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Chapter 1: Preamble

1.1 Commandments

A nationally-known expert has said that C++ is a coding monster that forces us to use a disciplined style in
order to tame it. This leads to a fundamental rule for skilled C++ programming:

Can is not the same as should.

The style guidelines below are motivated by years of experience writing and debugging C and C++ . None of
them are arbitrary. I expect you to read them, understand them, and follow them.

Commandment 1. Use C++ , not C for all work in this course. The biggest difference is how one does input
and output.

Commandment 2. The use of global variables for any purpose will not be tolerated. If your code contains
a global variable declaration, your work will be handed back ungraded.

Commandment 3. Test every line of code you write. It is your job to prove to me that your entire program
works. If I get a program without a test plan and output, I will assume that it does not compile. A program
with a partial or inadequate test plan will be assumed to be buggy.

1.2 Style

If you want to be a professional, learn to make your work look professional. Start now. Read these guidelines and
follow them. Your willingness, diligence, and ability to write clean code in my prescribed style will determine
my willingness and ability to write a strong job recommendation for you.

1.2.1 General Rules

1. Learn how to include and use a local library, how to create, organize, and compile a multi-module program,
and how to use the C preprocessor for conditional compilation.

2. Wherever possible, use symbolic names in your code. For example, use quoted characters instead of
numeric ASCII codes.

3. Use only the standard language. Do not use proprietary extensions and language additions such as
clrscr() and conio.h. Also, do not use system commands such as pause. Learn how to do these things
within the standard language.

4. Whitespace. In general, put spaces around your operators and either before or after each parenthesis.
Do not write a whole line of code with no spaces!

5. Comments. Use // and keep comments short. Do not repeat the obvious.

6. Blank lines. Use blank lines to group your code into “paragraphs” of related statements. Put a blank
line after each group. DO NOT put a blank line between every line of code. Do not use more than one
blank line. Do not put a blank line before an opening or closing brace. Do not separate the first line of a
function from its body.

7. Simplicity is good; complexity is bad. If there are two ways to do something, the more straightforward
or simpler way is preferred.

1
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8. Locality is good; permitting one part of the program to depend on a distant part is bad. For example,
initialize variables immediately before the loop that uses them, not somewhere else in the program.

9. Avoid writing useless code. For example, don’t initialize variables that don’t need initialization. Do not
leave blocks of code in your program that you have commented out. Remove them before you send me
the code.

10. Avoid writing the same code twice. For example, don’t call strlen(s) twice on the same string. Don’t
write the same thing in both clauses of an if statement. Don’t write two functions that output the same
thing to two different streams. This way, when you correct an error once, it is corrected. You don’t need
to ask how many times the same error occurs.

11. File system path names are not portable. If you must write one in your program, put it in a #define
at the top of main so that it can be found easily and changed easily.

1.2.2 Naming

1. Please do not use i, I, l, or O as a variable name because i and l look like 1 and O looks like 0. Use j,
k, m, or n instead.

2. Long, jointed names and short, meaningless names make code equally hard to read. Try for
moderate-length names.

3. Local variables and class members should have short names because they are always used in a
restricted context. Global objects should have longer names because they can be used from distant parts
of the program.

4. Names need to be different enough to be easily distinguished. The first part of a name is most important,
the last letter next, and the middle is the least important. Any two names in your program should differ
at the beginning or the end, not just in the middle.

5. Do not use the same name for two purposes (a class and a variable, for example). Do not use two names
that differ only by an ’s’ on the end of one. Do not use two names that differ only by the case (for example
Object and object).

6. I should be able to pronounce every variable name in English, and no two names should have the same
pronunciation.

7. Learn to use the names of the various zero-constants appropriately. NULL is a pointer to location 0,
’\0’ is the null character, ”” is the null string, false is a bool value, and 0 and 0.0 are numbers. Use the
constant that is correct for the current context.

8. Use names written entirely in UPPER CASE for #defined constants but not for other things. This is
a long-honored C custom.

9. To be consistent with Java usage, the name of a class should start with an Upper case letter and use
camel-case after that: MyClassName. Variable and function names should always start with a lower case
letter: myVar, myFunction().

1.2.3 Usage

1. Use the C++ language as it is intended. Learn to use ++ (instead of +1) and if. . . break instead of
complex loop structures with flags.

2. Please do not misuse the conditional operator to convert a true or false value to a 1 or a 0:

write this (a < b)
instead of (a < b) ? 1 : 0
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3. Use the -> operator when you are using a pointer to a struct. Example:

write this p->next->data
instead of *((*p).next).data

Using * and . for this purpose leads to code that fails the simplicity test: it is hard to write, hard to
debug, and hard to read.

4. Use pointers for sequential array access and subscripts for random access.

5. C has subscripts. . . use them. They are easy to write, easy to debug, and easy to read. Use pointer
arithmetic rarely, if at all. Example: suppose that ar is an array of MAX ints and p is a pointer to an
array of ints.

write this ar[n] or p[n]
instead of *(ar+n) or *(p+n)
sometimes you should write this, however int* ar_end = ar + MAX;

The last line in this example is the ordinary way to set a pointer to the end of the array

1.2.4 Indentation

1. Never let comments interrupt the flow of the code-indentation.

2. Break up a long line of code into parts; do not let it wrap around to the left edge of the paper on your
listings.

3. The indentation style preferred by experts is this:

while ( k < num_items) {
cout << age[k];
k++;

}

This style is space-efficient and helps avoid certain kinds of common errors. Note that the lines within
the loop are indented a modest amount: more than 1 or 2 spaces and less than 8 spaces. The opening
bracket is on the end of the line that starts with the keyword and the closing bracket is directly below the
first letter of the keyword.

4. Put the indentation into the file when you type the code originally. If you indent one line, most text
editors will indent the next line similarly.

5. The other two generally approved styles are shown below. Please adopt one of these three styles
and use it consistently. Randomly indented code is unprofessional and inappropriate for a graduate
student.

Brackets aligned on the left:

while ( k < num_items)
{

cout << age[k];
k++;

}

Brackets aligned with the indented code:

while ( k < num_items)
{
cout << age[k];
k++;
}

1.2.5 Function Definitions

1. If a function is simple and fits entirely on one line, write it that way. Example:

bool square_sum( double x, double y ) { return x*x + y*y; }

2. Otherwise, each function should start with a whole-line comment that forms a visual divider. If the
function is nontrivial, a comment describing its purpose is often helpful. If there are preconditions for the
function, state them here.
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// --------------------------------------------------------------------
// If needed, put description of function here. -----------------------
void
print( Stack* St ) // Print contents of stack, formatted.
{

char* p = St->s; // Scanner and end pointer for data.
char* pend = p + St->top;

printf( "The stack %s contains: -[", St->name );
for ( ; p < pend; ++p) printf( " %c", *p );
printf( " ]>" );

}

3. Write the return type on a line by itself immediately below the comment block then write the name of
the function at the beginning of the next line, as in the above sample. Why? As we progress through
this language, return types become more and more complex. It is greatly helpful to be able to find the
function name easily.

4. In general, try to stick to one return statement per function. The only exception is when a second
return statement substantially simplifies the code.

5. In a well-designed program all function definitions are short. Brief comments at the top of the function
are often enough to explain the operation of the code. If the function code has identifiable sections or
phases, there is a good chance that each phase should be broken out into separate functions. When a
function cannot be broken up, each phase should be introduced by a whole-line comment.

1.2.6 Types, type definitions and struct

1. As this course progresses, a clear concept of the type of things is going to become essential. Regardless
of examples you see in other contexts, when writing the name of a pointer or reference type, write the
asterisk or ampersand as part of the type name, not as part of the object name. Example:

cell* make_cslist( cell& item ); // write it this way
cell *make_cslist( cell &item ); // not this way.

2. Use an enum declaration to give symbolic names to error codes. The name of the error then becomes
adequate documentation for the line that uses it. Suppose you want to define codes for various different
kinds of errors. Write it this way in C++ :

enum error_type { size_OK, Too_small, Too_large };

Declare and initialize an error_type variable like this:

error_type ercode = size_OK;

3. When using structured types, use a class declaration (in C++ ). Please DO NOT use the struct
declaration or the struct keyword this term.
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1.2.7 Using the Tools Library

All programs for this course must be done as projects and all must use the banner(), fatal(), and bye()
functions from the tools library.

1. Establish a directory named cs427 on your hard disk for all the work in this course.

2. From the course website, please download a small library called “tools”. It has two files: a source code
file tools.cpp and a header file tools.hpp. On some browsers, you must download the code by using
your mouse to copy the code and paste it into a new, empty, file. (Otherwise, the browser may insert
HTML tags into the code file.) The ideal place to put your two tools files is at the top level of your cs427
directory. Alternatively, you can copy them directly from the Zoo directory /c/cs427/code/tools.

3. Within the cs427 directory, create a separate subdirectory for each programming assignment plus a sub-
directory called “submit”. Put your source code files, input file, and output files into this directory. If
you are using an IDE (integrated development environment) such as Eclipse or Xcode, create a project
file using the IDE’s menu system, and copy the tools files into the project.

4. Before submitting, copy the files to be submitted into submit, make sure they meet the requirements of
the assignment, and submit them from there according to the submission procedures for the course.

5. To use the tools, put #include tools.hpp in your main program and in any .hpp files you write yourself.
Do not include tools.c anywhere – that job is done by tools.hpp, but be sure to copy it into your
project so that it will get compiled and linked in with your code.

6. Various useful functions and macros are included in the tools library; please look at tools.hpp and learn
about them. You will need to use banner(), bye(), fatal(), flush(), DUMPp, and DUMPv. You may also
need say(), today(), oclock(),

7. Additional functions may be added during the term, so please check before each new assignment to see if
the master copy has changed.

8. Look at the first several lines of tools.hpp; note that it includes all the useful C library headers and
several of the C++ headers. When you include the tools, you do not need to include these standard
header files.

9. Personalization. Before you can use the tools, you must put your own name in the #define NAME line of
the file “tools.hpp” in place of the dummy name “Ima Goetting Closeur”.

10. Start each program with a call on banner() or fbanner(). This will label the top of your output with your
name, etc. End each program with a call on bye(), which prints a “Normal termination” message.

11. If you need to abort execution, use fatal(). This prints a message and calls exit(). Do not use assert()
because it does not give adequate user feedback. The syntax for fatal() is exactly like printf(). Example:

f_in = fopen( "data.in", "r" );
if (f_in == NULL) fatal( "Input file cannot be opened." );
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Chapter 2: Issues and Overview

2.1 Why did C need a ++?

For application modeling. Shakespeare once explained it for houses, but it should be true of programs as well:

When we mean to build, we first survey the plot then draw the model.
. . . Shakespeare, King Henry IV.

2.1.1 Design Goals for C

C was designed to write Unix. C is sometimes called a “low level” language. It was created by Dennis
Ritchie so that he and Kenneth Thompson could write a new operating system that they named Unix. The
new language was designed to control the machine hardware (clock, registers, memory, devices) and implement
input and output conversion. Thus, it was essential for C to be able to work efficiently and easily at a low level.

Ritchie and Thompson worked with small, slow machines, so they put great emphasis on creating an simple
language that could be easily compiled into efficient object code. There is a direct and transparent relationship
between C source code and the machine code produced by a C compiler.

Because C is a simple language, a C compiler can be much simpler than a compiler for C++ or Java. As
a result, a good C compiler produces simple error comments tied to specific lines of code. Compilers for full-
featured modern languages such as C++ and Java are the opposite: error comments can be hopelessly wordy
and also vague. Often, they do not correctly pinpoint the erroneous line.

Ritchie never imagined that his language would leave their lab and become a dominant force in the world
and the ancestor of three powerful modern languages, C++, C#, and Java. Thus, he did not worry about
readability, portability, and reusability. Because of that, readability is only achieved in C by using self-discipline
and adhering to strict rules of style. However, because of the clean design, C became the most portable and
reusable language of its time.

In 1978, Brian Kernighan and Dennis Ritchie published “The C Programming Language”, which served as
the only language specification for eleven years. During that time, C and Unix became popular and widespread,
and different implementations had subtle and troublesome differences. The ANSI C standard (1989) addressed
this by providing a clear definition of the syntax and the meaning of C. The result was a low-level language
that provides unlimited opportunity for expressing algorithms and excellent support for modular program con-
struction. However, it provides little or no support for expressing higher-level abstractions. We can write many
different efficient programs for implementing a queue in C, but we cannot express the abstraction “queue” in a
clear, simple, coherent manner.

2.1.2 C++ Extends C.

C++ is an extension and adaptation of C. The designer, Bjarne. Stroustrup, originally implemented C++ as a
set of macros that were translated by a preprocessor into ordinary C code. His intent was to retain efficiency and
transparency and simultaneously improve the ability of the language to model abstractions. The full C language
remains as a subset of C++ in the sense that anything that was legal in C is still legal in C++ (although some
things have a slightly different meaning). In addition, many things that were considered “errors” in C are now
legal and meaningful in C++.

Readability. C++ was no more readable than C, because C was retained as the basic vehicle for coding in
C++ and is a proper subset of C++ . However, an application program, as a whole, may be much more readable
in C++ than in C because of the new support for application modeling.
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Portability. A portable program can be “brought up” on different kinds of computers and produce uniform
results across platforms. By definition, if a language is fully portable, it does not exploit the special features
of any hardware platform or operating system. It cannot rely on any particular bit-level representation of any
object, operation, or device; therefore, it cannot manipulate such things. A compromise between portability
and flexibility is important for real systems.

A program in C or C++ can be very portable if the programmer designs it with portability in mind and
follows strict guidelines about segregating sections of code that are not portable. Skillful use of the prepro-
cessor and conditional compilation can compensate for differences in hardware and in the system environment.
However, programs written by naive programmers are usually not portable because C’s most basic type, int,
is partially undefined. Programs written for the 4-byte integer model often malfunction when compiled under
2-byte compilers and vice versa. C++ does nothing to improve this situation.

Reusability. Code that is filled with details about a particular application is not very reusable. In C, the
typedef and #define commands do provide a little bit of support for creating generic code that can be tailored
to a particular situation as a last step before compilation. The C libraries even include two generic functions
(quicksort() and bsearch() that can be used to process an array of any base type. C++ provides much
broader support for this technique and provides new type definition and type conversion facilities that make
generic code easier to write.

Teamwork potential. C++ supports highly modular design and implementation and reusable components.
This is ideal for team projects. The most skilled members of the group can design the project and implement
any non-routine portions. Lesser-skilled programmers can implement the routine modules using the expert’s
classes, classes from the standard template library, and proprietary class libraries. All these people can work
simultaneously, guided by defined class interfaces, to produce a complete application.

2.1.3 Modeling.

The problems of modeling are the same in C and C++. In both cases the questions are, what data objects do
you need to define, how should each object work, and how do they relate to each other? A good C programmer
would put the code for each type of object or activity in a different file and could use type modifiers extern
and static to control visibility. A poor C programmer, however, would throw it all into one file, producing
an unreadable and incomprehensible mess. Skill and style made a huge difference. In contrast, C++ provides
classes for modeling objects and several ways to declare or define the relationship of one class to others.

What is a model? A model of an object is a list of the relevant facts about that object in some language. A
low level model is a description of a particular implementation of the object, that specifies the number of parts
in the object, the type of each part, and the position of each part in relation to other parts. C supports only
low level models.

C++ also supports high-level or abstract models, which specify the functional properties of an object without
specifying a particular representation. This high-level model must be backed up by specific low-level definitions
for each abstraction before a program can be translated. However, depending on the translator used and the
low-level definitions supplied, the actual number and arrangement of bytes of storage that will be used to
represent the object may vary from translator to translator.

A high level model of a process or function specifies the pre- and post-conditions without specifying exactly
how to get from one to the other. A low level model of a function is a sequence of program definitions,
declarations, and statements that can be performed on objects from specific data types. This sequence must
start with objects that meet the specified pre-conditions and end by achieving the post-conditions.

High level process models are not supported by the C language but do form an important element of project
documentation. In contrast, C++ provides class hierarchies and virtual functions which allow the programmer
to build high-level models of functionality, and later implement them.

Explicit vs. Implicit Representation. Information expressed explicitly in a program may be used by the
language translator. For example, the type qualifier const is used liberally in well-written C++ applications.
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This permits the compiler to verify that the variable is never modified directly and is never passed to a function
that might modify it.

A language that permits explicit communication of information must have a translator that can identify,
store, organize, and utilize that information. For example, if a language permits programmers to define types
and relationships among types, the translator needs to implement type tables (where type descriptions are
stored), new allocation methods that use these programmer-defined descriptions, and more elaborate rules for
type checking, type conversions, and type errors. This is one of the reasons why C++ translators are bigger
and slower than C translators. The greater the variety and sophistication of the information that is declared,
the more effort it is to translate it into low-level code that carries out the intent of the declarations.

Semantic Intent A data object (variable, record, array, etc.) in a program has some intended meaning
that can be known only if the programmer communicates or declares it. A programmer can try to choose
a meaningful name and can supplement the code by adding comments that explain the intent, but those
mechanisms communicate only to humans, not to compilers. The primary mechanism for expressing intent
in most languages is the data type of an object. Some languages support more explicit declaration of intent
than others. For example, C uses type int to represent many kinds of objects with very different semantics
(numbers, truth values, characters, and bit masks). C++ is more discriminating; truth values are represented
by a semantically distinct type, bool, and programmer-defined enumerations also create distinct types.

A program has semantic validity if it faithfully carries out the programmer’s semantic intent. A language is
badly designed to the extent that it lets the programmer write code that has no reasonable valid interpretation.
A well-designed language will identify such code as an error. A strong type checking mechanism can help a
programmer write a semantically valid (meaningful) program. Before applying a function to a data object, both
C and C++ translators test whether the call is meaningful, that is, the function is defined for objects of the
given type. An attempt to apply a function to a data object of the wrong type is identified as a semantic error
at compile time.

However, the type system and the rules for translating function calls are much more complex in C++ than
in C for the reasons discussed in Section 2.3. For these reasons and others, achieving the first error-free compile
is more difficult in C++, but the compiled code is more likely to run correctly.

2.2 Object Oriented Principles.

Classes. The term “object-oriented” has become popular, and “object-oriented” analysis, design, and im-
plementation has been put forward as a solution to several problems that plague the software industry. OO
analysis is a set of formal methods for analyzing and structuring an application; the result of an OO analysis
is an OO design. OO programs are built out of a collection of modules, often called classes that contain both
functions and data. The most fundamental design goal in these classes is that a class should take care of itself.

The way a language is used is more important in OO design than which language is used. C++ was designed
to support OO programming; it is a convenient and powerful vehicle for implementing an OO design. However,
with somewhat more effort, that same OO design could also be implemented in C.1 Similarly, a non-OO program
can be written in C++.

Three principles central to object-oriented programming are locality, coherent representation, and generic
functions.

Locality and Encapsulation. The effects of an action or a declaration can be global (affecting all parts of a
program) or local (affecting only nearby parts). The further the effects of an action reach in time (elapsed during
execution) or in space (measured in pages of code), the more complex and harder it is to debug a program. The
further an action has influence, the harder it is to remember relevant details, and the more subtle errors seem
to creep into the code.

A well-designed language supports and encourages locality. All modern languages permit functions to have
local variables and minimize the need for global variables. C goes farther than many language by supporting
static local variables that have the lifetime of a global object but only local visibility. OO languages go further

1The insertion sort code example is an OO design implemented in C that illustrates locality, coherent representation, and reusable
generic code.



10 CHAPTER 2. ISSUES AND OVERVIEW

still by introducing “private” fields in structures (class objects) that cannot be seen or changed by functions
outside the class. We say that the private members are encapsulated within the class.

Coherent vs. Diffuse Representation. A representation is coherent if an external entity (object, idea, or
process) is represented by a single symbol in the program (a name or a pointer) so that it may be referenced and
manipulated as a unit. A representation is diffuse if various parts of the representation are known by different
names, and no one name or symbol applies to the whole.

Coherence is the most important way in which object-oriented languages differ from older languages. In
Pascal, for example, a programmer can declare a new data type and write a set of functions to operate on objects
of that type. Taken together, the data objects and functions implement the programmer’s model. However,
Pascal does not provide a way to group the data and functions into a coherent package, or declare that they
form a meaningful module. C is a little better in this respect because separately-compiled code modules allow
the programmer to group related things together and keep both functions and data objects private within the
module. In an OO language, however, the class mechanisms do this and more, and provide a convenient syntax
for declaring classes and class relationships.

Generic code. A big leap forward in representational power was the introduction of generic code. A generic
function is one like “+” whose meaning depends on the type of the operands. Floating-point “+” and integer
“+” carry out the same conceptual operation on two different representations of numbers. If we wish to define
the same operation (such as “print”) on five data types, C forces us to introduce five different function names.
C++ lets us use one name to refer to several methods which, taken together, comprise a function. (In C++
terminology, a single name is “overloaded” by giving it several meanings.) The translator decides which definition
to use for each function call based on the types of the arguments in that call. This makes it much easier to
build libraries of functions that can be used and reused in a variety of situations.

OO Drawbacks. Unfortunately, a language with OO capabilities is complex. The OO extensions in C++
make it considerably more complicated than C. It is a massive and complex language. To become an “expert”
requires a much higher level of understanding in C++ than in C, and C is difficult compared to Pascal or
FORTRAN. The innate complexity of the language is reflected in its translators; C++ compilers are slow and
give very confusing error comments.

The ease with which one can write legal but meaningless code is a hallmark characteristic of C. The C
programmer can write all sorts of senseless but legal things (such as a<b<c). C++ has a better-developed system
of types and type checking, which improves the situation somewhat. However C++ also provides powerful tools,
such as the ability to add new definitions to old operators, that can easily be overused or misused. A good C++
programmer designs and writes code in a strictly disciplined style, following design guidelines that have been
evolved from experience over the years. Learning these guidelines and how to apply them is more important
than learning the syntax of C++, if the goal is to produce high-quality, debugged, programs.

2.3 Important Differences

• Comments. Comments can begin with // and end with newline. Please use only this kind of comment to
write C++ code. Then the old kind can be used to /* comment out */ sections of text during debugging.

• Executable declarations. Declarations can be mixed in with the code. This makes it possible to print
greeting messages before processing the declarations. Why is this useful? Because C++ declarations can
trigger file processing and dynamic memory allocation and it is VERY helpful to precede each major
declaration with a message that will let the programmer track the progress of the program.

