, the last block by the destructors. This makes clear the order in which the pieces of these
objects are created and deleted. Note that as objects are created, the serial numbers increase in each class that
is part of the created object.

105 Creating A-Wesley
106 Creating Pearson
107 Creating Trade Books based on #2 Pubs named Pearson
108 Creating P-Hall
109 Creating Out-of-print based on #3 Pubs named P-Hall
110 Creating Anatomy based on #2 Printed named Out-of-print
111 Creating McGraw-Hill
112 Creating Textbook based on #4 Pubs named McGraw-Hill
113 Creating Applied C based on #3 Printed named Textbook
114
115 The population is:
116 A-Wesley #1 out of 4
117 Trade Books: #1
118 whose base object is Pearson #2 out of 4
119 Anatomy #1
120 is Out-of-print
121 my Pubs’ name is hidden from me.
122 Applied C #2
123 is Textbook
124 my Pubs’ name is hidden from me.
125
126
127 Normal termination.
128 deleting Applied C, leaving 1 Book
129 deleting Textbook, leaving 2 Printeds
130 deleting McGraw-Hill, leaving 3 Pubs
131 deleting Anatomy, leaving 0 Book
132 deleting Out-of-print, leaving 1 Printeds
133 deleting P-Hall, leaving 2 Pubs
134 deleting Trade Books, leaving 0 Printeds
135 deleting Pearson, leaving 1 Pubs
136 deleting A-Wesley, leaving 0 Pubs

	12 Derived Classes
	12.1 How Derivation is Used
	12.1.1 Resolving Ambiguous Names
	12.1.2 Ctor Initializers

	12.2 Visibility and Protection Level
	12.2.1 Inherited Functions

	12.3 Class Derivation Demo
	12.3.1 Inherited Data Members