When you put a declaration in a loop, the object will be allocated, initialized, and deallocated every time
around the loop. This is unnecessary and inefficient for most variables but it can be useful when you need
a strictly temporary object of a class type.

Declarations must not be written inside one case of a switch statement unless you open a new block
(using curly braces) surrounding the code for the case.
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• Type identity. In C, the type system is based on the way values are represented, not on what they
mean. For example, pointers, integers, truth values, and characters are all represented by bitstrings of
various lengths. Because they are represented identically, an int variable can be used where a char
value is wanted, and vice versa. Truth values and integers are even more closely associated: there is no
distinction at all. Because of this, one of the most powerful tools for ensuring correctness is compromised,
and expressions that should cause type errors are accepted. (Example: k < m < n.)

In C++, as in all modern languages, type identity is based on meaning, not representation. Thus, truth
values and integers form distinct types. To allow backwards compatibility, automatic type coercion rules
have been added. However, new programs should be written in ways that do not depend on the old
features of C or the presence of automatic type conversions.

• Type bool. In standard C++ , type bool, whose values are named false and true, is not the same
type as type int. It is defined as a separate type along with type conversions between bool and int. The
conversions will be used automatically by the compiler when a programmer uses type int in a context
that calls for type bool. However, good style demands that a C++ programmer use type bool, not int
and the constants true (not 1) and false (not 0), for true/false situations.

• Enumerated types. Enumerated type declarations were one of the last additions to the C language
prior to standardization. In older versions of the language, #define statements were used to introduce
symbolic codes, and a program might start with dozens of #define statements. They were tedious to
read and write and gave no clue about which symbols might be related to each other. Enumerations were
added to the language to provide a concise way to define sets of related symbols. For example, a program
might contain error codes and category codes, all used to classify the input. Using #define, there is no
good way to distinguish one kind of code from the other. By using two enumerations, you can give a name
to each set and easily show which codes belong to it.

In C, enumeration symbols are implemented as integers, not as a distinct, identifiable type. Because of this,
the compiler does not generate type errors when they are used interchangeably, and many C programmers
make no distinction. In contrast, in C++, an enumeration forms s distinct type that is not the same as
type int or any other enumeration. Complilers will generate error and warning comments when they are
used inappropriately.

• Type conversions. C provides type cast operators that work from any numeric type (double, float,
int, unsigned, char) to any other numeric type, and from a pointer of any base type to a pointer of
any other base type. These casts are used automatically whenever necessary:

– When an argument type fails to match a parameter type.
– When the expression in a return statement does not match the declared return type.
– When the types of the left and right sides of an assignment do not match.
– When two operands of a binary operator are different numeric types.

These rules are the same in C++, but, in addition, the programmer can define new type casts and
conversions for new classes. These operations can be applied explicitly (like a type cast) and will also be
used by the compiler, as described above, to coerce types of arguments, return values, assignments, and
operands.

• Assignment. First, the operator = is predefined for all types except arrays. Second, the behavior of
the assignment operator has changed: the C++ version returns the address of the location that received
the stored value. (The C version returns the value that was stored.) This makes no difference in normal
usage. However, the result of some complex, nested assignments might be different.

• Operators can be extended to work with new types. For example, the numeric operators +, *, -,
and / are predefined for pairs of integers, pairs of floating point numbers, and mixed pairs. Now suppose
you have defined a new numeric type, Complex, and wish to define arithmetic on Complex numbers. You
can define an additional method for + to add pairs of Complex numbers, and you can define conversion
functions that convert Complex numbers to other numeric types.
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• Reference parameters and return values. C supports only call-by-value for simple objects and
structures, and only call-by-reference for arrays. When a pointer is passed as an argument in C, we can
refer to it as “call-by-pointer”, which is an abbreviation for “call by passing a pointer by value”. This
permits the function to change a value in the caller’s territory. However, it is not the same as call-by-
reference, which is supported by C++ in addition to all the parameter passing mechanisms in C.

In call-by-reference, an address (not a pointer) is passed to the function and the parameter name becomes
an alias for the caller’s variable. Like a pointer parameter, a reference parameter permits a function
to change the value stored in the caller’s variable. Unlike a pointer parameter, the reference parameter
cannot be made to refer to a different location. Also, unlike a pointer, a * does not need to be used when
the variable is used within the function. General restrictions on the use of references are:

– A reference parameter can be passed by value as an argument to another function, but it cannot be
passed by reference.

– Sometimes reference parameters are used to avoid the time and space necessary to copy an entire
argument value. In that case, if it is undesirable for the function to be able to change the caller’s
variable, the parameter should be declared to be a const & type.

– Arrays are automatically passed by reference in both C and C++. You must not (and do not need
to) write the ampersand in the parameter declaration.

– You can’t set a pointer variable to point at a reference.
– You can’t create a reference to a part of a bitfield structure.

• Protection. Structures, as in C are still available in C++, but a C++ struct may have function members
as well as data members. In addition, C++ provides classes, which are structures with added encapsulation
capabilities. Learning to use encapsulation wisely will be a major part of this course.

• Function methods. Any function can have more than one definition, as long as the list of parameter
types, (the signature) of every definition is different. The individual definitions are called methods of the
function. In the common terminology, such a function is called overloaded. I prefer not to use this term
so broadly. In this course, I will distinguish among extending, overriding, and overloading a function.

• I/O. C and C++ I/O are completely different, but a program can use both kinds of I/O statements in
almost any mixture. The C and C++ I/O systems both have advantages and disadvantages. For example,
simple output is easier in C++ but output in columns is easier in C. Since one purpose of this course is
to learn C++, please use only C++ output in the C++ programs you write for this course.

• Using the C++ libraries. To use one of the standard libraries in C, we write an #include statement
of the form #include <stdio.h> or #include <math.h>. A statement of the same form can be used in
C++ . For example, the standard input/output library can be used by writing #include <iostream.h>.
However, this form of the include statement is “old fashioned”, and should not be used in new programs.
Instead, you should write two lines that do the same thing:

#include <iostream>
using namespace std;

The new kind of include statement still tells the preprocessor to include the headers for the iostream
library, but it does not give the precise name of the file that contains those headers. It is left to the
compiler to map the abstract name “iostream” onto whatever local file actually contains those headers.
The second line brings the function names from the iostream library into your own context. Without
this declaration, you would have to write iostream:: in front of every function or constant name defined
by the library.

2.4 Generic Insertion Sort

This is an object-oriented program written in a non-OO language, C. It embodies a variety of OO design,
coding, and style principles, and also a few old C techniques. Notes follow the code. Use this example as a
general guide for doing your own work. The most important themes are:
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• Highly modular code with a streamlined main function.

• Reusable generic code instantiated using typedef and #define.

• The use of pointers, cursors, and sentinels to process an array.

• OO concept: The data pack, along with its setup, input, and print functions forms a class (or would, if
written in C++ ). A data pack is an array packaged together with the information needed to use and
manage it: the number of slots in the array and the number of slots that are currently filled with valid
data. This implementation of a data pack includes a sort function, as well as the basic functions for
construction, input and output from the pack. An addition that could be useful is a status code that
indicates whether the data is sorted, and if so, in what order.

• OO design principle: A class should take care of itself. The functions that belong to a class operate on
the class’s data objects. No other functions should manipulate these objects.

A type declaration and the main program are given first, followed by detailed notes, keyed to the line numbers
in the code. A call chart for the program is given in Figure 2.1. In the chart, white boxes surround functions
defined in this application, light gray boxes denote functions in the standard libraries and dark gray denotes
the tools library.

2.4.1 Main Program

1. A program that is built in modules has a pair of files for each module: a header file and a code file. The
code file starts with a command to include the corresponding header file. The main program starts with
commands to include one or more module headers. In this case, main() uses the Datapack module, so we
include the header for that module.

2. The main program consists entirely of calls on the DataPack functions. All the work on the values in the
dataPack is done by those modules.

3. The setup() function constructs a fully formed, legal, empty, DataPack. Then readData() fills it with
data, sortData() sorts the data, and printData() shows us the data before and after sorting.

1 /* ---------------------------------------------------------------------------
2 // Main program for Sorting DataPacks. 2_main.c
3 // Created by Alice Fischer on Mon Dec 22 2003.
4 // -------------------------------------------------------------------------*/
5 #include "pack.h"
6
7 /* -------------------------------------------------------------------------*/
8 int main( void )
9 {

10 DataPack theData;
11 banner();
12 say( "Construct pack, read data" ); setup( &theData );
13 say( "\n%d data items read:", theData.n );
14 say( "\nUnsorted data:" ); printData( &theData, stdout );
15 say( "\nBeginning to sort." ); sortData( &theData );
16 say( "\nSorted results:" ); printData( &theData, stdout );
17 bye();
18 return 0;
19 }

2.4.2 The DataPack Header File

1. By changing the statements on lines 26. . . 28, we can change the program to work with any basic C data
type instead of with float. We need only to change the formats and define BT (which stands for base type)
to be the type of data that will be stored in the array and sorted. For example, these lines would be used
for type int:

#define IN_FMT "%i"
#define OUT_FMT "%i\n"
typedef int BT;



14 CHAPTER 2. ISSUES AND OVERVIEW

2. Line 24 includes definitions from the local library, tools, that we will be using throughout the term. Note
the use of quotes, not angle brackets. Note that we include the header file, not the code file, because we
are doing a multi-module compile and separate link operation.

#include "tools.h"

3. The dataPack type makes a coherent grouping of all the parts that are needed to manage an array of
data. In C++, it would be a class, not a structure.

4. The code of main() (lines 11. . . 17) is simply an outline of the processing steps with some user feedback
added. All work is delegated to functions. A call chart (Figure 2.1) shows the overall dynamic structure
of a program and is an important form of documentation. The arrows indicate which functions are called
by each other function. Frequently, the standard I/O functions are omitted from such charts.

20 /* ----------------------------------------------------------------------
21 // Header file for all DataPack programs. pack.h
22 // Created by Alice Fischer on Mon Dec 22 2003.
23 */
24 #include "tools.h"
25 /* ---------------------------------- Instantiations for generic parts */
26 #define IN_FMT "%g"
27 #define OUT_FMT "%.7g\n"
28 typedef float BT ;
29 #define LENGTH 20
30
31 /* -------------------------------------------- Generic type definition */
32 typedef struct {
33 int n; /* Allocation length. */
34 int max; /* Data length. */
35 BT* store; /* Dynamic data array. */
36 } DataPack;
37
38 /* -------------------------------------------------------- Prototypes */
39 void setup( DataPack* pData );
40 void printData( DataPack* pData, stream outstream );
41 void sortData( DataPack* pData );

 get_data

 main

 print_data     byesort_data  setup banner  say

fatalmalloc fscanf fprintf

Figure 2.1: Call hierarchy chart for insertion sort.

2.4.3 The Data Pack Functions

Constructing the data structure. The setup() function (lines 52. . . 61) is called from line 12 of main().

1. Every data structure should have a function to build and initialize its parts. In C++, these are called
constructors. At the end of construction, the object should be completely formed and internally consistent.

2. In C, this function must be called explicitly, while in a C++ program, the appropriate constructor function
is called automatically whenever an object is allocated.

3. We allocate necessary storage on line 57 and check for successful allocation on the next two lines. In C++,
this kind of error checking is not necessary. Note the call on fatal() (line 59) to handle an unrecoverable
error.

4. Lines 55. . . 57 initialize all the fields of the object so that they are consistent with each other and with the
amount of storage allocated.
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42 // -----------------------------------------------------------------------------
43 // Code file for all DataPack programs. pack.c
44 // Created by Alice Fischer on Mon Dec 22 2003.
45
46 #include "pack.h"
47 static void readData( DataPack* pData ); // A private function
48
49 //---------------------------------------------------------------------
50 // Allocate memory for data. Errors are fatal.
51
52 void
53 setup( DataPack* pData )
54 {
55 pData->n = 0; // Currently empty.
56 pData->max = LENGTH; // Space for LENGTH items.
57 pData->store = malloc(LENGTH*sizeof(BT));
58 if (pData->store == NULL)
59 fatal( " Error: not enough memory for %i BTs\n", LENGTH );
60 readData( pData );
61 }
62
63 //-----------------------------------------------------------------------------
64 // Use sequential access pattern to store data from infile into data pack.
65
66 static void
67 readData( DataPack* pData )
68 {
69 char filename[80]; // For name of input file
70 stream infile;
71 BT* cursor, * end;
72 int status;
73
74 printf( "\nEnter name of data file to be searched: " );
75 scanf( "%79s", filename );
76 infile = fopen ( filename, "r" );
77 if (! infile) fatal( " Error: couldn’t open input %s\n", filename );
78
79 cursor = pData->store; // Scanning pointer, set to start of array.
80 end = pData->store + pData->max; // An off-board sentinel
81
82 for( ; cursor<end; ++ cursor ) {
83 status = fscanf( infile, IN_FMT, cursor);
84 if( status != 1 ) break; // Quit for bad data or for end of file.
85 }
86 pData->n = cursor-pData->store; // Actual # of items read.
87 }
88

Filling the DataPack. Every data structure needs one or more functions for entering data into it.

1. Ideally, these functions should not only provide access to the data structure; they should also be the
only way to enter data into it. In C++, private data members allow us to restrict access in this way.
However, in C, good programming style and lack of knowledge of the implementation are the only ways
that unwanted access can be prevented.

2. Upon entry to readData() (lines 66. . . 87), the information in the data pack is used to establish the
pointers that will be used for sequential array processing. At no time is reference made to global variables
or constants; the data structure is self sufficient.

3. On line 79, the cursor is initialized to the beginning of the array and will always point at the first unfilled
slot. Line 80 establishes the end pointer, an off-board sentinel. It points to the first location that is not
in the array. This is legal and sound practice that conforms to the C standard. When cursor==end, the
array is full.
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4. On line 83, there is a call on fscanf() that uses the format string IN_FMT defined at the top of the program.
By changing the define statements and the typedef, we can change the type of data that we are sorting
to any type for which <= is defined.

Note that the return value from fscanf() (line 83) is stored and checked. When the format for fscanf()
calls for reading one item, the return value of 1 indicates success. A smaller value indicates that a read
error or an end-of-file caused the program to stop reading the data file before a data element was read. In
a production program, more elaborate error handling would be needed.

5. It is important to maintain internal consistency within an object. Before returning, the data pack is
updated (line 86) to reflect the number of items actually stored in it. We use pointer subtraction to
calculate this number; the address of the head of the array is subtracted from the cursor. This tells us the
number of array slots (not the number of bytes) between them.

89 // Continuation of code file for DataPack programs. pack.c
90 // ------------------------------------------------------------------------
91 // Print array values, one per line, to the selected stream.
92
93 void
94 printData( DataPack* pData, stream outstream )
95 {
96 for( int k=0; k < pData->n; ++k)
97 fprintf( outstream, OUT_FMT, pData->store[k] );
98 }
99

100 // ------------------------------------------------------------------------
101 // Generic insertion sort using a DataPack.
102 // Sort n values starting at pData->store by an insertion sort algorithm.
103
104 void
105 sortData( DataPack* pData )
106 {
107 BT* const end = pData->store + pData->n; // Off-board sentinel.
108 BT* pass; // First unsorted item; begin pass here.
109 BT newcomer; // Data value being inserted.
110 BT* hole; // Array slot containing no data.
111
112 for ( pass=pData->store+1; pass<end; ++pass ) {
113 // Pick up next item and insert into sorted portion of array.
114 newcomer = *pass;
115 for ( hole=pass; hole>pData->store; --hole ) {
116 if ( *(hole-1) <= newcomer ) break; // Insertion slot is found.
117 *hole = *(hole-1); // Move item back one slot.
118 }
119 *hole = newcomer;
120 }
121 }

Printing the data. Some sort of output function is usually necessary in an application. It is also essential
during debugging, and therefore is one of the first functions written for a new data structure.

1. The printData() function (lines 93. . . 98) is simpler than readData() because we know at the outset how
much data is in the array and that does not change, and because there is no need to check for errors or
end-of-file. This makes a simple for loop (line 96) and subscripts (line 97) an attractive alternative to a
cursor for scanning through the array values.

2. Lines 89. . . 91 are a loop that calls fprintf() using the format string defined at the top of the program.

Sorting by insertion. The sortData() function (lines 104. . . 121) implements insertion sort, the most effi-
cient of the simple sorts (and reasonable to use in practice for small arrays, perhaps up to size 8 or so). This
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is a typical double-loop implementation of the insertion sort algorithm. The implementation uses pointers, not
subscripts, which slightly increases efficiency.

1. Each declaration has a comment that explains the usage of the variable. Note the use of brief, imaginative,
meaningful variable names. This makes a huge difference in the readability of the code. In contrast, code
is much harder to understand when it is written using identifiers like i and j for loop indices.

2. As in the previous functions, the pointer named end points at the first memory location that is not in the
array being sorted.

3. At all times, the array is divided into two portions: a sorted portion (smaller subscripts) and an unsorted
portion (larger subscripts). Initially, the sorted part of the array contains one element, so the sorting loop
(lines 112. . . 120) starts with the element at data[1].

4. The algorithm makes N − 1 passes over the data to sort N items. On each pass through the outer loop,
it selects and copies one item (the newcomer, line 114) from the beginning of the unsorted portion of the
array, leaving a hole that does not contain significant data.

5. The inner loop (lines 115. . . 118) searches the sorted portion of the array for the correct slot for the new-
comer. The for loop is used to guard the boundaries of the array. Within the loop body, an if...break,
line 116, is used to leave the loop when the correct insertion slot is located.

6. To find that position, the loop scans backwards through the array, comparing the newcomer to each
element in turn (line 116). If the newcomer is smaller, the other element is moved into the hole (line 117)
and the hole pointer is decremented by the loop (line 118).

7. If the newcomer is not smaller, we break out of the inner loop and copy the newcomer into the hole (line
119).
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Chapter 3: C++ I/O for the C Programmer

How to learn C++:

Try to put into practice what you already know, and in so doing you will in good time
discover the hidden things which you now inquire about.
— Henry Van Dyke, American clergyman, educator, and author.

3.1 Familiar Things in a New Language

In C, scanf() and printf() are only defined for the built-in types and the programmer must supply a format
field specifier for each variable read or printed. If the field specifier does not agree with the type of the variable,
garbage will result.

In contrast, C++ supports a generic I/O facility called “C++ stream I/O”. Input and output conversion
are controlled by the declared type of the I/O variables: you write the same thing to output a double or a string
as you write for an integer, but the results are different. This makes casual input and output easier. However,
controlling field width, justification, and output precision is a pain in C++. The commands to do these jobs
are wordy, non-intuitive, and cannot be combined on the same line with ordinary output commands. You can
always use C formatted I/O in C++; you may prefer to do so if you want easy format control. Both systems
can be, and often are, used in the same program. However, in this class, please use only C++ I/O.

This section is for people who know the stdio library in C and want convert their knowledge to C++ (or
vice-versa). Several I/O tasks are listed; for each the C solution is given first, followed by the C++ solution.
Code fragments are given to illustrate each item. Boring but accurate short programs that use the commands
in context are also supplied.

3.2 Include Files

C: #include <stdio.h>
C++:

• #include <iostream> for interactive I/O.

• #include <iomanip> for format control.

• #include <fstream> for file I/O.

• #include <sstream> for strings that emulate streams.

• using namespace std; to bring the names of included library facilities into your working namespace.

3.3 Streams and Files

A stream is an object created by a program to allow it to access a file, socket, or some other source or destination
for data.

Predeclared streams:

• C: stdin, stdout, stderr

• C++: cin, cout, cerr, clog

• The C++ streams cin and cout share buffers with the corresponding C streams. The streams stderr
and cerr are unbuffered. The new stream, clog is used for logging transactions.

19
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Stream handling. When a stream is opened, a data structure is created that contains the stream buffer,
several status flags, and all the other information necessary to manage the stream.

• C: typedef FILE* stream; /* Or include tools.h. */
stream fin, fout;
fout = fopen( "myfile.out", "w" ); /* Open stream for writing. */
fin = fopen( "myfile.in", "r" ); /* Open stream for reading. */
if (fin == NULL) /* Test for unsuccessful open. */
if (feof( fin )) /* Test for end of file. */

• C++: Stream classes are built into C++; a typedef is not needed. There are several stream classes that
form a class hierarchy whose root is the class ios. This class defines flags and functions that are common
to all stream classes. Below that are the two classes whose names are used most often: istream for input
and ostream for output. The predefined stream cin is an istream; cout, cerr, and clog are ostreams.
These are all sequential streams–data is either read or written in strict sequential order. In contrast, the
iostreams permit random-access input and output, such as a database would require. Below all three of
these main stream classes are file-based streams and strings that emulate streams.

ios

istream ostream

ofstreamifstream fstream

ios_basestreambuf

iostream

ostringstreamistringstream stringstream
Figure 3.1: The stream type hierarchy.

Each class in the stream hierarchy is a variety of the class above it. When you call a function that is
defined for a class high in the tree, you can use an argument of any class that is below that. For example,
if fin is an ifstream (which is used for an input file) you can call any function defined for class istream
or class ios with fin as an argument.

ofstream fout ( "myfile.out" ); // Open stream for writing.
ifstream fin ( "myfile.in" ); // Open stream for reading.
fin.open( "myfile.in" ); // Alternate way to open a stream.
fin.close(); // Close a stream--not usually necessary.
if (!fin) fatal(...); // Test for unsuccessful open.
if (fin.eof()) break; // Test for end of file.
if (fin.good()) ... // Test for successful read operation.
if (fin.fail()) ... // Test for hardware or conversion error.

The stream declaration and open statement are combined in one line. The second declaration shown above
is supposed to work, and works on my system. If the file does not exist, it is not created, and the if
statement on the fifth line is used to handle the error. According to one student, though, this does not
work properly in Visual C++ 4.1. If the file does not exist, this command creates it. To avoid creation of
an empty file, he must open the file with the flag ios::nocreate, thus:

ifstream in ( "parts.in", ios::nocreate | ios::in ); // For Visual C++ ?
if (!in) fatal( "Could not open file parts.in" );

Closing streams. In both languages, streams are closed automatically when the program terminates.
To close a stream prior to the end of the program:

– In C: fclose( fin );

– In C++: fin.close();
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3.3.1 Common Stream Errors, Misconceptions, and Problems

Stream ties: cout is tied to cin, that is, whenever the cout buffer is non-empty and input is called for
on cin, cout is automatically flushed. This is also true in C: stdout is tied to stdin. Both languages
were designed this way so that you could display an input prompt without adding a newline to flush the
buffer, and permit the input to be on the same line as the prompt.

Flushing streams. The standard fflush() function in C applies only to output streams. Some
students have the belief that you can also flush a C input stream; this might be true in some nonstandard
implementation, but it is not true according to the C standard.

In C++, flush is technically a manipulator, not a function, but it also applies only to ostreams. The
tools.cpp library contains a definition of flush as a manipulator for istreams. This allows the program-
mer to leave the input buffer in a predictable state: empty. It is primarily useful for handling errors during
interactive input.

// --------------------------------------------------------------
// Flush cin buffer as in cin >>x >>flush >>y; or cin >> flush;
istream&
flush( istream& is ) { return is.seekg( 0, ios::end ); }

End-of-file and error processing. In both C and C++, the end-of-file flag does not come on until
you attempt to read data beyond the end of a file. The last line of data can be read fully and correctly
without turning on the end-of-file flag. Therefore, an end-of-file test should be made between reading the
data and attempting to process it. The cleanest, most reliable, simplest way to do this is by using an
if...break statement to leave the input loop. The short program at the end of Section 3.6 shows how
to test for hardware and format errors as well as eof.

3.4 Input

The following variables will be used throughout this section and the next:

char c1; int k1, k2;
short n1, n2; long m1, m2;
float x1, x2; double y1, y2;
char* word2 = "Polly"; char w1[80], w2[80], w3[80];
float* px1= &x1, *px2= &x2;

Numeric input. Basic operations are shown in the table below for both C and C++. Note how simple
basic input is when using the C++ stream operators >> and <<. All of the operations in this table skip
leading whitespace. It is not necessary and not helpful to do your own number conversion using atoi or
strtol. Learn to use the stream library as it was intended!

The table below shows the normal way to read numbers. This works properly if the input is correct.
However, it will cause problems if anything other than a number is in the input stream when a number
is expected. If a non-numeric character is found while attempting a numeric read, the input stream will
signal an error. A bullet-proof program tests the stream status flag using good() or fail() to detect such
errors. To recover, use clear(). An example of read-error detection and proper error handling is shown
at the bottom of the eof_demo program.
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Type In C In C++
int scanf("%i%d", &k1, &k2); cin >> k1 >> k2;
long scanf("%li%ld", &m1, &m2); cin >> m1 >> m2;
short scanf("%hi%hd", &n1, &n2); cin >> n1 >> n2;
float scanf("%f%g ", &x1, &x2); cin >> x1 >> x2;
double scanf("%lf%lg", &y1, &y2); cin >> y1 >> y2;

Single character input. Stream operator: >>. Function: get(char_var).

Operation In C In C++
Read next keystroke scanf("%c", &c1); cin.get(c1);
Skip leading whitespace scanf(" %c", &c1); cin >> c1;

String input. Functions: ignore(n), getline( buf, limit ), get( buf, limit, terminator ),
and getline( buf, limit, terminator ). Manipulator: ws.

Operation In C In C++
Skip leading whitespace,

stop reading at next ws,
no limit on string length:
DO NOT DO THIS. scanf("%s", w1); cin >> w1;

Read up to first comma: scanf("%79[^,]", w1); cin.get(w1, 80, ’,’);
Read to and remove comma: scanf("%79[^,],", w1); cin.getline(w1, 80, ’,’);
Read line including \n: fgets(fin, w1, 79); fin.getline(w1, 80);
Read line excluding \n: scanf("%79[^\n]", w1); cin.get(w1, 80);
... remove the newline (void)getchar(); cin.ignore(1);
... or cin >> ws;
Allocate space for string malloc(1+strlen(w1));
... after get() new char[1+fin.gcount()];
... after getline() new char[fin.gcount()];

Note that the operations that use >> can be chained (combined in one statement) but those based on
get() and getline() cannot. A single call on one of these functions is a complete statement

Using get() and getline(). Two input functions, get() and getline() are defined for class istream
and all its derived classes. The difference is that getline() removes the delimiter from the stream
and get() does not. Therefore, after using get() to read part of a line (up to a specified terminating
character), you must remove that character from the input stream. The easiest way is to use ignore(1).

After any read operation, the stream function named gcount() contains the number of characters actually
read and removed from the stream. Saving this information (line 36 of the demonstration program at the
end of this chapter) is useful when your program dynamically allocates storage for the input string, as in
lines 40 and 41. The value returned by gcount() after using getline() will be one larger than the result
after calling get() to read the same data.

Whitespace. When you are using >>, leading whitespace is automatically skipped. However, before reading
anything with get() or getline(), whitespace must be skipped unless you want the whitespace in the input.
Use ws for this purpose, not ignore(). This skips any whitespace that may (or may not) be in the input stream
between the end of the previous input operation and the first visible keystroke on the current line. Usually, this
is only one space, one tab, or one newline at the end of a prior input line. However, it could be more than one
keystroke. By removing the invisible material using ws you are also able to remove any other invisible stuff that
might be there.
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3.5 Output

The C++ output stream, cout, was carefully defined to be compatible with the C stream, stdout: they write to
the same output buffer. If you alternate calls on these two streams, the output will appear alternately on your
screen. However, unless there is a very good reason, it is better style to stick to one set of output commands in
any given program.

Simple types, pointers, and strings. The table shows alternative output format specifiers for several types.
It uses the stream operator: << and the stream manipulators hex, dec, and endl. Note that the string "\n",
the character ’\n’, and the manipulator endl can all be used to end a line of output. For screen output they
are equivalent. However, for file output there is one difference: the manipulator flushes the output stream; the
character and string do not.

Type Lang. Function call.
Numeric: C printf("c1= %c k1= %i n1= %hd m1= %ld x1= %g y1= %g\n",

c1, k1, n1, m1, x1, y1);
Numeric: C++ cout <<"c1=" <<c1 <<" k1=" <<k1 <<" n1=" <<n1

<<" m1=" <<m1 <<" x1=" <<x1 <<" y1=" <<y1 <<"\n";

char[] or C printf("%s...%s %s\n", word, w2, w3);
char* C++ cout <<word <<"..." <<w2 <<" " <<w3 <<’\n’;

pointer in C printf( "%p \n", px1 );
hexadecimal C++ cout <<px1 <<endl;

ints in C printf( "%x %x \n", k1, k2 );
hexadecimal C++ cout <<hex <<k1 <<’ ’ <<k2 <<dec <<endl;

Output in hexadecimal notation. Manipulators are used to change the setting of a C++ output stream.
When created, all streams default to output in base 10, but this can be changed by “sending” the manipulator
hex to the stream. Once the stream is put into hex mode it stays in hex until changed back by the dec
manipulator.

Field width, fill, and justification. This table shows how to use the formatting functions setw(),
setfill() and setf(). You must specify field width in C++ separately for every field. However, the jus-
tification setting and the fill character stay set until changed. Changing the justification requires a separate
function call; setf() cannot be used as part of a series of << operations.

Style How To Do It
In C, 12 columns, default justification (right). printf("%12i %12d\n", k1, k2);
In C++, 12 cols, default justification (right). cout <<setw(12) <<k1 <<" " <<k2;

In C, k1 in 12 cols, k2 in default width. printf("%12i %d\n", k1, k2);
In C++, k1 12 cols (. fill), k2 default width cout <<setw(12) <<setfill(’.’)

<<k1 <<k2 <<endl;
In C, two variables, 12 columns, left justified. printf("%-12i%-12d\n", k1, k2);
In C++, twice, 12 columns, left justified. cout <<left <<setw(12) <<k1 <<setw(12) <<k2 <<endl;

In C++, 12 columns, right justified, -fill. cout <<right <<setw(12) <<setfill(’-’) <<k1 <<endl;

Floating point style and precision. This table shows how to control precision and notation, which can be
fixed point, exponential, or flexible . All of these settings remain until changed by a subsequent call.
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Style HowTo Do It
Default notation & precision (6) C printf( "%g %g\n", y1, y2 );

C++ cout <<y1 <<’ ’ <<y2 <<endl;

Change to precision=4 C printf( "%.4g %.4g\n", y1, y2 );
C++ cout << setprecision(4) <<y1 <<’ ’ <<y2 <<endl;

Fixed point, no decimal places C printf( "%.0f \n", y1 );
C++ cout <<fixed <<setprecision(0) <<y1 <<endl;

Scientific notation, default precision C printf( "%e \n", y1 );
C++ cout <<scientific <<y1 <<endl;

Scientific, 4 significant digits C printf( "%.4e \n", y1 );
C++ cout <<scientific << setprecision(4) <<y1 <<endl;

Return to default %g format C++ cout.setf( 0, ios::floatfield );

The old notation. Older C++ compilers may not support the manipulators fixed, scientific, right,
and left. If your compiler gives errors on these manipulators, you may need to use the older notation shown
below.

Right justification: fout.setf(ios::right, ios::adjustfield);
Left justification: fout.setf(ios::left, ios::adjustfield);
Fixed point notation. fout.setf(ios::fixed, ios::floatfield);
Scientific notation. fout.setf(ios::scientific, ios::floatfield);

3.6 I/O and File Handling Demonstration

In this section, we give a program that uses many of the stream, input, and output facilities in C++. It should
serve as a model for you in writing correct and robust file-handling programs. The main programis given first,
followed by an input file , the corresponding output, and a header/code file pair that defines a structure named
Part and its associated functions. Program notes are given after each file.

The main program.

1 #include "Part.hpp"
2
3 //---------------------------------------------------------------------
4 int main( void )
5 {
6 Part inventory[N];
7 ifstream instr( "parts.in" );
8 if ( !instr ) fatal( "Cannot open parts file %s", "parts.in" );
9

10 cerr << "\nReading inventory from parts input file.\n";
11 int n = get_parts( instr, inventory ); // Bad style!
12 instr.close();
13
14 cerr <<n <<" parts read successfully.\n\n";
15 print_parts( cout, inventory, n );
16 bye();
17 }
18

• Line 7 declares and opens the input stream; line 12 closes it. It is not necessary to close files explicitly;
program termination will trigger closure. However, when you finish using a file during an early phase of
program execution, it is a good practice to close it.
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• This is a typical main program for C++: it delegates almost all activity to functions and provides output
before every major step so that the user can monitor progress and diagnose malfunction.

• An integer variable is declared in the middle of the code on line 11. This is legal in C++, but is not really
a good style to follow. This variable should probably be declared before line 7.

• Note that there is no return statement at the end of the main function. This is legal in C++ and follows
the style used by some experts. Use the return statement at the end of main if your compiler gives warnings
about omitting it. (Mine does not give an error comment.)

Input. In the input file, each data set should start with a part description, terminated by a comma and
followed by two integers. The program should not depend on the number of spaces before or after each numeric
field. The last line of the file should end in a newline character.

claw hammer, 57 3 9.99
claw hammer, 3 5 10.885
long nosed pliers, 57 15 2.34
roofing nails: 1 lb, 3 173 1.55
roofing nails: 1 lb, 57 85 1.59

Output. Using the given input file, the output looks like this:

Reading inventory from parts input file.
5 parts read successfully.

claw hammer..............57 3 9.99
claw hammer..............3 5 10.89
long nosed pliers........57 15 2.34
roofing nails: 1 lb......3 173 1.55
roofing nails: 1 lb......57 85 1.59

Normal termination.

The header file. part.hpp.

24 /* ----------------------------------------------------------------------
25 // Header file for hardware store parts. Part.hpp
26 // Created by Alice Fischer on Mon Dec 29 2003.
27 */
28 #include "tools.hpp"
29 #define BUFLENGTH 100 // Maximum length of the name of a part
30 #define N 1000 // Maximum number of parts in the inventory
31
32 struct Part{
33 char* part_name;
34 int store_code, quantity;
35 float price;
36 };
37
38 int get_parts( ifstream& fin, Part* data );
39 void print_parts( ostream& fout, Part* inventory, int n );

• The file tools.hpp includes all of the standard C and C++ header files that you are likely to need. If you
include the tools source code file or the tools header file, you do not need to include the standard libraries.
It also contains the line using namespace std;.

• Two constants are defined here because they are required by one of the two Part functions. The main
program also uses N.

• In C++, you can use struct (line 32) without a typedef and without writing the keyword struct every
time you use the type name. Note the syntax used in lines 6, 38, 39, etc.

• Note the ampersands in the second and third prototypes. They indicate that the stream parameters
are passed by reference (not by value or by pointer). Most input and output functions take a stream
parameter, and it is always a reference parameter.
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The implementation file, part.cpp.

24 /* ----------------------------------------------------------------------
25 // Implementation file for hardware store parts. Part.cpp
26 // Created by Alice Fischer on Mon Dec 29 2003.
27 */
28 #include "Part.hpp"
29 //---------------------------------------------------------------------
30 int
31 get_parts( ifstream& fin, Part* data ) {
32 char buf[BUFLENGTH];
33 int len; // Length of input string.
34 Part* p = data; // Cursor to traverse data array.
35 Part* pend = p+N; // Off-board pointer to end of array.
36
37 while (p<pend) {
38 fin >> ws;
39 if (fin.eof()) break;
40 fin.getline( buf, BUFLENGTH, ’,’ );
41 len = fin.gcount();
42 fin >> p->store_code >> p->quantity >> p->price;
43
44 if (fin.good()) { // All required data items were read.
45 p->part_name = new char[len];
46 strcpy( p->part_name, buf );
47 ++p; // Position cursor for next input.
48 }
49 else {
50 fin.clear();
51 cerr <<"Error reading line " <<(p-data+1) <<":\n"
52 <<" Before error: " <<buf <<" "
53 <<p->store_code <<" " <<p->quantity <<endl;
54 fin.getline( buf, BUFLENGTH ); // Skip rest of defective line.
55 cerr <<" After error: " <<buf <<endl;
56 }
57 }
58 return p - data; // Number of data lines read correctly and stored.
59 }
60
61 //------------------------------------------------------------------
62 void
63 print_parts( ostream& fout, Part* inventory, int n ){
64 Part* p = inventory;
65 Part* pend = inventory+n;
66
67 for ( ; p<pend; ++p) {
68 fout <<left <<setw(25) <<setfill(’.’) <<p->part_name;
69 fout <<setw(3) <<setfill(’ ’) <<p->store_code;
70 fout <<right <<setw(5) <<p->quantity;
71 fout <<fixed <<setw(8) <<setprecision(2) <<p->price <<endl;
72 }
73 }

Input: get_parts. This function attempts to read the input file no matter what errors it may contain. If an
error is discovered while reading a data set, the entire data set is skipped and the input stream is flushed up to
the next newline character. The faulty input is reported.

• We use pointers to process the data array. In C++, as in C, pointers are simpler and more efficient to
use than subscripts for sequential array processing. This function uses the normal pointer paradigm for
an input function:

– Line 34 sets a local cursor, p, to the head of the data array and line 35 sets a stationary pointer,
pend, to the first address that is not part of the array.
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– The processing loop (lines 37. . . 57) processes each array slot sequentially and increments the cursor
(line 47) if good data is received.

– Processing continues until the array becomes full (line 37, while (p<pend)) or until the end of the
input file is reached. (The test is on line 39).

• Line 38 removes leading whitespace from the input stream. This is necessary before using get() or
getline() in order to eliminate the newline character that terminated the previous line of input. If no
whitespace is present in the stream, no harm is done. The I/O operator does remove leading whitespace,
but we cannot use >> to read the part name because it stops reading at the first space and parts are often
given names with multiple words.

• Line 39 breaks out of the input loop when end of file is encountered. This is the appropriate time to test
for end of file because (a) we know there is no data, good or bad, to be processed and (b) the act of reading
in all the whitespace will turn on the eof flag. This works whether or not there is a newline character on
the last line of input, and whether or not the file is empty. DO NOT put your end-of-file test inside the
while test on line 32.

• Line 40 reads characters from the input stream into the array named buf. Reading stops at the first
comma, which is read but not stored in the input array. Instead, a null terminator is stored in the array.
If a comma is found, fin.good() will be true. If no comma is found in the first BUFLENGTH-1 characters,
the read operation will stop and fin.fail() will be true.

• Line 41 sets len to the actual number of characters that were read and removed from the input stream.
This number should be stored before doing any more input operations. After using getline(), it is the
correct array length to use for allocating storage for the input string. (After calling get(), you need to
add one to get the allocation length.) Lines 45 and 46 allocate storage, attach it to the Part array, and
copy the input into it.

• Line 42 reads and stores three numbers. Whitespace before each number is automatically skipped.

• Line 44 tests whether all preceding input requests were successful. If so, we know that we have all four of
the data fields needed to create a new part. Allocation was deferred until the input line was validated to
avoid a problem known as a “memory leak”. We want to be sure that all dynamically allocated storage is
attached to the data array, so that it can be located and deallocated properly at a later time.

• Lines 49. . . 56 handle errors. Control could come here because of a hardware error or because one of the
data fields is missing. In either case, error recovery has two steps:

– Line 45 calls fin.clear() to reset the error flags in the stream data structure. This must be done
before normal operation can resume.

– Line 49 clears the rest of the current line out of the input stream, in an effort to resynchronize the
program and data. This code assumes that each data line ends in a newline character, so skipping
to the next newline will position the file at the beginning of a data item.

– In a real application, it can be important to know what data has been processed and what has been
skipped because of errors. Lines 51. . . 53 and 55 print all data that has not been processed on the
cerr stream. This gives the user the information necessary to correct any errors.

• At any time, we can use pointer subtraction to compute the number of items that have been correctly
stored in the array; simply subtract the pointer to the head of the array from the cursor. We return this
value to the main program for use in all further processing of the data. There is no need to maintain a
separate counter.

Output: print_parts. The input file was not formatted in neat columns. To make a neat table, we must
be able to specify, for each column, a width that does not depend on the data printed in that column. Having
done so, we must also specify whether the data will be printed at the left side or the right side of the column,
and what padding character will be used to fill the space. In C, we can control field width and justification (but
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not the fill character) by using an appropriate format. This lets us use a single printf() statement to print an
entire line of the table (with the space character used as filler).

C++ I/O does not use formats, but we can accomplish the same goals with stream manipulators. However,
we must use a series of operations that that control each aspect of the format independently. The output loop,
below, illustrates the use of the formatting controls.

• The paradigm for an array output function is simpler than an array input function: we know that n data
items must be printed, so the print loop is executed exactly n times. No validity checking or eof tests are
necessary.

• To make the code layout easier to understand, this function formats and prints one output value per line
of code.

• To print data in neat columns, the width of each column must be set individually. Lines 66, 67, and 70,
and 71 use setw() to control the width of the four columns.

• Right justification is the default. This is appropriate for most numbers but is unusual for alphabetic
information. We set the stream to left justification (line 68) before printing the part name. In this
example, the first column of numbers (store_code) is also printed using left justification, simply to
demonstrate what this looks like. The stream is changed back to right justification for the third and
fourth columns.

• The default fill character is a space, but once this is changed, it stays changed until the fill character is
reset to a space. For example, line 66 sets the fill character to ’.’, so dot fill is used for the first column.
Line 67 resets the filler to ’ ’, so spaces are used to fill the other three columns.

• The price is a floating point number. Since the default formatting (%g with six digits of precision) is not
acceptable, we must supply both the style (fixed point) and the precision (2 decimal places) that we need.
Right justification and space as a fill character remain set from lines 70 and 69, but the field width must
be supplied for every field.

Bad files. If the error and end-of-file tests are made in the right order, it does not matter whether the file
ends in a newline character or not. (This will be covered in detail in the next section.) The output without a
final newline is the same as was shown, above, for a well formed file. The result of running the program on an
empty file is:

Reading inventory from parts input file.
0 parts read successfully.

Bad data. Suppose we introduce an error into the file by deleting the price on line three. The output becomes:

Reading inventory from parts input file.
Error reading line 3:

Before error: long nosed pliers 57 15
After error: roofing nails: 1 lb, 3 173 1.55

3 parts read successfully.

claw hammer..............57 3 9.99
claw hammer..............3 5 10.89
roofing nails: 1 lb......57 85 1.59

The actual error was a missing float on the third line of input. The error is discovered when there is a type
mismatch between the expectation (a number) and the ’r’ on the beginning of the fourth line. Because of the
type mismatch, nothing is read in for the price, and the value in memory is set to 0. The faulty data is printed.
Then the error recovery effort starts and wipes out the data on the line where the error was discovered. Details
of the operation of the error flags are covered in the next section.
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3.7 End of File and Error Handling

3.7.1 Using the command line.

Command-line arguments allow the programmer to select a data file at the time the command is given to run
the program. This is especially useful when you wish to test the program with two different input files, as in
the next program example. There are two ways to use file names as command line arguments:

1. Run the program from a command shell and type the file names after the name of the executable program.

2. In an integrated development environment (IDE), find a menu item that pops up a window that controls
execution and enter the file names in the space provided. The location of these windows varies from one
IDE to another, but the principle is always the same.

The program in this section illustrates how to use these arguments.

In main(): Command-line arguments and file handling.

1. Line 136 declares that the program expects to receive arguments from the operating system. If you have
never seen command-line arguments, refer to Chapter 22 of Applied C, the text used in our C classes.

2. Line 140 lets us know that the user should supply two file names on the command line. Lines 142 and
144 pick up these arguments and use them to open two input streams. It is a good idea to open all files
at the beginning of the program, especially if a human user will be entering data. There is nothing more
frustrating that working for a while and then discovering that the program cannot proceed because of a
file error.

3. Lines 143 and 145 test both streams to be sure they are properly open.

130 //--------------------------------------------------------------------------------
131 // C++ demonstration program for end of file and error handling.
132 // A. Fischer, April 2001 file: main.cpp
133 #include "tools.hpp"
134 #include "funcs.hpp"
135
136 int main( int argc, char* argv[] )
137 {
138 banner();
139 // Command line must give the name of the program followed by 2 file names.
140 if (argc < 3) fatal( "Usage: eof_demo textfile numberfile" );
141
142 ifstream alpha_stream( argv[1] );
143 if (! alpha_stream) fatal( "Cannot open text file %s", argv[1] );
144 ifstream num_stream( argv[2] );
145 if (! num_stream) fatal( "Cannot open numeric file %s", argv[2] );
146
147 cout <<"\nIOstream flags are printed after each read in order:\n"
148 <<"goodbit : eofbit : failbit : badbit :\n";
149
150 use_get( alpha_stream );
151
152 alpha_stream.close(); // Close file.
153 ifstream new_stream ( argv[1] ); // Re-open the file to use it again.
154 if (! new_stream) fatal( "Cannot open text file %s", argv[1] );
155
156 use_getline( new_stream );
157 use_nums( num_stream );
158 }

4. Line 152 closes the input stream so that we can open it again and start all over using getline() instead
of get().

5. Line 153 reopens the stream using an additional parameter that seems to be necessary in Visual C++ but
is optional according to the standard and in other C++ compilers that I use.
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6. This program calls three functions that illustrate end-of-file and error handling with three different kinds
of read operations. The numeric input file is shown in the next section with the function that processes
it.

7. End-of-file handling interacts with error handling and with the way the data file ends. Two text files were
used to test this program: one with and the other without a newline character on the end of the last line.
The two text files and the output generated from each are shown after the code for the two functions.

3.7.2 Reading Lines of Text

It is possible to check for errors after reading from an input stream. If this is not done, and a read error or
format incompatibility occurs, both the input stream and the input variable may be left containing garbage.
After detecting an input error, you must clear the bad character or characters out of the stream and reset the
stream’s error flags. The program in this section shows how to detect read errors and handle end-of-file and
other stream exception conditions.

A function that uses get() to read lines of text. There is only one difference in the operation of get()
and getline(): the first does not remove the terminating character from the input stream, the second does.
However, this small difference affects end-of-file and error handling. This pair of examples is provided to show
the differences and to provide guidance about handling them.

159 //================================================================================
160 // The get function leaves the trailing \n in the input stream.
161 // A. Fischer, April 2001 file: get.cpp
162 //--------------------------------------------------------------------------------
163 #include "tools.hpp"
164
165 void use_get( istream& instr )
166 {
167 cout <<"\nUsing get to read entire lines.\n";
168 char buf[80];
169 while (instr.good() ){
170 instr >> ws; // Without this line, it is an infinite loop.
171 instr.get( buf, 80 );
172 cout <<instr.rdstate() <<" = ";
173 cout <<instr.good() <<":" <<instr.eof() <<":" <<instr.fail() <<":"
174 <<instr.bad() <<": ";
175 if (!instr.fail() && !instr.bad()) cout << buf << endl;
176 }
177 if ( instr.eof() ) cout << "-----------------------------------\n" ;
178 else cout << "Low-level failure; stream corrupted.\n" ;
179 }

Notes on the use_get() function.

1. Line 169 demonstrates the use of an eof and error test as the while condition. The good() function tests
for both eof and errors, so it is safer to use than the more common while (!instr.eof()).

2. Line 171 demonstrates the use of get(). The error flags are printed immediately after the read operation
and before the line is echoed. The output shows that three read operations were performed, altogether.
The third read went past the end of the file and caused the stream’s eof flag to be set.

3. The good() function returns true (which is printed as 1) when none of the three exception flags are turned
on. The fail() function returns a true result if no good data was processed on the prior operation. The
bad() function returns true if a fatal low level IO error occurred, and the eof() function returns true when
and end-or-file condition has occurred. These status bits remain set until explicitly cleared.

As shown in the output, eof() can be true when good data was read, and also when no good data was
read. (fail() is true).
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4. On Line 172, we print a summary of the error conditions by writing cout << instr.rdstate(). The
state value that is printed is the sum of the values of the stream flags that are set: eofbit=1, failbit=2,
and badbit=4. Thus, when failbit and badbit are both turned on, the value of the state variable is 2 + 4
= 6.

5. Line 174 tests for the presence of good data. The test will be false when the read operation fails to bring
in new data for any reason. We test it before printing or processing the data because we do not want
to process old garbage from the input array. The fail flag was turned on after the fourth read operation
because there was nothing left in the stream.

6. Using data or printing it without checking for input errors is taking a risk. A responsible programmer does
not permit garbage input to cause garbage output. If fail() is true, the contents of the input variable
are unreliable. If they are used after a failed get, the contents of the last correct input operation may be
processed again. (This is a common problem.)

7. When using get() or getline(), the input variable may or may not be cleared to the empty string when
fail() is true. My system does clear it, but I can find no mention of this in my reference books. It may
be up to the compiler designer whether it is cleared or continues to hold the data from the last good read
operation. Until this is clearly documented in reliable reference books, programmers should not depend
on having the old garbage cleared out.

A function that uses getline() to read lines of text.

180 //================================================================================
181 // The getline function removes the trailing \n from the stream and discards it.
182 // A. Fischer, April 2001 file: getline.cpp
183 //--------------------------------------------------------------------------------
184 #include "tools.hpp"
185
186 void use_getline( istream& instr )
187 {
188 cout <<"\nUsing getline to read entire lines.\n";
189 char buf[80];
190 while (instr.good()) {
191 instr.getline( buf, 80 );
192 cout <<instr.rdstate() <<" = ";
193 cout << instr.good() <<":" << instr.eof() <<":" << instr.fail() <<":"
194 << instr.bad() <<": ";
195 if (!instr.fail()) cout << buf << endl;
196 }
197 cout << "-----------------------------------\n";
198 }

Notes on the use_getline() function.

1. Lines 186. . . 198 demonstrate the use of getline(). Looking at the output, you can see that the third line
was processed, whether or not it ended in a newline character. However, the outputs are not identical.
The eofbit is turned on after the third line is read if it does not end in a newline, and after the fourth
read if it does. This makes it very important to read, test for eof, and process the data in the right order.

2. When using getline(), good data and end-of-file can happen at the same time, as shown by the last line
of output on the left. Therefore, we must make the test for good data first, process good data (if it exists)
second, and make the eof test third. Combining the two tests in one statement, anywhere in the loop will
cause errors under some conditions.

3. In this example, we read the input, print the flags, then test whether we have good input before printing
it. In the use_get() function, we tested for both kinds of errors. A less-bullet-proof alternative would be
to take a risk, and not test for low-level I/O system errors. Since these are rare, we usually do not have a
problem when we omit this test. Code that implements this scheme would be:

while(instr.good()) {
instr.getline( buf, 80 );
if (! instr.fail()) { Process the new data here. }

}
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Input files for the EOF and error demo.

The file eofDemo.in:

First line.
Second line.
Third line, without a newline on the end.

The file eofDemo2.in:

First line.
Second line.
Third line, with a newline on the end.

Output from use_get(). Compare the results shown here on files without (left) and with (right) a newline
character on the end of the file. In both cases, the data was read and processed correctly. This is only possible
when the error indicators are checked in the “safe” order, that is, the good() function was called before checking
for eof(). This allows us to capture the good data from the last line. If the outcome flags are checked in the
wrong order, the contents of the last line may be lost. The IOstream flags are printed after each read in this
order: goodbit : eofbit : failbit : badbit.

Output from use_get() reading eofDemo.in.

Using get to read entire lines.
0 = 1:0:0:0: First line.
0 = 1:0:0:0: Second line.
2 = 0:1:0:0: Third line, no newline on end.
-----------------------------------

Output from use_get() with eofDemo2.in.

Using get to read entire lines.
0 = 1:0:0:0: First line.
0 = 1:0:0:0: Second line.
0 = 1:0:0:0: Third line, with newline on end.
6 = 0:1:1:0: -----------------------------------

Output from use_getline() using eofDemo.in.

Using getline to read entire lines.
0 = 1:0:0:0: First line.
0 = 1:0:0:0: Second line.
2 = 0:1:0:0: Third line, no newline on end.
-----------------------------------

Output from use_getline() with eofDemo2.in.

Using getline to read entire lines.
0 = 1:0:0:0: First line.
0 = 1:0:0:0: Second line.
0 = 1:0:0:0: Third line, with newline on end.
6 = 0:1:1:0: -----------------------------------

3.7.3 EOF and error handling with numeric input.

Reading numeric input introduces the possibility of non-fatal errors and the need to know how to recover from
them. Such errors occur during numeric input when the type of the variable receiving the data is incompatible
with the nature of the input data. For example, if we attempt to read alphabetic characters into a numeric
variable.

200 //================================================================================
201 // Handle conflicts between input data type and expected data type like this.
202 // A. Fischer, April 2001 file: getnum.cpp
203 //--------------------------------------------------------------------------------
204 #include "tools.hpp"
205
206 void use_nums( istream& instr )
207 {
208 cout <<"\nReading numbers.\n";
209 int number;
210 for(;;) {
211 instr >> number;
212 cout <<instr.good() <<":" <<instr.eof()<<":"<<instr.fail()<<":"<<instr.bad()<<": ";
213 if (instr.good()) cout << number << endl;
214 else if (instr.eof() ) break;
215 else if (instr.fail()) { // Without these three lines
216 instr.clear(); // an alphabetic character in the input
217 instr.ignore(1); // stream causes an infinite loop.
218 }
219 else if (instr.bad()) // Abort after an unrecoverable stream error.
220 fatal( "Bad error while reading input stream." );
221 }
222 cout << "-----------------------------------\n" ;
223 }

1. Lines 200. . . 221 show how to deal with random numeric input errors. The file errDemo.in has three fully
correct lines surrounding one line that has erroneous letters on it.
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The file errDemo.in:

1
278
45abc
6

Output from get_nums() using errDemo.in:

Reading numbers.
1:0:0:0: 1
1:0:0:0: 278
1:0:0:0: 45
0:0:1:0: 0:0:1:0: 0:0:1:0: 1:0:0:0: 6
0:1:1:0: -----------------------------------

2. The first three numbers are read correctly, and the “abc” is left in the stream, unread, after the third
read. When the program tries to read the fourth number, a conversion error occurs because ‘a’ is not a
base-10 digit. The failbit is turned on but the eofbit is not, so control passes through line 214 to line 215,
which detects the conversion error.

3. Lines 216 and 217 recover from this error. First, the stream’s error flags are cleared, putting the stream
back into the good state. Then a single character is read and discarded. Control goes back to line 210,
the top of the read loop, and we try again to read the fourth number.

4. We cleared only one keystroke from the stream, leaving the “bc”. So another read error occurs. In
fact, we go through the error detection and recovery process three times, once for each non-numeric input
character. On the fourth recovery attempt, a number is read, converted, and stored in the variable number,
and the program goes on to normal completion. Compare the input file to the output: the “abc” just
“disappeared”, but you can see there were three “failed” attempts to read the 6.

5. Because of the complex logic required to detect and recover from format errors, we cannot use the eof test
as part of a while loop. The only reasonable way to handle this logic is to use a blank for(;;) loop and
write the required tests as if statements in the body of the loop. Note the use of the if...break; please
learn to write loops this way.

3.8 Assorted short notes.

Reading hexadecimal data. The line 45abc is a legitimate hexadecimal number, but not a correct base-10
number. Using the same program, we could read the same file correctly if we wrote line 211 as:

instr >> hex >> number; instead of instr >> number;

In this case, all input numbers would be interpreted as hexadecimal and the characters ”abcdef” would be
legitimate digits. The output shown below is still given in base-10 because we did not write cout<<hex on line
199. The results are:

Reading numbers.
1:0:0:0: 1
1:0:0:0: 632
1:0:0:0: 285372
1:0:0:0: 6
0:1:2:0: -----------------------------------

Appending to a file. A C++ output stream can be opened in the declaration. When this is done, the
previous contents of that file are discarded. To open a stream in append mode, you must use the explicit open
function, thus:

ofstream fout;
fout.open( "mycollection.out", ios::out | ios::app );

The mode ios::out is the default for an ofstream and is used if no mode is specified explicitly. Here, we are
specifying append mode, “app”, so we also be write the “out” explicitly.

Reading and writing binary files. The open function can also be used with binary input and output files:

ifstream bin;
ofstream bout;
bin.open( "pixels.in", ios::in | ios::binary );
bout.open( "pixels.out", ios::out | ios::binary );
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Chapter 4: An Introduction to Classes

The most fundamental principles of OO design:

A class protects its members.
A class takes care of itself ... and takes care of its own emergencies
What you SHOULD do with classes is a small subset of what you CAN do.

4.1 Class Basics

A class is used in C++ in the same way that a struct is used in C to form a compound data type. In C++,
both may contain function members as well as data members; the functions are used to manipulate the data
members and form the interface between the data structure and the rest of the program. There is only one
differences between a struct and a class in C++:

• All struct members are public (unprotected) while class members default to private (fully protected).
Privacy allows a class to encapsulate or “hide” members. This ability is the foundation of the power of
object-oriented languages.

The rules for class construction are very flexible; function and data members can be declared with three different
protection levels, and the protections can be breeched by using a friend declaration. Wise use of classes makes
a project easier to build and easier to maintain. But wise use implies a highly disciplined style and strict
adherence to basic design rules.

Public and private parts. The keywords public, protected, and private are used to declare the protection
level of the class members. Both data and function members can be declared to have any level of protection.
However, data members should almost always be private, and most class functions are public. We refer to the
collection of all public members as the class interface. The protected level is only used with polymorphic
classes.

The Form of a Class Declaration Figure 4.1 illustrates the general form of a class declaration, normally
found in a .hpp file. Figure 4.1 shows a skeleton of the corresponding class implementation, normally kept in
a .cpp file. The implementation (.cpp) supplies full definitions for class functions that were only prototyped
within the class declaration (.hpp). The comments, below, are a collection of basic facts about class structure
and usage.

4.1.1 Data members.

Like a struct, a class normally has two or more data members that represent parts of some real-world object.
Also like a struct, a data member is used by writing an object name followed by a dot and the member
name. Data members are normally declared to be private members because privacy protects them from being
corrupted, accidentally, by other parts of the program. Taken together, the data members define the state of
the object.

• Please declare data members at the top of the class. Although they may be declared anywhere within
the class, your program is much easier for me to read if you declare data members before declaring the
functions that use them.

• In managing objects, it is important to maintain a consistent and meaningful state at all times. To achieve
this, All forms of assignment to a class object or to any of its parts should be controlled and validated by
class functions. As much as possible, we want to avoid letting a function outside the class assign values to
individual class members one at a time. For this reason, you must avoid defining “set” functions in your
classes.

35
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#include "tools.hpp"
class Mine {

//-------------------------------------------------------------------
// Documentation for author, date, nature and purpose of class.
//-------------------------------------------------------------------

public:   // -----------------------------------------------------

private:  // -----------------------------------------------------
Put all data members here, following the format:
TypeName  variableName;                    // Comment on purpose of the data member

Put private function prototypes here and definitions in the .cpp file.
Or put the entire private inline function definitions here.

Mine (param list){                                   // constructor
    initialization actions
}
~Mine() {   ...  }                                       // destructor
ostream& print ( ostream& s );                // print function, defined in .cpp file
Put other interface function prototypes and definitions here.

};
friend class and friend function declarations, if any;

inline ostream& operator<<(ostream& st, Mine& m){ return m.print(st); }

#fndef MINE
#define MINE

#endif

Figure 4.1: The anatomy of a class declaration.

// Class name, file name and date.

// ---------------------------------------------------------------
ostream&                                                                 // Every class should implement print().
Mine::print ( ostream& s ) {
    Body of print function.
}

// ---------------------------------------------------------------
// Documentation for interface function A.
returnType                                                               // Put return type on a separate line.
Mine :: funA(param list) {                                      // Remember to write the class name.
    Body of function A.
}

// ---------------------------------------------------------------
// Documentation for interface function B.
returnType                                                               // Documentation for return value.
Mine :: funB(param list) {
    Body of function B.
}

#include "mine.hpp"

Figure 4.2: Implementation of the class “Mine”.

• Read only-access to a private data member can be provided by a “get” function that returns a copy of
the member’s value. In the example class, we can provide read-only access to the data member named
name1, by writing this public function member: const type1 get_name1(){ return name1; }

In this function, the const is needed only when type1 is a pointer, array, or address; for ordinary numbers
it can be omitted.
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• Some OO books illustrate a coding in which each private data member has a corresponding public function
“set” function to allow any part of the program to assign a new value to the data member at any time.
Do not imitate this style. Public “set” functions are rarely needed and should not normally be defined.
Instead, the external function should pass a set of related data values into the class and permit class
functions to validate them and store them in its own data members if they make sense.

4.1.2 Functions

Operators are functions. In C and Java, functions and operators are two different kinds of things. In
C++, they are not different. All operators are functions, and can be written in either traditional infix operator
notation or traditional function call notation, with a parenthesized argument list. Thus, we can add a to b in
two ways:

c = a + b;
c = operator +(a, b);

Functions and methods In C, a function has a name and exactly one definition. In C++, a function has a
name and one or more definitions. Each definition is called a method of the function. For example, the close()
function has a method for input streams and a method for output streams. The two methods perform the same
function on different types of objects.

Similarly, operator+ is predefined on types int and double, and you may add methods to this function for
numeric types you create yourself, such as complex. Part of the attraction of OO languages is that they support
generic programming: the same function can be defined for many types, with slightly different meanings, and
the appropriate meaning will be used each time the function is called.

At compile time1, the C++ system must select which method to use to execute each function call. Selection
is made by looking for a method that is appropriate for the type of the argument in each function call. This
process is called dispatching the call.

Class functions, related functions, and non-class functions. Functions can be defined globally or as
class members2. The main function is always defined globally. With few exceptions, the only other global
functions should be those that interact with predefined C or C++ libraries or with the operating system.
Common examples of global functions include those used in combination with qsort() and extensions to the
C++ output operator3. The operator >> extensions form a special case. Each new method is directly associated
with a class, but cannot be inside the class because operator >> is a global function.

Functions defined or prototyped within a class declaration are called class functions. A class function can
freely read from or assign to the private class members, and the class functions are the only functions that
should accesses class data members directly. If a class function is intended to be called from the outside world,
it should be a public member. If the function’s purpose is an internal task, it should be a private member.
Taken together, the public functions of a class are called the class interface. They define the services provided
by the class for a client program and the ways a client can access private members of the class.

Each function method has a short name and a full name. For example, suppose Point is a class, and the
plot() function has a method in that class. The full name of the method is Point::plot; the short name is
just plot. We use the short name whenever the context makes clear which class we are talking about. When
there is no context, we use the full name.

Calling functions. A class function can be called either with an object or with a pointer to an object. Both
kinds of calls are common and useful in C++. To call a class function with an object, write the name of the
object followed by a dot followed by the function name and an appropriate list of arguments. To call a class
function with a pointer to an object, write the name of the pointer followed by an -> followed by the function
name and an appropriate list of arguments. Using the Point class again, we could create Points and call the
plot() function two ways:

1Polymorphic functions are dispatched at run time.
2Almost all C++ functions are class functions.
3These cases will be explained in a few weeks.
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Point p1(1, 0); // Allocate and initialize a point on the stack.
Point * pp = new Point(0, 1); // Dynamically create an initialized point.
p1.plot( );
pp->plot();

In both cases, the declared type of p1 or p2 supplies context for the function call, so we know we are calling the
plot function in the Point class.

Calls on non-class functions are exactly the same in C and in C++. Compare lines 17 (C) and 1011 (C++)
in the code examples at the end of this chapter.

Typical Function Members Almost every class should have at least three public member functions: a
constructor, a destructor, and a print function.

• A constructor function initializes a newly created class object. More than one constructor can be defined
for a class as long as each has a different signature4. The name of the constructor is the same as the name
of the class.

• A destructor function is used to the free storage occupied by a class object when that object dies. Any
parts of the object that were dynamically allocated must be explicitly freed. If an object is created by
a declaration, its destructor is automatically called when the object goes out of scope. In an object is
created by new, the destructor must be invoked explicitly by calling delete. The name of the destructor
is a tilde followed by the name of the class.

• A print() function defines the class object’s image, that is, how should look on the screen or on paper.
This function normally has a stream parameter so that the image can be sent to the screen, a file, etc.
Call this function simply “print()”, with no word added to say the type of the thing it is printing, and
define a method in every class you write. Format your class object so that it will be readable and look
good in lists of objects.

4.2 Inline Functions

Inline and out-of-line function translation. C++ permits the programmer to choose whether each func-
tion will be compiled out-of-line (the normal way) or inline. An out-of-line function is compiled once per
application. No matter how many times the function is called, its code exists only once.

When a call on an out-of-line function is translated, the compiler generates code to build a stack frame,
copy the function arguments into it, then jump to the the function. At load time, the linker connects the jump
instruction to the actual memory location where the single copy of the function code exists.

At run time, when the function call is executed, a stack frame is built, the argument values are copied into
it, and control is transferred from the caller to the function code. After the last line of the function, control and
a return value are passed back to the caller and the function’s stack frame is deallocated (popped off the system
run-time stack). This process is done efficiently but still takes non-zero time, memory space for parameter
storage, and space for the code that performs the calling sequence.

Inline functions are not macros. Inline expansion is like macro expansion. However, an inline function is
more than and less than a macro, and is used differently:

• The number of arguments in both a function call and a macro call must match the number of parameters
declared in the function or macro definition. The types of the arguments in the function call must match
(or be convertible to) the parameter types in the definition. However, this is not true of macros, where
parameter types are not declared and arguments are text strings, not typed objects.

• Macros are expanded during the very first stage of translation, and the expansion process is like the search-
and-replace process in a text editor. Because of this, a macro can be defined and used as a shorthand
notation for any kind of frequently-used text string, even one with unbalanced parentheses or quotes.
Functions cannot be used this way. Functions are compiled at a later stage of translation.

4The signature of a function is a list of the types of its parameters.
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When a call on an inline function is compiled, the entire body of the function is copied into the object
code of the caller, like a macro, with the argument values replacing references to the parameters. If the same
function is called many times, many copies of its code will be made. For a one-line function, the compiled code
is probably shorter than the code required to implement an ordinary function call. Short functions should be
inline because it always saves time and can even save space if there are only a few machine instructions in the
function’s definition. However, if the function is not short and it is called more than once, inline expansion will
lead to a longer object file.

Usage. The main reason for using inline definitions is efficiency. Inline expansion of a very short function will
save both time and space at run time.

The main reason for using out-of-line definitions is readability. It is helpful to be able to see an entire class
declaration at once. If a class has some long functions, we put them in a separate file so that the rest of the
class will fit on one page or one computer screen. For this reason, any function that is longer than two or three
lines is generally given only a prototype within the class declaration. In contrast, when a function is only one
or two lines long, it is easier to read when it is inside the class definition; there is no advantage in breaking it
into two parts.

The inline keyword. A function defined fully within the class declaration is automatically inline. In addition,
a function prototype can be declared to be inline even if it is defined remotely. To do this, simply write the
qualifier inline before the return type in the function definition. This qualifier is advice to the compiler, not a
requirement. A compiler may ignore the inline qualifier if it judges that a function is too long or too complex
to be inline.

Summary of inline rules and concepts.

• An inline function is expanded like a macro, in place of the function call. No stack frame is built and
there is not jump-to-subroutine.

• Functions defined in a class (between the class name and the closing bracket) default to inline.

• Non-class functions and class functions defined after the class may be compiled as inline functions if the
keyword “inline” is written before the function return type of the prototype within the class.

• The compiler treats “inline” as advice, not as orders; if a particular compiler thinks it is inappropriate in
a particular situation, the code will be compile out-of-line anyway.

• In order to compile, the full definition of an inline function must be available to the compiler when every
call to the function is compiled.

• Make extensions of operator << and operator >> inline or put them in the .cpp file of the related class.

4.2.1 Code Files and Header Files

Using .cpp and .hpp files The purpose of a header file is to provide information about the class interface
for inclusion by other modules that use the class. The .hpp file, therefore contains the class declaration and
related #include, #define, and typdef statements. Executable code, other than definitions of inline functions,
does not belong in a .hpp file.

In-class and remote definitions. A class function can be fully defined within the class declaration or just
prototyped there and defined later. Although there are no common words for these placement options, I call
them in-class and remote. Being in-class or remote has no connection to privacy: both public and private
functions can be defined both ways.

Remote inline functions cause an organization problem. In order for inline expansion to be possible, the
actual definition of an inline function must be available to the compiler whenever the function is called. The
only reasonable way to do this is to put the full definition of each inline function in the .hpp file, after the end
of the class declaration, along with related inline non-class functions, such as extensions of the input and output
operators. Then, wherever the class is visible to the compiler, the related inline definition will also be visible.
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The definitions of non-inline remote class functions, if any, are written in a .cpp file. Each .cpp file will be
compiled separately and later linked with other modules and with the library functions to form an executable
program. This job is done by the system linker, usually called from your IDE. Non-inline functions that are
related to a class, but not part of it, can also be placed in its .cpp file.

Friends. Friend classes will be explained soon; they are used to build data structures (such as linked lists)
that require two or more mutually-dependant class declarations. Friend functions are legal but not really useful;
I discourage their use. Friend declarations are written within the class declaration in the .hpp file, either at the
very top or the very bottom of the class.

4.3 Declaration, Implementation, and Application of a Stack Class

In this section, we compare C and C++ implementations of a program to analyze a text file and determine
whether its bracketing symbols are correctly nested and balanced. A stack class is used to check the nesting.
Two application classes are also defined, Token (to represent one opening bracket) and Brackets (the boss class
of the application). For each part of the program, the C version is presented first (with line numbers starting at
1), followed by the C++ version (with line numbers starting at 1000). The program notes compare the versions.

4.3.1 The Input and Output (banners have been deleted).

Each set of output on the right was produced by both versions of the Brackets program after processing the
input on the left. This program ends when the first bracketing error is discovered.

Contents of input file: Output produced:
(<>){}[[]] Welcome to the bracket checker!

Checking file ’text2’

The brackets in this file are properly nested and matched.

Normal termination.

(<>){}[[ Welcome to the bracket checker!

Checking file ’text4’

Created stack brackets

Mismatch at end of file: Too many left brackets

The stack brackets contains: Bottom [ [ Top

Error exit; press ’.’ and ’Enter’ to continue

(< This is some text Welcome to the bracket checker!

>) Checking file ’text5’

Some more text << Mismatch on line 4: Closing bracket has wrong type

>>) The stack ’bracket stack’ contains: Bottom [ Top

{}

The current mismatching bracket is ’)’

Incorrect file name Welcome to the bracket checker!

Checking file ’text’

can’t open file ’text’ for reading

Press ’.’ and ’Enter’ to continue

No file name supplied. Welcome to the bracket checker!

usage: brackets file

Press ’.’ and ’Enter’ to continue
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4.3.2 The main function: main.c and main.cpp

1 // =============================================================================
2 // Project: Bracket-matching example of stack usage File: main.c
3 // Author: Michael and Alice Fischer Copyright: January 2009
4 // =============================================================================
5 #include "tools.h"
6 #include "token.h"
7 #include "stack.h"
8
9 void analyze( stream in );

10 void mismatch( string msg, int lineno, Stack* stkp, Token* tokp );
11
12 //-----------------------------------------------------------------------------
13 int main( int argc, char* argv[] )
14 {
15 banner();
16 say("Welcome to the bracket checker!");
17
18 if (argc!=2) fatal( "usage: %s file", argv[0] );
19 say( "Checking file ’%s’", argv[1] );
20
21 stream instream = fopen( argv[1], "r" );
22 if (instream==NULL) fatal( "can’t open file ’%s’ for reading", argv[1] );
23
24 analyze( instream );
25 fclose( instream );
26 bye();
27 }
28
29 //-----------------------------------------------------------------------------
30 void analyze( stream in )
31 {
32 char ch;
33 Token curtok;
34 Token toptok;
35 Stack stk;
36 int lineno = 1; // Number of lines of text in the input file.
37
38 init( &stk, "bracket stack" );
39
40 for(;;){ // Read and process each character in the file.
41 ch = getc(in);
42 if (feof( in )) break;
43 if (ch == ’\n’) lineno ++;
44 curtok = classify(ch);
45 if (curtok.typ == BKT_NONE) continue; // skip non-bracket characters
46 switch (curtok.sense) {
47 case SENSE_LEFT:
48 push(&stk, curtok);
49 break;
50
51 case SENSE_RIGHT:
52 if (empty(&stk))
53 mismatch("Too many right brackets", lineno, &stk, &curtok);
54 toptok = peek(&stk);
55 if (toptok.typ != curtok.typ)
56 mismatch("Closing bracket has wrong type", lineno, &stk, &curtok);
57 pop(&stk);
58 break;
59 }
60 }
61
62 if (!empty( &stk )) mismatch("Too many left brackets", lineno, &stk, NULL);
63 else printf("The brackets in this file are properly nested and matched.\n");
64 recycle( &stk );
65 }
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66
67 //-----------------------------------------------------------------------------
68 void mismatch(string msg, int lineno, Stack* stkp, Token* tokp )
69 {
70 if (tokp == NULL) printf("Mismatch at end of file: %s\n", msg);
71 else printf("Mismatch on line %d: %s\n", lineno, msg);
72
73 print( stkp ); printf( "\n\n" ); // print stack contents
74 if (tokp != NULL) // print current token, if any
75 printf("The current mismatching bracket is ’%c’\n\n", tokp->ch );
76
77 exit(1); // abort further processing
78 }

Notes on both versions of the main program:

• Every program must have a function named main. Unlike Java, main() is not inside a class. Like C, the
proper prototype of main is one of these two lines. (Copy exactly, please. Do not use anything else.)

int main( void );
int main( int argc, char* argv[] );

• Although both versions were written on the same day by the same people, the C++ version is more
modular: main.c contains the functionality of both main.cpp and brackets.cpp. Thus, the include files,
prototypes, and constant definitions for the two purposes are mushed together in main.c.

• The C++ version separates the actions of main (deal with the command-line arguments, initialize and
start up the application) from the actions of the application itself (read a file and analyze the brackets
within it). This is a cleaner design.

• The functions banner, say, fatal(), and bye are defined in the tools library. Note that some of these
functions use C-style formats, and that the output produced that way mixes freely with C++-style output.

• Both versions call banner and print a greeting comment. This is the minimum that a program should do
for its human user. (Lines 15–16 and 1010–1011)

• Both versions test for a legal number of command-line arguments and provide user feedback whether or
not the number is correct. (Lines 18–19 and 1013–1014) Note the form of the usage error comment and
imitate it when you are using command-line arguments.

• Both versions use the command-line argument to open and input file and check for success of the opening
process. (Lines 21–22 and 1016–1017)

1000 //==============================================================================
1001 // Project: Bracket-matching example of stack usage File: main.cpp
1002 // Author: Michael and Alice Fischer Copyright: January 2009
1003 // =============================================================================
1004 #include "tools.hpp"
1005 #include "brackets.hpp"
1006
1007 //-----------------------------------------------------------------------------
1008 int main(int argc, char* argv[])
1009 {
1010 banner();
1011 say("Welcome to the bracket checker!");
1012
1013 if (argc!=2) fatal("usage: %s file", argv[0]);
1014 say("Checking file ’%s’", argv[1]);
1015
1016 ifstream in( argv[1] );
1017 if (! in ) fatal("can’t open file ’%s’ for reading", argv[1]);
1018
1019 Brackets b; // Declare and initialize the application class.
1020 b.analyze( in ); // Execute the primary application function.
1021 in.close();
1022 bye();
1023 }



4.3. DECLARATION, IMPLEMENTATION, AND APPLICATION OF A STACK CLASS 43

• Line 24 calls the primary application function and supplies the open input stream as an argument. Line
1019 calls new to create and initialize an object of the Brackets class. Line 1020 calls the primary
application function with the stream as an argument. The C++ brackets-object, b, was allocated by
declaration instead of by calling new, so it will be deallocated automatically when control leaves the
function on line 1023. We can do the same job by calling new, as in Java, like this:

Brackets* b = new Brackets(); // Create and initialize the application class.
b->analyze( in );
delete b; // If you create with new, you must later call delete.

• The last two lines close the input file and print a termination message. (Lines 25–26 and 1021–22)

• Note that, at this point, the C++ program is five lines shorter than the C program that does the same
thing in the same way with the same code formatting.

4.3.3 The Brackets class.

The C++ implementation has a class named Brackets that corresponds to the two functions at the end of
main.c. The code in Brackets.cpp is like the two functions at the end of main.c, and the code in Brackets.hpp
is largely extra. At this point, the C++ version is 21 lines longer than the C version. So why make a Brackets
class?

1. It is better design. The functionality of handling command line arguments and files is completely separated
from the work of analyzing a text. Similarly, the central data parts of the class are separated from local
temporary variables.

2. Each class gives you a constructor function, where all the initializations can be written, and a destructor
function for writing calls on delete. You are unlikely to forget to initialize or free your storage.

1024 // ============================================================================
1025 // Name: Bracket-matching example of stack usage File: brackets.hpp
1026 // ============================================================================
1027 #ifndef BRACKETS_H
1028 #define BRACKETS_H
1029
1030 #include "tools.hpp"
1031 #include "token.hpp"
1032 #include "stack.hpp"
1033
1034 class Brackets {
1035 private:
1036 Stack* stk;
1037 Token toptok;
1038 int lineno;
1039
1040 public:
1041 Brackets() {
1042 stk = new Stack( "brackets" );
1043 lineno = 1;
1044 }
1045 ~Brackets(){ delete stk; }
1046
1047 void analyze( istream& in); // Check bracket nesting and matching in file.
1048 void mismatch( cstring msg, Token tok, bool eofile ); // Handle errors.
1049 };
1050 #endif

Notes on the Brackets header file. File headers have been shortened from here on, to conserve space on
the page.

• The first two lines of each header file and the last line (1027, 1028, and 1050), are conditional compilation
commands. Their purpose is to ensure that no header file gets included twice in any compilation step.
Note the keywords and the symbol and copy it.
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• Next come the #include commands (Lines 1030–32) for classes and libraries that will be needed by
functions defined in this class. Put them here, not in the .cpp file. Note: the file tools.hpp includes all
the necessary standard header files.

• The destructor (Line 1045) is responsible for freeing all dynamic memory allocated by the constructor
and/or by other class functions.

• The constructor (Lines 1041–1044) allocates the necessary dynamic space and initializes the two relevant
data members. The third data member, toptok, will be used later as a way for the —pg analyze() function
to communicate with the mismatch() function.

• This constructor and destructor are both short, so they are defined inline. The other two functions are
long and contain control structures, so they are declared here (Lines 1047–48) and defined in the .cpp file.

Notes on Brackets.cpp and the corresponding C functions.

• The .cpp file for a class should #include the corresponding header file and nothing else.

• Please note the line of dashes before each function. This is a huge visual aide. Do it. Good style also
dictates that you add comments to explain the purpose of the function. I omit that to conserve space on
the page, and because these notes are provided.

• Note that the return type of functions in the .cpp file are written, with the class name, on the line above
the function name. As the term goes on, return types and class names will get more and more complex.
Writing the function name at the left margin improves program readability.

• The definitions of analyze and mismatch belong to the Brackets class, but they are not inside the class
(between the word class and the closing curly brace). Unlike Java, a C++ compiler does not look at your
file names, and has no way to know that these functions belong to your Brackets class. Therefore, the full
name of each function (i.e. Brackets::analyze) must be given in the .cpp file.

• The argument to the analyze function (Line 1057) is a reference to an open stream. Streams are always
passed by reference in C++.

• The C program has a call on init (Line 38) that is not needed in C++ because class constructor functions
are called automatically when an object is declared.

• An infinite for loop with an if..break is used here to process the input file because it is the simplest
control form for this purpose. It is not valid to test for end of file until after the input statement, so you
normally do not want to start an input loop by writing: while (!in.eof()) ...

• We use the get function (line 1062) to read the input. This is a generic function; what gets read is
determined by the type of its argument. In this case, ch is a char, so the next keystroke in the file will
be read and stored in ch (get() does not skip whitespace).

• We count the newlines (Lines 43, 1064) so that we can give intelligent error comments.

• Line 1065 declares a local temporary variable named curtok and calls the Token constructor with the
input character to initialize it. This object is created on the stack inside the for loop. It will be deleted
when control reaches the end of the loop on line 1082. Every time we go around this loop, a new Token
is created, initialized, used, and discarded. This is efficient, convenient and provides maximal locality.

• We create Tokens so that we can store the input along with its two classifications: the side (left or right)
and the type of bracket (paren, angle, brace, square). The task of figuring out the proper classification
is delegated to the Token class because the Token class is the expert on everything having to do with
Tokens.

• In the C version, we do not have the automatic initialization action of a class constructor, so we have to
call the classify function explicitly. (Line 44)

• When we get to line 45 or 1066, the token has been classified and we can tell whether it is of interest
(brackets) or not (most characters). If it is of no interest, we continue at the bottom of the loop (line
1082), deallocate the Token, and repeat.

• The switch (Lines 46–59 and 1068..1081) stacks opening brackets for later matching, and attempts to
match closing brackets. The second case is complex because it must test for two error conditions.
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• Line 48 pushes the new Token onto the stack stk (declared on line 35). Note that we write stk inside
the parentheses here, and before the parentheses in the C++ version. We use call-by-address here because
the function will modify the stack. Line 1070 pushes the new Token onto the stack named stk which is a
member of the Brackets class. We could write this line as: this->stk->push(curtok);, which is longer
and has exactly the same meaning.

• Lines 62–63 and 1083–86 handle normal termination and another error condition. To keep the analyze
function as short as possible, most of the work of error handling is factored out into the mismatch function.
It prints a comment, the current token (if any) and the stack contents.

• Because there is no destructor function, the C version must free dynamic storage explicitly (Line 64).

1051 // ============================================================================
1052 // Name: Bracket-matching example of stack usage File: brackets.cpp
1053 // ============================================================================
1054 #include "brackets.hpp"
1055 //-----------------------------------------------------------------------------
1056 void Brackets::
1057 analyze( istream& in)
1058 {
1059 char ch;
1060
1061 for (;;) { // Read and process the file.
1062 in.get(ch); // This does not skip leading whitespace.
1063 if ( in.eof() ) break;
1064 if (ch == ’\n’) lineno ++;
1065 Token curtok( ch );
1066 if (curtok.getType() == BKT_NONE) continue; // skip non-bracket characters
1067
1068 switch (curtok.getSense()) {
1069 case SENSE_LEFT:
1070 stk->push(curtok);
1071 break;
1072
1073 case SENSE_RIGHT:
1074 if (stk->empty())
1075 mismatch("Too many right brackets", curtok, false);
1076 toptok = stk->peek();
1077 if (toptok.getType() != curtok.getType())
1078 mismatch("Closing bracket has wrong type", curtok, false);
1079 stk->pop();
1080 break;
1081 }
1082 }
1083 if ( stk->empty())
1084 cout <<"The brackets in this file are properly nested and matched.\n";
1085 else
1086 mismatch("Too many left brackets", toptok, true);
1087 }
1088
1089 //-----------------------------------------------------------------------------
1090 void Brackets::
1091 mismatch( cstring msg, Token tok, bool eofile )
1092 {
1093 if (eofile) cout <<"\nMismatch at end of file: " <<msg <<endl;
1094 else cout <<"\nMismatch on line " <<lineno <<" : " <<msg <<endl;
1095
1096 stk->print( cout ); // print stack contents
1097 if (!eofile) // print current token, if any
1098 cout <<"The current mismatching bracket is " << tok;
1099
1100 fatal("\n"); // Call exit.
1101 }
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4.3.4 Class Declaration: token.h and token.hpp

79 // =============================================================================
80 // Project: Bracket-matching example of stack usage File: token.h
81 // =============================================================================
82 #ifndef TOKEN_H
83 #define TOKEN_H
84
85 #include "tools.h"
86
87 typedef enum {BKT_SQ, BKT_RND, BKT_CURLY, BKT_ANGLE, BKT_NONE} Bracket_type;
88 typedef enum {SENSE_LEFT, SENSE_RIGHT} Token_sense;
89
90 typedef struct {
91 Bracket_type typ;
92 Token_sense sense;
93 char ch;
94 } Token;
95
96 Token classify( char ch );
97 #endif // TOKEN_H

1102 // ============================================================================
1103 // Project: Bracket-matching example of stack usage File: token.hpp
1104 // ============================================================================
1105 #ifndef TOKEN_HPP
1106 #define TOKEN_HPP
1107
1108 #include "tools.hpp"
1109
1110 enum BracketType {BKT_SQ, BKT_RND, BKT_CURLY, BKT_ANGLE, BKT_NONE};
1111 enum TokenSense {SENSE_LEFT, SENSE_RIGHT};
1112
1113 class Token {
1114 private:
1115 BracketType type;
1116 TokenSense sense;
1117 char ch;
1118 void classify( char ch );
1119
1120 public:
1121 Token( char ch );
1122 Token(){}
1123 ~Token(){}
1124 ostream& print( ostream& out) { return out << ch; }
1125 BracketType getType() { return type; }
1126 TokenSense getSense() { return sense; }
1127 };
1128
1129 inline ostream& operator<<( ostream& out, Token t ) { return t.print( out ); }
1130 #endif // TOKEN_HPP

Notes on the header files for the token class.

• Both header files start and end with the conditional compilation directives that protect against multiple
inclusion. The second time your code attempts to include the same header file, the symbol (Line 84 or
1106) will already be defined., and the #ifndef on line 83 or 1105 will fail. In that case, everything up to
the matching #endif will be skipped (not included).

• The enum definitions for the two languages are the same except that we do not need typedef in C++
because enum types are first-class types.

• The structure members in C are exactly like the class data members in C++, but the class members are
private and the structure members are public.
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• The classify function is public in C and private in C++ because, in OO languages, it is possible to
encapsulate class members that are not useful to client classes. (Definition of encapsulate: separate the
interface from everything else in the class, and keep everything else private.)

• The C classify function returns a Token value but the C++ version does not. The C++ version does its
work by storing information in the data members of the current object. When called by the constructor,
classify will initialize part of the Token under construction.

• The C++ class has six functions that are not present in the C version. There are two constructors:
the normal one (line 1121) and a do-nothing default constructor (line 1122) that allows us to create
uninitialized Token variables. Such a variables become useful when they receive assignments.

• The destructor (line 1123) is a do-nothing function because this class does not ever allocate dynamic
memory. It is good style, but not necessary, to write this line of code. If omitted, the compiler will supply
it automatically.

• The other three functions (lines 1124–1126) that have no C analog are accessor functions, sometimes called
“get functions”. Although it is traditional to use the word “get” as the first part of the name, that is
not necessary. The entire purpose of a get function is to provide read-only access to a private class data
member.

• Associated with the Token class, but not part of it, is an extension of operator<<. All it does is call the
class print function and return the ostream& result. By implementing this operator and the underlying
print function, we are able to use Token as the base type for the generic implementation of Stack.

Notes on token.c and token.cpp.

• The C and C++ versions of the code file start out identically, with a single #include statement.

• Both contain definitions of the classify function. In addition, the C++ file contains the definition of a
constructor.

• The name of the parameter in the constructor is the same as the name of the data member it will initialize.
We distinguish between the two same-name objects by writing this-> in front of the name of the class
member. You could skip the this-> if you gave the parameter a different name.

• A class takes care of itself. The constructor’s responsibility is to initialize all part of the new object
consistently. Thus, it must call the classify function. It would be improper to expect some other part of
the program to initialize a Token object.

• The job of the classify function is to sort out whether a token is a bracket, and if so, what kind.

• The first thing inside the classify function is the definition of the kinds of brackets this program is
looking for. These definitions are const to prevent assignment to the variable and static so that they will
be allocated and initialized only once, at load time, not every time the function is called. (This is more
efficient.)

• Lines 107 and 108 of the C version are not necessary in C++ because of the way constructors work, and
because C++ does not need a return value to convey its result.

• Lines 110 and 1145 search the constant brackets string for a character matching the input character. The
result is NULL (for failure) or a pointer to the place the input was found in the string. If found, the
subscript of the match can be calculated by subtracting the address of the beginning of the const array
(Lines 116, 1151). This is far easier than using a switch to process the input character. Learn how to use
it.

• If the input is a bracket, the next step is to decide whether it is left- or right-handed. The left-handed
brackets are all at even-subscript positions in the string; right-handed are at odd positions. So computing
the position mod 2 tells us whether it is left or right. Lines 117 and 1152 use a conditional operator to
store the answer.

• In C, enum constants are names for integers. Our constant string and the enumeration symbols for
bracket type were carefully written in the same order: two chars in the string for each symbol in the
enum. Therefore, the token-type of the new token can be computed by dividing the string position by 2.
(Line 118).
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• In C++, enumeration symbols are not the same as integers. We can use the same calculation as we do
in C, but then we must cast the result to the enum type. Being a more modern language, C++ is much
more careful about type identity.

99 // =============================================================================
100 // Project: Bracket-matching example of stack usage File: token.c
101 // =============================================================================
102 #include "token.h"
103
104 Token classify( char ch )
105 {
106 static const string brackets = "[](){}<>";
107 Token tok;
108 tok.ch = ch;
109
110 char* p = strchr( brackets, ch );
111 if (p==NULL) {
112 tok.typ = BKT_NONE;
113 tok.sense = SENSE_LEFT; // arbitrary value
114 }
115 else {
116 int pos = p-brackets; // pointer difference gives subscript.
117 tok.sense = (pos%2 == 0) ? SENSE_LEFT : SENSE_RIGHT;
118 tok.typ = (pos/2); // integer arithmetic, with truncation.
119 }
120 return tok;
121 }

1131 // ============================================================================
1132 // Name: Bracket-matching example of stack usage File: token.cpp
1133 // ============================================================================
1134 #include "token.hpp"
1135 //-----------------------------------------------------------------------------
1136 Token::Token( char ch ){
1137 this->ch = ch;
1138 classify( ch );
1139 }
1140
1141 //-----------------------------------------------------------------------------
1142 void Token::
1143 classify( char ch )
1144 {
1145 static const cstring brackets = "[](){}<>";
1146 char* p = strchr( brackets, ch );
1147 if (p==NULL) {
1148 type = BKT_NONE;
1149 sense = SENSE_LEFT; // arbitrary value
1150 }
1151 else {
1152 int pos = p-brackets; // pointer difference gives subscript.
1153 sense = (pos % 2 == 0) ? SENSE_LEFT : SENSE_RIGHT;
1154 type = (BracketType)(pos/2); // integer arithmetic, with truncation.
1155 }
1156 }
1157

4.3.5 The Stack Class

To the greatest extent possible, this class was created as a general-purpose, reusable stack class, allowing any
type of objects can be stacked. This is done by using an abstract name, T, for the base type of the stack. Then
a typedef is used (Lines 131 and 1167) to map T onto a real type such as char or (in this case) Token.

The C implementation falls sort of the goal (fully generic programming) in one way: C does not provide any
way to do generic output. For that reason, one line of the print function in stack.c will need to be changed if



4.3. DECLARATION, IMPLEMENTATION, AND APPLICATION OF A STACK CLASS 49

the typedef at the top of stack.h is changed. This is corrected in the C++ version by using operator<< and
defining it for the class named in the typedef.

This stack class “grows”, when needed, to accommodate any number of data items pushed onto it.

122 // =============================================================================
123 // Project: Bracket-matching example of stack usage File: stack.h
124 // =============================================================================
125 #ifndef STACK_H
126 #define STACK_H
127
128 #include "tools.h"
129 #include "token.h"
130
131 #define INIT_DEPTH 10 // initial stack size
132 typedef Token T;
133 /*-------------------------------------------- Type definition for stack of T */
134 typedef struct {
135 int max; /* Number of slots in stack. */
136 int top; /* Stack cursor. */
137 T* s; /* Beginning of stack. */
138 string name; /* Internal label, used to make output clearer. */
139 } Stack;
140
141 /*---------------------------------------------------------------- Prototypes */
142 void init ( Stack* St, string label );
143 void recycle( Stack* St );
144 void print ( Stack* St );
145 void push ( Stack* St, T c );
146 T pop ( Stack* St );
147 T peek ( Stack* St );
148 bool empty ( Stack* St );
149 int size ( Stack* St );
150 #endif // STACK_H

Class declarations: stack.h and stack.hpp

• The initial size of the stack defined on lines 131 and 1167. The actual initial size matters little, since the
stack size will double each time it becomes full.

• Lines 132 and 1168 define the base type of the stack as Token.

• Like any growable data structure, this stack needs three data members: the current allocation length, the
current fill-level, and a pointer to a dynamically allocated array to store the data. In addition, we have a
name, largely for debugging purposes. In the C++ version, all these things are private.

• The init and recycle functions in the C version take the place of the constructor and destructor in C++.
All other functions are the same, except that the first parameter, the stack itself, does not need to be
listed in the C++ functions.

• All of the C code is in stack.c but much of the C++ code is written as inline functions in stack.hpp. Thus,
the C++ version will be more efficient.

Class implementation: stack.c, stack.hpp inline, and stack.cpp

• Compare the constructor (Lines 1180–85) to the init function (Lines 156–161). The C++ version has
less clutter because we do not need to write St-> every time we do anything.

• Compare the destructor (Line 1186) to the recycle function (Line 164). Both free the dynamic memory
and print a trace comment5.

5We will thoroughly discuss the delete [] statement later.
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1158 // ============================================================================
1159 // Name: Bracket-matching example of stack usage File: stack.hpp
1160 // ============================================================================
1161 #ifndef STACK_HPP
1162 #define STACK_HPP
1163
1164 #include "tools.hpp"
1165 #include "token.hpp"
1166
1167 #define INIT_DEPTH 16 // initial stack size
1168 typedef Token T;
1169
1170 //--------------------------------- Type definition for stack of base type T
1171 class Stack {
1172 private:
1173 int max; // Number of slots in stack.
1174 int top; // Stack cursor.
1175 T* s; // Beginning of stack.
1176 string name; // Internal label, used to make output clearer.
1177
1178 public:
1179 //-------------------------------------------------------- Constructors
1180 Stack( cstring name ){
1181 s = new T[ max=INIT_DEPTH ];
1182 top = 0;
1183 this->name = name;
1184 }
1185
1186 ~Stack(){ delete[] s; cout <<"Freeing stack " <<name <<endl; }
1187
1188 //-------------------------------------------------------- Prototypes
1189 void print( ostream& out );
1190 void push ( T c );
1191 //-------------------------------------------------------- Inline functions
1192 T pop ( ){ return s[--top]; } // Pop top item and return it.
1193 T peek ( ){ return s[top-1]; } // Return top item without popping it.
1194 bool empty ( ){ return top == 0; }
1195 int size ( ){ return top; } // Number of items on the stack.
1196 };
1197 #endif

• Four other functions are inline in C++: pop, peek, empty, and size. They are all written on one line,
with a minimum of fuss. (Lines 1192–95 and 190–93)

• Stack::top always stores the subscript of the first empty stack slot. Therefore, it must be decremented
before the subscript operation when popping. Note the difference between the code for pop (line 1192
and 190), which changes the stack, and the code for peek (line 1193 and 191), which does not change the
stack.

• The size function is an accessor. We chose not to use the word “get” as part of the name of the function.

• The use of type bool. In C, the result of a comparison is an int; in C++ it is a bool On lines 192 and
1194, we use the operator ==. The result is a bool value which we return as the result of the function.
Inexperienced programmers are likely to write clumsy code like one of these fragments:

Clumsy: top == 0 ? true : false;

Worse: if (top == 0) return true;
else return false;

Even worse: top == 0 ? 1 : 0; // 1 and 0 are type integer in C++, not bool !

These are clumsy because they involve unnecessary operations. We don’t need a conditional operator or
an if to turn true into true because the result of the comparison is exactly the same as the result of the
conditional. Line 23 shows the mature way to write this kind of test.
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1199 // ============================================================================
1200 // Name: Bracket-matching example of stack usage File: stack.cpp
1201 // ============================================================================
1202 #include "stack.hpp"
1203 //-----------------------------------------------------------------------
1204 void Stack::
1205 print( ostream& out ) {
1206 T* p=s; // Scanner & end pointer for data
1207 T* pend = s+top;
1208 out << "The stack " <<name << " contains: Bottom~~ ";
1209 for ( ; p < pend; ++p) cout <<’ ’ << *p;
1210 out << " ~~Top" <<endl;
1211 }
1212
1213 //-----------------------------------------------------------------------------
1214 void Stack::
1215 push( T c ) {
1216 if (top == max) { // If stack is full, allocate more space.
1217 say( "-Doubling stack length-" );
1218 T* temp = s; // grab old array.
1219 s = new T[max*=2]; // make bigger one,
1220 memcpy( s, temp, top*sizeof(T) ); // copy data to it.
1221 delete temp; // free old array.
1222 }
1223 s[top++] = c; // Store data in array, prepare for next push.
1224 }

• The print functions are the same, line by line, except for the actual output commands, which are language-
appropriate. Line 185 prints a part of the Token structure and must be changed if the base type of the
stack is changed. In contrast, line 1222 uses the generic operator << to print. By doing so, we are able
to implement a truly generic stack. This works for any type so long as the operator << is defined for
that type (line 1129).

• The push functions implement a data structure that grows to accommodate as many Tokens as needed.
This implements the basic OO commandment: A class takes care of its own emergencies.

• The basic strategy is:

1. When the stack is created, the data array must be allocated to some non-zero size.
2. Before storing another object in the stack, test whether there is room for it.
3. If not, double the size of the array and copy the information from the original array into the new

space.
4. Now store the new item.

• It might seem that this strategy produces a very inefficient data structure. That would be true if we
increased the array size by 1 each time. But we don’t, we double it. By doubling, we are assured that the
total time used to for all the copy operations is always less than the current length of the stack. In other
words, the algorithms work in linear time.

• Let us look at the details of this code:

1. Lines 1216 and 180 test whether the stack is full.
2. Lines 1217 and 181 display trace comments to aid debugging.
3. Line 1218 is needed because C++ does not support a reallocate function, so the reallocation and

copying must be coded by hand. We need a temporary pointer to hang onto the original copy of the
data array.

4. Lines 1219 and 182 update the stack structure to double its allocation length.
5. Lines 1219 and 183 allocate a double-length array. Line 183 also copies the data from the old array

to the new array and frees the old array.
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6. Line 1220 copies the data to the new array. The first argument to memcpy is the target array, the
second is the source, the third is the number of bytes to copy. In this case, we want to copy all the
data in the original array. These two lines are unnecessary in C because realloc does the job.

7. The final line (1223 and 183) pushes the new data into the array, which is now guaranteed to be long
enough.

151 // =============================================================================
152 // Project: Bracket-matching example of stack usage File: stack.c
153 // =============================================================================
154 #include "stack.h"
155 // -------------------------------------------------- the constructor
156 void init( Stack* St, string label ) {
157 St->s = malloc( INIT_DEPTH * sizeof(T) );
158 St->max = INIT_DEPTH;
159 St->top = 0;
160 St->name = label;
161 }
162
163 // --------------------------------------------------- the destructor
164 void recycle(Stack* St){ free(St->s); say( "\tdeleting %s", St->name); }
165
166 // -------------------------------------------------------------------
167 // ***** the printf statement must be modified for base type != Token
168 void print( Stack* St ) // Print contents of stack, formatted.
169 { T* p = St->s; // Scanner & end pointer for data.
170 T* pend = p + St->top;
171
172 printf( "The stack ’%s’ contains: Bottom~~ ", St->name );
173 for ( ; p < pend; ++p) printf( " %c", p->ch );
174 printf( " ~~Top" );
175 }
176
177 // ---------------------------------------------- the Stack functions
178 void push( Stack* St, T c )
179 {
180 if (St->top == St->max) { // If stack is full, allocate more space.
181 say( "-Doubling stack length-" );
182 St->max*=2;
183 St->s = realloc( St->s, St->max * sizeof(char) );
184 }
185 St->s[St->top++] = c; // Store data in array, prepare for next push.
186 }
187
188 // -------------------------------------------------------------------
189 T pop( Stack* St ) { return St->s[-- St->top]; }
190 T peek( Stack* St ) { return St->s[St->top-1]; }
191 bool empty( Stack* St ) { return ( St->top == 0 ); }
192 int size( Stack* St ) { return St->top; }

  Brackets
  Token

  Stack

main *
Figure 4.3: UML class diagram for the Brackets progam.



Chapter 5: Functions and Parameter Passing

In this chapter, we examine the difference between function calls in C and C++ and the resulting difference in
the way functions are defined in the two languages. Finally, we illustrate the semantics of the three methods of
passing a parameter in C++ and the three kinds of function return values. You should use the demo program
and its output as reference material when you are uncertain about how to use the various parameter and return
types.

Knowledge is of two kinds. We know a subject ourselves, or we know where we can
find information on it.
— Samuel Johnson, English, author of the Dictionary of the English Language.

5.1 Function Calls

The implied argument. In C++, every call to a class function has an “implied argument”, which is the
object whose name is written before the function name. The rest of the arguments are written inside the
parentheses that follow the function name. Additional explicit arguments are written inside parentheses, as in
C. Compare this C++ code fragment to the C code fragment below:

if ( in.eof() )...
stk->push(curtok);

The implied argument is called this. In contrast, in C, all arguments are written inside the parentheses. In the
stack.c example, the end-of-file test and the call on push() are written like this:

if (feof( in ))...
push(&stk, curtok);

Number of parameters. Function calls in C++ tend to be shorter and easier to write than in C. In C,
functions often have several parameters, and functions with no parameters are rare. In the stack.c example,
note that the call on push() has two arguments in C and one in C++. The difference is the stack object itself,
which must be passed by address in C and is the implied argument in C++.

Functions with empty or very short parameter lists are common in C++. First, the implied argument itself
is not writtten as part of the argument list. Also, classes are used to group together related data, and that
data is available for use by class functions. We often eliminate parameters by using class data members to store
information that is created by one class function and used by others.

Code organization. When writing in a procedural language, many programmers think sequentially: do this
first, this second, and so on. Function definitions often reflect this pattern of thought Thus, in C, functions tend
to be organized by the sequence in which things should be done.

In an object-oriented language, the code is not arranged sequentially. Thus, in C++, functions are part of
the class of the objects they work on. Control passes constantly into and out of classes; consecutive actions
are likely to be in separate functions, in separate classes with a part-whole relationship. One object passes
control to the class of one of its components, which does part of the required action and passes on the rest of
the responsibillity to one of its own components.

The number and length of functions. There are many more functions in a C++ program than in a
C program and C++ functions tend to be very short. Each C++ function operates on a class object. The
actions it performs directly should all be related to that object and to the purpose of that class within the
application. Actions related to class components are delegated (passed on) to the components to execute.
Thus, long functions with nested control structures are unusual, while one-line functions and one-line loops are
common. Inline expansion is used to improve the efficiency of this scheme.

53
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Non-class functions. Functions can be defined inside or outside classes in C++ . For those defined outside a
class, the syntax for definitions and calls is the same as in C. Non-class functions in C++ are used primarily to
modularize the main program, to extend the input and output operators, and to permit use of certain C library
functions.

5.2 Parameter Passing

C supports two ways to pass a parameter to a function: call-by-value and call-by-pointer. C++ supports a third
parameter-passing mechanism: call-by-reference. The purpose of this section is to demonstrate how the three
parameter-passing mechanisms work and to help you understand which to use, when, and why.

5.2.1 Three Odd Functions

These three functions do not compute anything sensible or useful; their purpose is to illustrate how the three
parameter-passing mechanisms are similar and/or different. Each function computes the average of its two
parameters, then prints the parameter values and the average. Finally, both parameters are incremented. The
computation works the same way in all versions. However, the increment operator does not work uniformly:
sometimes a pointer is incremented, sometimes an integer; sometimes the change is local, sometimes not.

Call by value. The argument values are copied into the parameter storage locations in the function’s stack
frame. There is no way for the function to change values in main’s stack frame.

1 #include "odds.hpp" // Includes necessary libraries.
2
3 void odd1( int aa, int bb ){ // Make copies of the argument values.
4 int ansr = (aa + bb) / 2; // See diagram 1.
5 cout <<"\nIn odd1, average of " <<aa <<", " <<bb <<" = " <<ansr <<endl;
6 ++aa; ++bb; // Increment the two local integers.
7 }

Call by pointer. The arguments must be addresses of integer variables in the caller’s stack frame. These
addresses are stored in the parameter locations in the function’s stack frame. They permit the function to
modify its caller’s memory locations.

8 #include "odds.hpp" // Includes necessary libraries.
9

10 void odd2( int* aa, int* bb ){ // Call by address or pointer.
11 int ansr = (*aa + *bb) / 2; // See diagram 2.
12 cout << "\nIn odd2, average of " <<*aa <<", " <<*bb <<" = " <<ansr <<endl;
13 ++aa; // increment the local pointer
14 ++*bb; // increment main’s integer indirectly
15 }

Call by reference. The arguments must be integer variables in the caller’s stack frame. The addresses of
these variables are stored in the parameter locations in the function’s stack frame, permitting the function to
modify its caller’s memory locations.

16 #include "odds.hpp" // Includes necessary libraries.
17
18 void odd4( int& aa, int& bb ){ // Call by reference
19 int ansr = (aa + bb) / 2; // See diagram 3.
20 cout << "\nIn odd4, average of " <<aa <<", " <<bb <<" = " <<ansr <<endl;
21 ++aa; ++bb; // increment two integers in main.
22 }

5.2.2 Calling The Odd Functions

This main program calls the three odd functions with arguments selected from the array named ar. It prints
the whole array before and after each call so that you can see any changes that take place. Each call (and its
results) is explained in the paragraphs that follow and stack diagrams are given to help you understand how
the system works.
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23 //-----------------------------------------------------------------------
24 // Calling the odd average functions. file: oddM.cpp
25 //-----------------------------------------------------------------------
26 #include "odds.hpp" // Contains the three odd functions.
27
28 void print( int* ap, int n ) { // Print the n values in an array.
29 for( int k=0; k<n; ++k ) cout << " [" << k << "] = " << ap[k] ;
30 cout << endl;
31 }
32 //-----------------------------------------------------------------------
33 int main( void )
34 {
35 int ar[6] = {11, 22, 33, 44, 55, 66};
36 int* ip = ar; // Set a pointer to beginning of an array.
37 int* iq = &ar[2]; // Set a pointer to 3rd item of array.
38
39 cout << "\nInitially, ar is: ------------------------------------\n";
40 print( ar, 6 );
41 odd1( ar[0], *iq ); print( ar, 6 ); // See Figure 5.1.
42 odd2( ip, iq ); print( ar, 6 ); // See Figure 5.2.
43 odd2( &ar[1], &ar[4] ); print( ar, 6 ); // See Figure 5.3.
44 odd4( ar[2], *(iq+2) ); print( ar, 6 ); // See Figure 5.4.
45 }

The output.

Initially, ar is: ------------------------------------
[0] = 11 [1] = 22 [2] = 33 [3] = 44 [4] = 55 [5] = 66

In odd1, average of 11, 33 = 22
[0] = 11 [1] = 22 [2] = 33 [3] = 44 [4] = 55 [5] = 66

In odd2, average of 11, 33 = 22
[0] = 11 [1] = 22 [2] = 34 [3] = 44 [4] = 55 [5] = 66

In odd2, average of 22, 55 = 38
[0] = 11 [1] = 22 [2] = 34 [3] = 44 [4] = 56 [5] = 66

In odd4, average of 34, 56 = 45
[0] = 11 [1] = 22 [2] = 35 [3] = 44 [4] = 57 [5] = 66

5.2.3 Parameter Passing Mechanisms

In these diagrams, a round-cornered box represents a stack frame or activation record on the system’s run-time
stack. A stack frame is the data structure that is built by the run-time system to implement a function call.
Within the box, the heavy dot-dashed line divides the local variables (above it) from the parameters (if any,
below it). The leftmost column gives the name of the function and the return value, if any. The middle two
columns supply the type, name, and address of each object allocated for the function. The rightmost column
lists the current value, which is a literal number, a pointer (arrow with one stem), or a binding (arrow with a
double stem).

Call by value is like making a Xerox copy. In C, there is only one way to pass a non-array argument to
a function: call by value (Figure 5.1). In call by value, the value of the argument (in the caller) is shallowly
copied into the parameter variable within the function’s stack frame. This parameter passing method isolates
the function from the caller; all references to this parameter are strictly local. . . the function can neither see nor
change the caller’s variables.

If the function increments the parameter variable or assigns a new value to it, the change is purely local and
does not affect variables belonging to the caller. In this example, aa is a call-by-value parameter, so executing
++aa, changes its value locally but does not affect main’s variable ar[0]. After the function returns, ar[0]
still contains 11.
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Figure 5.1: Execution of odd1 after computing ansr (left) and after increments (right).
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Figure 5.2: Execution of odd2 after computing ansr (left) and after increments (right).

Call by pointer or address. Even in a call-by-value language, an argument that is an address or the value
of a pointer can be used with a pointer parameter to give the function access to the underlying variable in the
stack frame of the caller. The parameter can be used two ways within the function. By using the parameter
name wiithout a *, the address stored locally in the parameter variable can be used or changed. By using the
parameter name with a *, the value that is stored in the caller’s variable can be used or changed.

Call by value with a pointer argument. The first call on odd2 is diagrammed in Figure 5.2. The arguments
are the values of two pointers. When these arguments are stored in the parameter locations, the parameters
point at the same locations as the pointers in main(). Writing ++aa increments the local value of the pointer
aa, which changes the array slot that the parameter points to (initially it was ar[1], after the increment it is
ar[2]). Writing ++*bb changes the integer in the caller’s array slot.

Call by value with an & argument. The second call on odd2 is shown in Figure 5.3. The effect is the
same as the prior call; The arguments are the addresses of two slots in caller’s array and are diagrammed as
simple arrows. Writing ++aa changes the array slot that the parameter points to (initially it was ar[1], after the
increment it is ar[2]). Writing ++*bb changes the integer in the caller’s array slot.
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Figure 5.3: Execution of odd2 after computing ansr (left) and after increments (right).

Call by reference (&). This form of parameter passing is normally used when the argument is or can be
an object that is partly created by dynamic storage allocation.In call-by-reference (Figure 5.4), the parameter
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value is called a “binding” and is diagrammed as a shaded double arrow.
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Figure 5.4: Execution of odd4 after computing ansr (left) and after increments (right).

The value stored locally in the parameter cannot be changed because the parameter name becomes trans-
parent: it is just an alias, or a synonym, for the caller’s variable. The program cannot read or change the
address stored in the parameter. For example, line 29, using ++ changes the caller’s value, not the address
stored locally in the parameter .

Call by reference vs. value. When call by value is used, the function cannot change values in the caller’s
stack frame. Any reference to the parameter name is a reference to the local copy, and any assignment to the
parameter changes only the local copy.

In contrast, when call by reference is used, the parameter name is an alias for the argument variable. Even
though this is implemented by storing the address of the caller’s variable in the function’s stack frame, it does
not function like a pointer. The dereference operator is not used because the dereference action is automatic.
Any reference to or assignment to the parameter name IS a reference or assignment to the variable in the caller’s
stack frame.

Call by reference vs. pointer. When call by pointer is used, the function can dereference the parameter
and assign a new value to the argument variable in caller’s stack frame. Or, the function can change the address
stored in the parameter and make it refer to a different variable.

In contrast, when call by reference is used, there is no choice; because the parameter name is an alias for
the argument variable. It is not possible to change the address in the local stack frame. Also, syntactically, the
parameter is not a pointer and cannot be dereferenced.

5.3 Function Returns

5.3.1 L-values and r-values.

An l-value is a value that can be used on the left side of an assignment operator; it is the location into which
something will be stored. An r-value is a value that can only be used on the right side of an assignment operator;
it is the value that will be stored. In the example below, the function ret0() returns an integer r-value, which
we sometimes refer to as a “pure value”.

A reference (including one that was returned by a function) can be used directly as an l-value. When used
as an r-value (on the right side of =) a reference is treated the same way that a variable name would be treated
in that context: the value at that address is fetched from memory. In the example below, ret3() and ret4()
return l-values.

A pointer is an r-value that can be dereferenced. If a function returns a pointer, the function’s result must
be dereferenced before it can be used on the left side of =. In the example below, ret1() and ret2() return
pointer r-values that can be dereferenced to get l-values. A dereferenced pointer can also be used as an r-value;
when that is done, it will be automatically dereferenced again to get the underlying r-value.
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5.3.2 Using L-values.

The following five functions all return a different flavor of int:

1 //---------------------------------------------------------------------------------
2 // Return by value, reference, and pointer, and how they differ.
3 // A. Fischer Apr 19, 1998 file: returns.cpp
4 //---------------------------------------------------------------------------------
5 int ret0( int* ar ) { return ar[0]; } // Returns an integer R-value.
6 int* ret1( int* ar ) { return &ar[1]; } // A pointer R-value.
7 const int* ret2( int* ar ) { return &ar[2]; } // A read-only pointer R-value.
8 int& ret3( int* ar ) { return ar[3]; } // An L-value (reference).
9 const int& ret4( int* ar ) { return ar[4]; } // A read-only L-value reference.

Functions ret1 through ret4 all give the caller access to some variable selected by the function. Two of
the return types provide read-only access; ret2 returns a const int* and ret4 returns a const int& . These
return types are “safe”, that is, they do not break encapsulation. They are often used in OO programming.
In contrast, the other two return types, int* and int& can break encapsulation and give the caller a way to
change a private variable belonging to the function’s class. For this reason, returning non-const address and
pointers is avoided whenever possible in C++.

In this example, functions ret1(). . . ret4() all return the address of one slot in the parameter array; the
function simply selects which slot will be used. In such a situation, all these calls are “safe” and conform to
OO principles, since the function is not giving the caller access to anything that is not already accessible to it.
However, by using the same return mechanisms, a function could cause two serious kinds of trouble.

Violating privacy. Suppose the return value is the address of (or a pointer to) a private class variable. This
breaks the protection of the class because it permits a caller to modify a class variable in an arbitrary way.
Normally, non-class functions should not be permitted to change the value of class objects1. All changes to class
members should be made by class functions that can ensure that the overall state of the class object is always
valid and consistent. (The most important exception to this rule is extensions of the subscript operator.) For
example, suppose we added these two functions to the stack class from Chapter 4:

int& how_full(){ return top; }
char* where_is_it(){ return s; }

A caller could destroy the integrity of a stack, St, by doing either of the following assignments:

St.how_full() = 0;
*St.where_is_it() = ’X’;

Dangling pointers. A different problem would occur if a function returned the address of or a pointer to
one of its local variables. At return time, the function’s local variables will be deallocated, so the return-value
will refer to an object that no longer exists. The resulting problems may occur immediately or may be delayed,
but this is always a serious error.

5.3.3 Using Return Values in Assignment Statements

The following program calls each of the ret functions and assigns uses its return value to select one integer
from ar array. This integer is saved in a variable and later printed. Four of the functions return the location of
one slot in the ar array. Two of these slots are const, that is, read-only. The other two are non-const and we
use them to modify the array.

10 //-----------------------------------------------------------------------
11 // Calling functions with the five kinds of function-return values.
12 // A. Fischer Apr 19, 1998 file: retM.cpp
13 //-----------------------------------------------------------------------

1There are a few exceptions, for example, when the subscript function is extended for new kinds of arrays, it returns a non-const
reference because that is the entire purpose of subscript.
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14 #include <iostream>
15 using namespace std;
16 #include "returns.cpp"
17
18 #define DUMPv(k) "\n" <<" " #k " @ " <<&k <<" value = " <<k
19 #define DUMPp(p) "\n" <<" " #p " @ " <<&p <<" value = " <<p \
20 <<" " #p " --> " << dec << *p
21 //-----------------------------------------------------------------------
22 void print5( int* ap ) { // Print the five values in an array.
23 for( int k=0; k<5; ++k ) cout << " [" << k << "] = " << ap[k] ;
24 }
25
26 //-----------------------------------------------------------------------
27 int main( void )
28 {
29 int ar[5] = {11, 22, 33, 44, 55};
30 int h, j, k, m, n;
31 int *p = ar;
32
33 cout << "Initially, variables are: ------------------------------\n";
34 print5( ar );
35 cout <<DUMPp(p);
36
37 h = ret0( ar ); // Answer should be 11
38 j = *ret1( ar ); // Answer should be 22
39 k = *ret2( ar ); // Answer should be 33
40 m = ret3( ar ); // Answer should be 44
41 n = ret4( ar ); // Answer should be 55
42 cout <<DUMPv(h) <<DUMPv(j) <<DUMPv(k) <<DUMPv(m) <<DUMPv(n) <<endl;
43
44 p = ret1( ar ); // Answer should be a pointer to ar[1].
45 *ret1( ar ) = 17; // Storing through the pointer.
46 //*ret2( ar ) = 17; // Illegal: read-only location.
47 ret3( ar ) = -2; // Assigning to the reference.
48 //ret4( ar ) = -2; // Illegal: read-only location.
49
50 cout << "\nAfter return from functions variables are: -----------\n";
51 print5( ar );
52 cout <<DUMPp(p) <<endl;
53 }

The Dump macros. A macro lets us define a shorthand notation for any string of characters. We use macros
when the same thing must be written several times, and that thing is long and error-prone to write. In this
program, we want to be able to print out information that will be useful for understanding the program. We
define one macro, DUMPv that will print the address and contents of its parameter, and a second, DUMPp, that
prints the address of a pointer variable, the address stored in it, and the value of its referent.

A macro differs from an inline function in several ways. A very important difference is that macro parameters
are not typed, and macro calls are not type checked. Thus, the macro defined here can be used to dump any
object for which << is defined.

The main function. We define an array, initialize it to easily-recognized values, and print it before and after
calling the ret functions. By comparing the lines at the beginning and end of the output, you can verify that
lines 45 and 46 changed the contents of the array. Calls on the DUMP macros in lines 35, 42, and 50 allow you
to trace the effects of each function call.

The output is:

Initially, variables are: ------------------------------
[0] = 11 [1] = 22 [2] = 33 [3] = 44 [4] = 55
p @ 0xbffffd40 value = 0xbffffd18 p --> 11
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h @ 0xbffffd2c value = 11
j @ 0xbffffd30 value = 22
k @ 0xbffffd34 value = 33
m @ 0xbffffd38 value = 44
n @ 0xbffffd3c value = 55

After return from functions variables are: -----------
[0] = 11 [1] = 17 [2] = 33 [3] = -2 [4] = 55
p @ 0xbffffd40 value = 0xbffffd1c p --> 17

Return by value. This is the commonest and safest kind of function return; the returned value is an r-value.
(An r-value can be used on the right side of an assignment but not on the left.) Among the functions above,
ret0() returns an integer by value. The sample program calls ret0() (line 37) and assigns the result to an
integer variable.

Return by pointer. The return value of ret1() is a non-const pointer r-value (the address of ar[1]) that can
be stored in a pointer variable or dereferenced to get an l-value. It is called three times:

• On line 38, the result is explicitly dereferenced to get an integer l-value, then implicitly dereferenced again
to get an integer r-value, which is stored in the variable j.

j = *ret1( ar ); // Copy the referent of the return value.

• On line 44, the result is implicitly dereferenced to get a pointer r-value, which is stored in the pointer
variable p.

p = ret1( ar ); // Store the return value in a pointer variable.

• On line 45, the result is on the left side of an assignment. It is explicitly dereferenced to get an integer
l-value, which is used to store an integer constant.

*ret1( ar ) = 17; // Store through the pointer into its referent.

Return by const*. The return value is an address that provides read-only access to the underlying variable.
The function result cannot be used on the left side of an assignment to change the underlying variable. In the
sample program, ret2() is called once (line 39). Its result is dereferenced to get an integer l-value, which is
automatically dereferenced again because it is on the right side of an assignment statement. The result is an
int r-value, which is stored in k:

k = *ret2( ar ); // Copy referent of return value into k.

Return by reference. A reference can be used in the same ways that a variable name is used. The function
ret3() returns an integer reference: an l-value that can be used (without *) on either side of an assignment
operator. This function is called twice and used both as an r-value (line 40) and as an l-value (line 46):

m = ret3( ar ); // Coerce function result to r-value and store.
ret3( ar ) = -2; // Store -2 in address returned by function.

Return by const reference. The function ret4() returns a const int& (a reference to a const int). This
result can be only be used for read-access, because the underlying variable is a constant. ret4() is called once
(line 41) and used with implicit dereference on the right side of an assignment statement:

n = ret4( ar ); // Copy referent of return value into n.

Illegal calls. The following lines won’t compile. For both, my compiler gives the error comment assignment
of read-only location.

*ret2( ar ) = -5; // return by const *
ret4( ar ) = 25; // return by const &



Chapter 6: Objects, Allocation, and Disasters

By analyzing errors, we can learn how to make programs function well:

Knowledge rests not upon truth alone, but upon error also.
—Carl Jung, one of the fathers of modern psychotherapy.

6.1 Objects: Static, Automatic, Dynamic, and Mixed

6.1.1 Storage Class

• Auto objects are created by variable and parameter declarations. An object is allocated in the stack frame
for the current block when a declaration is executed and deallocated when control leaves that block.

• Static objects are created by variable declarations with the “static” qualifier. These are allocated and
initialized at load time and exist until the program terminates. They are only visible within the function
block that declares them. The word “static” comes from “stay”. Static variables stay allocated and stay
in the same memory address, even while control leaves and reenters their defining block many times.

• Dynamic objects are created by explicit calls on new. They continue to exist until they are deleted or until
the program ends. All objects that contain dynamic memory also have an auto or static portion (the core
of the object) which provides access to the dynamic portion or portions (the extensions of the object).

It is common for a single object to have members of two or three storage classes. In Figure 6.1.1, the class
declaration creates a simple class that is partly auto and partly dynamic, with an appropriate constructor and
destructor. The diagram to the right of the declaration shows the object that would be created by the declaration
Mixed A( "Joe" ). The core portion is shown against a shaded background, the extensions against a white
background.

\0o eJ
3len

name

A

Core portion

Extension

class Mixed {  
    int len;
    char* name;
public:
    Mixed( char* nm ) {
        len = strlen( nm );
        name = new char[ len+1 ];
        strcpy( name, nm );  
    }
    ~Mixed() { delete[] name; }
}

Figure 6.1: An object built partly of auto storage and partly of dynamic storage.

6.1.2 Assignment and Copying

The = operator is implicitly defined for all basic C++ types and for all types that the programmer might define.
If A and B are of the same type, then B = A; is always defined and (by default) does a shallow copy.

• Shallow copy (left side of Figure 6.1.2): a component-wise copy of the non-dynamic portion of the object.
This kind of copy rule is used to implement call-by-value, unless a different copying rule is explicitly
defined.
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Figure 6.2: Shallow and deep copies. In the shallow copy, two objects share the same extension.

• Deep copy (right side of Figure 6.1.2): a component-wise copy of the auto portion of the object, except for
fields that are pointers to dynamically allocated parts. These members are set to point at newly allocated
and initialized replicas of the object’s extensions. This is never predefined; a function must be written for
the class that allocates, initializes, and copies parts appropriately, one at a time.

Copying problems. When an object, A, is shallow-copied into another object, B, the two objects share
memory and a variety of nasty interactions can happen:

• If, before the copy, a member of B is a pointer to an extension, there will be a memory leak because that
pointer will be overwritten by the corresponding member of A

• Changes to the data in the extensions of either object affect both.

• Deleting an extension of either object will damage the other. Ultimately, when destructors are run on the
two objects, the first will delete properly, the second will cause a double-deletion error.

Because of these potential problems, shallow copy must be used carefully in C++. On the other hand, making
a deep copy of a large data structure consumes both time and space; so making many deep copies can kill a
program’s performance.

6.2 Static Class Members

Static function members. The purpose of a static class function is to allow a client to use the expertise of
a class before the first object of that class exists. This is often useful for giving instructions and for validation
of the data necessary to create an object.

A static function is called using the name of its class and ::. For example, suppose a class named Graph
has two static functions, instructions() and bool valid( int n ). Calls on these static functions might
look like this:

Graph::instructions();
if (Graph::valid( 15 )) ...

Since a static class function must be usable before the first class object is created, the code within the function
cannot use any of the data members of that class. It can use parameters and global constants, however.

Static data members. The purpose of a static class variable is perfectly simple: it is used to communicate
among or help define all class instances. A static data member is a shared variable that is logically part of all
instances of the class (and all instances of all derived classes).

For example, consider a dynamically allocated matrix whose size is not known until run time. It is important
to create all matrix rows the same length, but that length cannot be set using #define. A solution is to declare
the array length as a private static class member. Then it can be set at run time, but it is visible only within the
class. It can be used to construct all class instances, but only occupies space once, not space in every instance.

Sometimes a set of constants is associated with a class, for example, a Month class might have three
associated constant arrays, an array of valid month abbreviations or names, and the number of days in each
month. Since these are constant, it is undesirable to keep a copy inside every Month object, and undesirable to
keep creating and initializing local arrays. The ideal solution is to make a set of shared (static) arrays within
the class.
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Declaration. To declare a static class member, you simply write “static” before the member name in the class
declaration. Since the variable must be created at load time, it cannot be initialized by the class constructor.
Also, since a static data member is shared by many class instances, it cannot be created by any one of them.
Therefore, it is allocated and initialized at load time. The C++ designers (in their great wisdom) decided that
static class members must be declared outside the class as well as within and initialized outside the class (unless
they are integer variables or enum variables and are also const).

Here are some declarations that could be in a Month class. Since these are all arrays, we are not permitted
to initialize them within the class declaration. The int constant can be initialized here.

// Subscript 1 corresponds to January. Subscript 0 is unused.
static const int miy = 12; // Number of months in a year.
static const int dim[13] ; // Number of days in each month.
static char* mAbbrev[13]; // 3-letter abbreviations of the names.

Creation and initialization. Static data members are created and initialized at program-load time. Because
of this, a separate statement must be written, outside the class definition, to declare and (optionally) initialize
each static class member. The initializer, if present, may depend only on data that is known at compile time.
Note that the defining declaration does contain the class name and does not contain the word “static”:

int Matrix::columns; // Will be initialized after execution begins.
int Customer::count = 0; // Run time counter for instances of Customer.

const int Month::miy; // Initialized within the class; not needed here.
const int Month::dim[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
char* Month::mAbbrev[13] = {"---","Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"};

The defining declaration for a static data member must be compiled exactly once in all the modules that
comprise the program. Since header files are often included by more than one module, they are not an appro-
priate place for the defining declaration. modules that comprise the program. If a class has a .cpp le, the static
initialization can be written at the head of that file. This is good because it keeps the information about class
members in the class own le. However, some classes are entirely contained within the .hpp le and have no corre-
sponding .cpp le. For such a class, we could make a le just for one line, or we could put the static initialization
just before the beginning of the main program. This placement guarantees that the dening declaration will be
included exactly once in the completed, linked program but it separates an important fact (the initial value)
from the denition of the class.

If a class has a .cpp file, the static initialization can be written at the head of that file. This is good because
it keeps the information about class members in the class’ own file. However, some classes are entirely contained
within the .hpp file and have no corresponding .cpp file. For such a class, we could make a file just for one
line, or we could put the static initialization just before the beginning of the main program. This placement
guarantees that the defining declaration will be included exactly once in the completed, linked program but it
separates an important fact (the initial value) from the definition of the class.

Usage. Static does not mean the same thing as const; a static data member is used in the same way that a
non-static class variable would be used. Above, we showed declarations for two static variables. In the Matrix
class, the variable named columns will be initialized by the Matrix constructor and used to create all the rows
of the Matrix. In the Customer class, the counter will be incremented every time a Customer is created and
decremented every time one is deallocated. There is nothing in the code that uses a static member to indicate
that it is static or special in any way.

6.3 Common Kinds of Failure

1. Memory leak. C++ does not have an automatic garbage collector; it is the programmer’s responsibility
to deallocate dynamic storage when it is no longer useful. If the last pointer to a dynamic object is lost
before it is deleted, we have a “memory leak”. The memory locations occupied by that object are not
recycled and are therefore no longer available to the program. Some programs run continuously for days
or weeks. In such a program, a gradual memory leak can cause system performance to slowly degrade.
When the swap space or paging space is full, the program will hang.

In a properly working system, memory leaks are recovered when the program ends. However, some
common current systems do not free memory properly, and the memory is not recovered until someone
reboots the system.
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2. Amnesia. You allocated and initialized dynamic memory correctly. Immediately after doing so, the
information stored there was correct and complete. However, later, part or all of that information is gone,
even though you have not stored anything in the object since it was created.

3. Bus error. Your program crashes because you have tried to use a memory address that does not exist
on your computer.

4. Segmentation Fault. This happens on multiprogrammed systems with memory protection. Your pro-
gram crashes because you have tried to use a memory address that is not allocated to your process. It
may be part of the system’s memory space or it may belong to another process that is in memory.

5. Throwing an exception. The program is in a permanent wait state or an infinite loop.

6. Waiting for Eternity. The program is in a permanent wait state or an infinite loop.

6.4 Causes and Cures

6.4.1 A shallow copy disaster.

The following short program creates two objects of class Mixed, then assigns one to the other. By default, a
shallow copy operation is performed. An unusual function named change() is included in this class to illustrate
the shared nature of the extension. No normal class would have a public function, like this, that permits
private data to be corrupted. The output illustrates all three properties of a shallow copy operation. First,
the allocation area that was originally attached to B is no longer attached to anything and has become a leak.
Second, because B and A now share storage, assigning ’T’ to the first letter of B changes A also, as shown in
the output, below. Finally, my run-time system detects a double-deletion error during the program termination
process, and displays an error comment:

1 #include "tools.hpp"
2 class Mixed {
3 int len;
4 char* name;
5 public:
6 Mixed( char* nm ){ //------------------- Constructor
7 len = strlen(nm);
8 name = new char [len+1];
9 strcpy( name, nm );

10 }
11 ~Mixed() { delete[] name; }
12 void print(){ cout << name << " " << len <<’\t’; }
13 void change( char x ) { name[0] = x; }
14 };
15
16 int main( void )
17 {
18 Mixed A( "Joe" );
19 Mixed B( "Mary" );
20 cout << "Initial values A, B:\t"; A.print(); B.print();
21 B = A;
22 cout << "\nAfter copying B = A:\t"; A.print(); B.print();
23 B.change( ’T’ );
24 cout << "\nAfter setting B.name[0] = ’T’:\t"; A.print(); B.print();
25 cout <<endl;
26 }

Initial values A, B: Joe 3 Mary 4
After copying B = A: Joe 3 Joe 3
After setting B.name[0] = ’T’: Toe 3 Toe 3
*** malloc[2029]: Deallocation of a pointer not malloced: 0x61850; This could be a double free(),
or free() called with the middle of an allocated block; Try setting environment variable
MallocHelp to see tools to help debug
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Advice. Deep copy can be implemented for passing function arguments and assignment can be redefined to
use deep copy. However, it is probably not desirable in most cases because of the great expense of allocating
and initializing copies of large data structures. Object-oriented style involves constant function calls. If a deep
copy is made of every dynamic object every time a function is called, performance will suffer badly. It is “safe”,
but the cost of that safety may be too great. A much more efficient way to handle arguments that is just as
safe is to pass the argument as a constant reference.

6.4.2 Dangling pointers.

A dangling pointer is a pointer that refers to an object that has been deallocated. Using a dangling pointer is
likely to cause amnesia (problem 2. In the following program, a dangling pointer is created when the function
badread() returns a pointer to a local array. (My compiler did give a warning comment about it.) The string
“hijk” was in that array when the function returned, but was freed and overwritten by some other part of the
program before the output statement in the last line.

27 #include "tools.hpp"
28 char* badread( int n ){
29 char buf[n];
30 cin.get( buf, n );
31 return buf;
32 }
33 //-------------------------------------------------
34 char* goodread( int n ){
35 char* buf = new char[n];
36 cin.get( buf, n );
37 return buf;
38 }
39 //-------------------------------------------------
40 int main(void)
41 {
42 cout << "Enter the alphabet: ";
43 char* word1 = goodread( 8 );
44 char* word2 = badread( 5 );
45 char* word3 = goodread( 8 );
46 cout << "Your letters: " <<word1 <<" " <<word2 <<" "<<word3 <<endl;
47 }

Output:

Enter the alphabet: abcdefghijklmnopqrstuvwxyz
Your letters: abcdefg lmnopqr

6.4.3 Storing things in limbo.

Limbo is an unknown, random place. Storing things in limbo can cause problem 2, 3, or 4. A common error
is to try to store character data in a char* variable that does not point at a character array, as shown in the
program below. On my Mac OS-X system, the first input line, cin >> fname >> lname, causes a bus error.
The compiler does not detect this error because, to it, char* and char[] are compatible types. Caution: there
should be a call on new or malloc() for every char* variable that holds input.

48 #include <iostream>
49 using namespace std;
50 typedef char* cstring;
51
52 int main( void )
53 {
54 char* fname; // Not initialized to anything.
55 cstring lname; // Points off into limbo.
56 cout << "Enter two names: ";
57 cin >> fname >> lname; // Storing in Limbo..
58 cout << fname << " " << lname << endl;
59 }
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Output:
Enter two names: Andrew Bates

Limbo has exited due to signal 10 (SIGBUS).

6.4.4 The wrong ways to delete.

Shallow copy and deep deletion. Class objects with extensions should be passed by reference, not by
value. If you pass a class object to a function as a call-by-value argument, a shallow copy of it will be used to
initialize the parameter. When the function returns, the class constructor will be executed on the parameter. If
the argument had an extension, and the destructor is written in the normal way, the extension will be deleted
and the original copy of the object will be broken. Later, when the freed memory is reallocated, the program
will experience amnesia (problem 2). This extension of the output operator, and the call on it in the third line,
illustrate the most common deep-delete error:

inline ostream& operator<<( ostream& out, Dice d ) { return d.print(out); }
Dice mySet(5);
cout << mySet;

The second line declares a set of 5 dice, which are implemented by a dynamically allocated array of 5 integers.
The Dice destructor (properly) deletes that array. The third line calls the faulty output operator, and, as part
of the call, makes a copy of mySet (which shares extensions with the original). When printing is finished, this
copy will be freed, its destructor will be run, and the dice array will be gone. This is Not the intended result!

Wrongful deletion. Trying to delete a static or auto object may cause problem 3 or 4 or 5 or may result in
a delayed error. If a pointer stores any address other than one that was returned by new, it must never be the
argument of delete. In the next example, we try to delete an auto array. The result is a segmentation fault.

57 #include <iostream>
58 using namespace std;
59
60 int main( void )
61 {
62 char buf[80];
63 char* input = buf;
64 cout << "Enter some wisdom: ";
65 cin.getline( input, 80 );
66 cout << "Today’s words for the wise: " <<input <<endl;
67 delete input;
68 cout << "Normal termination";;
69 }

Output:
Enter some wisdom: To forgive is difficult.
Today’s words for the wise: To forgive is difficult.
wisdom(43266) malloc: *** error for object 0x7fff5fbff410: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort

Partial deletion. The same kinds of disasters will happen when you delete through a pointer that points
at the middle of a dynamically allocated array, as in the next example. The newest Gnu C++ compiler was
used here; it trapped the faulty delete command and produced an intelligent error comment instead of crashing.
Older compilers simply crash with a segmentation fault.

69 #include "tools.hpp"
70 int main(void)
71 {
72 char* scan, * buf = new char[80];
73 cout << "Enter some words and some punctuation: \n\t";
74 for(;;) {
75 cin.getline( buf, 80 );
76 scan = strchr( buf, ’.’ );
77 if (scan != NULL) break;
78 cout << "I don’t like " <<buf <<" Try again.\n\t";
79 }
80 cout << "I like the last one.\n" <<scan <<endl;
81 delete scan;
82 }
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Output:

Enter some words and some punctuation:
It is sunny today!

I don’t like It is sunny today! Try again.
It is rainy today.

I like the last one.
.
delestack(43229) malloc: *** error for object 0x100100091: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort

Double deletion. Deleting the same thing twice is likely to cause problem 4, 3 or a delayed fatal error. The
outcome would depend on the memory management algorithm used by your compiler. This commonly happens
when the program correctly deletes through the pointer to the head of a dynamic area, but also deletes through
a copy of the head pointer. This error is trapped by the new Gnu C++ compiler.

Failure to delete. If an area is not deleted when its useful life is over, problem 1 , a memory leak, will result.
This is a serious problem for real-life programs that run in the background for long periods of time.

6.4.5 Walking on memory.

We say that a program “walks on memory” when it stores data beyond the end of the area (usually an array)
that has been allocated for the target object. This can cause problem 2, 4, or 3. This happens when:

1. You store beyond the end of the allocated array because of careless array processing. (See example below.)

2. The input string is longer than the buffer during a call on an unlimited string input function.

3. The “from” string is longer than the “to” array during a call on strcpy().

4. The “to” array is too short to contain the combined strings during a call on strcat().

In the next program, the array nums is used to hold a series of numeric inputs. The program runs, reads
input, and (because of careless use of subscripts) stores the last number past the end of the nums array, on top
of the array allocated for the last name. The results are machine dependent, but on both of my systems, we get
the output shown below the program. Note that the last name was correctly printed on the second line, but it
is gone from the fifth line. Why? When the loop went past the end of the nums array, it stored the number 5
(0x05) on top of the last name. The 0 byte (’\0’) fell on top of the ’W’, so nothing was printed.

83 #include "tools.hpp"
84 int main( void )
85 {
86 char fname[10], lname[10];
87 int nums[4], total = 0;
88 cout <<"Enter two names: "; cin >>fname >>lname;
89 cout <<"You typed: " <<fname << " " << lname << endl;
90 cout <<"Enter four numbers: ";
91 for( int k=1; k<=4; ++k) {
92 cin >> nums[k];
93 total += nums[k];
94 }
95 cout <<"First: " <<fname << "\nLast: " <<lname <<"\nTotal = " <<total <<endl;
96 }

Output:

Enter two names: Margaret Wilkenson
You typed: Margaret Wilkenson
Enter four numbers: 2 3 4 5
First: Margaret
Last:
Total = 14
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Parentheses are not square brackets. Square brackets [ ] are used to allocate an array. Parentheses () are
used to enclose an argument for a constructor function or an initializer for a variable. Using () when you need
square brackets can cause amnesia (problem 2) because the program will allocate one variable, not an array of
variables, and eventually will overrun memory. In the next program, we want to allocate a new array of chars,
but we use parentheses where the brackets belong. The line still looks “normal”, and the mistake is easy to
make and easy to miss:

97 #include "tools.hpp"
98 int main( void )
99 {

100 char* buf1 = new char(100);
101 char* buf2 = new char(100);
102 cout <<"Enter two lines of text: \n";
103 cin.getline( buf1, 100 );
104 cin.getline( buf2, 100 );
105 cout <<"Echo [(" <<buf1 <<endl <<buf2 <<")]\n" ;
106 }

Output:

Enter a line of text:
I once saw a doggie in the window,
Echo [(I once sEcho [(I once sEcho [(I on)]

The result is that you THINK there is enough space for a long string, but only 1 byte ( initialized to the
letter ‘d’, whose ASCII code is 100), plus padding was provided. In this case, it appears that eight bytes were
allocated altogether, but some compilers might allocate less. Your program will probably not bomb, but when
you (or the run-time system) allocates the next new object, all but the first N bytes of the data will be overlaid
by new data. (Where N-1 is the number of bytes that were used for padding.) The output in this particular
case is bizarre: I can’t explain why there are three copies of some letters, and this result would probably not be
repeatable on another system.

Changing a string literal. Many compilers store literals in a read-only storage area. An attempt to change
the contents of a string literal can cause problem 4.

6.4.6 NULL pointers.

To avoid trouble, be careful not to walk off the end of a linked list, process an uninitialized portion of an array,
or delete the referent of a NULL pointer. An attempt to dereference a NULL pointer may cause problem 4, or 3,
depending on your system. The same is true of any attempt to apply a subscript or ++ to the NULL pointer.
The nature of the error will be system dependent. I have three computers with different processors and different
operating systems, all running the gnu C++ compiler. On one computer, I got a segmentation error, on the
other two a bus error, as shown below.

105 #include "tools.hpp"
106
107 int main( void )
108 {
109 char* name[5] = {"Jane", "Yonit", "Theo", "Xin"};
110 char* selection;
111
112 for(int k=0; k<5; k++){
113 selection = name[k];
114 cerr << "Name [" << k <<"] is " << selection << " \t";
115 cerr << "[" << k <<"][" << k <<"] = "<<selection[k] << "\n";
116 }
117 bye();
118 }
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Output:

Name [0] is Jane [0][0] = J
Name [1] is Yonit [1][1] = o
Name [2] is Theo [2][2] = e
Name [3] is Xin [3][3] =
Name [4] is (null) Bus error

Printing. On many systems, garbage will be printed if you attempt to print a string but the string pointer
is NULL On my system, however, it is always safe to print a string because the error is trapped by the print
routines, and the output printed is (null), as in the output above.

Illegal access. The program on line 119 is a simplified version of the Partial deletion program on line 69.
The error that caused the earlier version to crash was eliminated. However, this still crashes with problem 3 or
4 or 5 if the input does not contain the “?” that we are searching for. The problem happens because strchr()
returns a NULL pointer when it does not find the required character. That is not a problem. However, line 127
uses the result of the strchr() without testing it first and sends the memory address 1 to <<. This address is
used by the system’s BIOS (basic input-output system) and must not be used by an application program. On
a system with memory protection, the result will always be a fatal error.

119 #include <iostream>
120 using namespace std;
121
122 int main(void)
123 {
124 char buf[80];
125 cout << "Enter some words and some punctuation: \n\t";
126 cin.getline( buf, 80 );
127 char* scan = strchr(buf, ’?’);
128 cout << "I like the last part: " <<scan+1 <<"\n\n";
129 cout << "buf: " <<buf <<endl;
130 cout << "Normal termination";
131 }

Output:

Enter some words and some punctuation:
Hungary. Turkey, Chile!

Segmentation fault

Garbage in. Garbage in the input stream can cause problem 6. For example, each line in a DOS text file
ends in two characters: carriage-return line feed. Unix lines have only one char at the end of a line. If you
attempt to read a DOS data file in a program compiled for UNIX, the end-of-line characters will be garbage
and will probably cause an infinite loop. The I/O demonstration program at the end of Chapter 3 illustrates
this and other file-handling issues.
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Chapter 7: C++ Bells and Whistles

A number of C++ features are introduced in this chapter: default parameters, const class members, and operator
extensions.

7.1 Optional Parameters

Purpose and Rules. Default parameters are never necessary but they are a great convenience. They allow
us to write a single function definition that defines two or more function variations with different numbers
of parameters. A function with one default parameter is really two functions that share a name. (This is
sometimes called overloading a name.) A function with several default parameters is a shorthand for several
function definitions. The basic requirements are:

• A default value for a parameter is given in the class declaration, not the function definition. It is written
(like an initializer) after the parameter name in the function prototype.

The default values may either be given or omitted in the function definitions that are written in a separate
.cpp file. However, if the function definition does gives a default parameter value, it must match the one
given in the class declaration.

• Some or all of the parameters of any function may have default values.

• All parameters with default values must come after the parameters without defaults.

• When a function is called, the programmer may omit writing arguments if the default values are acceptable.

• Documentation should always explain clearly which parameters have default values and what the values
are.

The most familiar function defined with optional arguments is istream::get(). It can be called to read a
string with either three or two arguments:

cin.get( input, MAX, ’,’ );
cin.get( input, MAX );

The calls both read characters into an array named input. Both stop after MAX-1 characters have been read.
The first call will also stop if a comma is read; the second call will stop when the default character (newline) is
read. The corresponding prototype of istream::get() might look something like this:

void cin.get( char* buf, int max, char c=’\n’ );

7.1.1 A Short Example

Consider the short program that follows. It constructs and prints three instances of a Box class, each with
a different number of parameters. The definition of the Box constructor makes this possible by using default
parameters.

• By using default parameters, we can replace two or more function definitions by one (line 26). An earlier
version of this program had two constructors:

Box( int ln, int wd, int ht ){ length=ln; width=wd; high=ht; }
Box(){ length = width = high = 1; }

• This single definition is equivalent to a family of four function methods, and allows us to omit the final
zero, one, two, or three arguments when calling the constructor:
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Box( int ln, int wd, int ht );
Box( int ln, int wd );
Box( int ln );
Box( );

1 //------------------------------------------------------------------------------
2 // Array construction example, October 8, 2000 file: BoxM.cpp
3 //------------------------------------------------------------------------------
4 #include "tools.hpp"
5 #include "box.hpp"
6 //------------------------------------------------------------------------------
7 int main( void )
8 { cout << "\nTesting the default parameters\n";
9 Box B1; // Make a default Box.

10 Box B2(2); // Make Boxes with various parameters.
11 Box B3(2, 3);
12 cout <<"\nDumping the boxes:\n" << B1 << B2 << B3 <<endl;
13 }

14 //------------------------------------------------------------------------------
15 // Demonstrate syntax and usage of default parameters.
16 // A. Fischer February 10, 2009 file: box.hpp
17 //------------------------------------------------------------------------------
18 #pragma once;
19 #include "tools.hpp"
20 //------------------------------------------------------------------------------
21 class Box {
22 private:
23 int length, width, high; // The three dimensions of a box.
24
25 public:
26 Box(int ln=1, int wd=1, int ht=1){
27 length=ln; width=wd; high=ht;
28 }
29
30 ~Box() {}
31
32 ostream& print( ostream& out = cout ){
33 return out <<length <<" by " <<width <<" by " <<high <<". ";
34 }
35 };
36
37 //------------------------------------------------------------------------------
38 inline ostream& operator<< (ostream& out, Box& B) { return B.print( out ); }
39

Usage. Clearly, optional parameters are useful in constructors. They also save time and writing whenever a
function must sometimes handle an unusual case. The parameter connected to the unusual situation is coded
last and omitted from most calls. For example, suppose you wanted a print function to (normally) write output
to cout, but occasionally you want to write to a file. You can accomplish this with an optional parameter.
Suppose B is a Box object and file_out is an open output stream. Then you could call the Box::print function
(line 32) three ways:

B.print( cout ); // Write to the screen, but we do not need the parameter.
B.print(); // Means the same thing as the line above.
B.print( file_out ); // Write to an output file.

7.2 Const Qualifiers

Purpose and usage. The proper use of const can be a powerful documentation technique. When you are
using classes defined by someone else, you often see only the declarations and prototypes of the public members
of the class. It is very important to know which of the members are constant and which functions do not modify
their parameters. Here are a few rules and guidelines:
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• You rarely need to use const. If a program will work with it, it will work without it.

• Use const to explicitly state your intentions: if your intention is that the variable will not change, then
you should define it as a const.

• The most common use of const is to restrict the usage of reference and pointer parameters and return
values, so that they give read-only access to another program unit.

• In class functions, const can also be used with the implied parameter; in this case it declares that no
statement in the function changes the value of any member of *this.

• The other common use of const is at the beginning of a function, to declare a local variables whose value
depends on one of the parameters, but whose value will be constant throughout the execution of one call
on that function.

• If they are used at all, global variables should be const. It is not bad style to use a global const variable
because you can do things with it that you cannot do with #define (initialize a constant object of a
structured type).

Finally, be aware that compilers vary with respect to const. It is the job of the compiler (not the programmer)
to make sure that the const rules are never broken. Writing the code that enforces the const declarations is
difficult. Some compilers enforce the constant rules very strictly; others do not, so your program might compile
without errors on a sloppy compiler but fail on a compiler that checks the const rules carefully.

Syntax for const. Everywhere a prototype contains the keyword const, the matching function definition must
have a matching const. Here are the rules that apply to writing const in a function prototype and definition.
There are four places the keyword const can appear:

1. The const can be written before the function’s return type. This is used only when the value returned by
the function is a * or an & type.

const int* f( int x ); // A pointer to a constant integer.
const int& g( int x ); // A reference to a constant integer

The return value of f() points at a constant integer (possibly part of an array). It can be stored in a
non-constant pointer variable. You could increment that pointer to point at the next element in an array
of constant ints, but you could not change any of them.

The return value from g() is a reference to a constant int. It gives read access but not write access to that
integer.

2. The const can be written before the type of one of the parameters in the parameter list. This is used
only when the parameter is a * or a &. It means that the function cannot modify the caller’s variable
that corresponds to that parameter.

void List::Search( const Item& s );
void List::Search( const char* name );

Here, we declare that the Search function will not modify the Item (in the first prototype) or the string
(in the second prototype) that is its argument. Class objects are usually passed by reference to avoid
triggering the class destructor when the function exits. In this case, the const plays an important role in
isolating the caller from the actions of the function.

3. The const can be written between the end of the parameter list and the ; that ends the prototype or
the { that opens the function body. In this position, const means that the function does not modify the
implied parameter.

void Stack::Print() const;
int Stack::Space() const { return Max-N; };

In this location, the const is used as a form of documentation. It declares that the Print and Space
functions use the members of the Stack class but do not modify them. This is obvious if you look at the
function’s code, but can be helpful documentation when only the prototype is available (not code itself).

4. Within the body of a function, const can be applied to any local variable. This is often done when the
variable depends on one of the parameters, but does not change within the function.
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7.3 Operator Extensions

Purpose and usage. The built-in arithmetic operators in C and C++ are generic; they are defined for all
built-in numeric types. One of the purposes of an object-oriented language is to enable the programmer to
define new classes and use them in the same ways that the built-in classes are used. Combining these two facts,
we see a need to extend the built-in generic operators to work on new classes. An operator extension implements
a built-in function for a new type in such a way that the intention and character of the original operator are
preserved.

The assignment operator and a copy constructor are automatically defined for all types, as member-by-
member shallow copies. Both can be redefined, if needed, to do something else; the new definition overrides the
default definition. This is appropriate when the programmer wants to eliminate the possibility of an accidental
use of the built-in definition, and even more appropriate if something useful can be implemented instead.

A third kind of operator definition overloads the operator by giving it a new meaning that is only distantly
related to its original meaning. For example, the += operator is extended, below, to add a new item to a list
of items. This is not at all like numeric addition, so it is an overload of +=, not an extension of the original
meaning of the operator (add and store back).

C has both binary and unary operators. When a unary operator (such as increment or type cast) is extended,
the definition is always given as part of the relevant class. When a binary operator is extended, the definition
is normally given as part of the class of the left operand. If that is not possible, it is given globally (outside
all classes). A general rule for an operator definition is that the the number of operands and precedence must
match the built-in operator. Default arguments are illegal in these definitions.

Below, we consider some contexts in which an operator definition might make sense and give one or more
examples of each.

7.3.1 Global Binary Operator Extensions

These are appropriate for extensions of an operator to a non-class type, or for a pre-defined class that cannot
be modified. The syntax for this kind of extension prototype is:

return-type operator op-symbol (left-op-type, right-op-type );

Three extensions of the << operator were defined in the Bargraph program. These are defined globally because
we cannot add them to the predefined ostream class. The right operand (second parameter) belongs to the new
class in each case.

ostream& operator << ( ostream& out, Item& T);
ostream& operator << ( ostream& out, Graph& G);
ostream& operator << ( ostream& out, Row& T);

The preferred way to write this kind of extension is as an inline function just below the bottom of the
class declaration. If the function is too long for inline expansion, then the prototype should be given at the
bottom of the .hpp file for the class, and the function definition should be in the main module, after the #include
command for the class header and before the beginning of main().

7.3.2 Binary Operator Extensions in a Class.

Binary functions within a class are defined using this prototype syntax:

return-type operator op-symbol ( right-op-type );

Extending arithmetic and comparison. Suppose we defined a new numeric class such as Complex. It
would be appropriate to extend all the basic arithmetic and comparison operators for this class, so that complex
numbers could be used, like reals, in formulas. Assume that the class Complex has two data members, rp (the
real part) and ip (the imaginary part). Several definitions are required to define all of the relevant operators;
here are two samples:

Complex operator + ( Complex plex ){ // Add two complex numbers.
return Complex( rp + plex.rp, ip + plex.ip );

}
bool operator == ( Complex plex ){ // Compare two complex numbers.

return rp == plex.rp && ip == plex.ip;
}
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In such definitions, the implied argument is the left operand and the explicit argument is the right operand.
Any reference to the left operand is made simply by using the part name. References to the right operand are
made using the parameter name and the part name.

Adding to a collection: an overload. Another appropriate extension is a += operator in a container
class. The Stack::Push() function could be replaced by the following extension. (Only the function name would
change, not the function’s code.)

void Stack::operator += ( char c ); // Push an Item onto the Stack.

The Stack::push function is called from three loops in the main program. The first loop could be replaced by
this intuitively appealing code:

do { cin >> car;
west += car;

} while (car != QUIT); // Engine has been entered.

Assignment: an override. Sometimes the default definition of assignment is changed. For example, here
is a definition of = for Stacks that moves the data from one stack to another, rather than doing a shallow
copy. This definition illustrates the use of the keyword this to call the += function (defined above) to push a
character onto the implied Stack parameter:

void operator= ( Stack& z ) { // Pop one stack, push result onto other.
char c;
while (!z.empty()) {

c = z.pop();
*this += c;

}
}

Extending subscript. The remaining important use of operator extensions is to define subscript for data
structures that function as arrays but have a more complex representation. A good example is the resizeable
array data structure that was used to implement the unlimited storage capacity for the stack in the Stack
program. A flexible array class needs an extension of the subscript operator so that the client program can refer
to the object as if it were a normal array.

The subscript operator is a little different in two ways. First, it must return a reference to the selected
array slot so that the client program can either read or write the selected element. Second, the syntax is a little
different because the left operand is enclosed between the square brackets, not written after them. An added
advantage of extending subscript is that a bounds check can be incorporated into the definition, as illustrated
below. Here is the part of the class declaration and the extension of the subscript operator that could be part
of a FlexString class (a resizeable array of characters).

class FlexString {
private:
int Max; // Current allocation size.
int N; // Number of data chars stored in array.
char* Buf; // Pointer to dynamic array of char.

private:
char& operator[]( int k );
...

};

// ----------------------------------- access the kth char in the string.
char& FlexString :: operator []( int k ) {

if (k >= N) fatal(" FlexString bounds error.");
return Buf[k];

}
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7.3.3 Unary operators.

Extending type cast. The syntax for extending the type cast operator is:

operator target-type() { return member-name; }

An extension of the type cast operator is used to convert a value from a class type to another type. This is also
called “member conversion”, because it converts a class member to some other type. It is particularly useful in
linked-list classes such as Cell (below) for converting from a Cell to a pointer type such as Item*, by extracting
the pointer from the Cell.

class Cell {
private:
Item* Data;
Cell* Next;

public:
operator Item() { return *Data; } // Type cast from Cell to Item
...

};

Type coercion. Extensions of a type cast operator can be used explicitly, but they are also used by the
system to coerce operands and parameters. For example, in a program that contained the above extension of
type cast, if you used a Cell object in a context in which a Cell* was needed, the compiler would use the Next
field of the object to carry out the operation.

Increment and decrement: extensions or overloads. The Prefix forms of increment and decrement are
normal unary operators; The postfix forms are different from everything else in the language. The prototypes
for these operators have the form:

Preincrement: return-type operator ++();
Postincrement: return-type operator ++(int)();

The “int” after the ++ in the postfix form serves only one purpose, and that is to distinguish the prefix
and postfix forms. The “(int)” looks like a parameter list, but the parameter does not need a name because it
is not used; it is just a dummy. Definitions of these two operators inside the complex class might look like this:

Complex operator ++ (){ rp++; return *this; }
Complex operator ++ (int){ Complex temp = *this; ++rp; return temp; }

Another use of an increment extension is to make the syntax for a linked list imitate the syntax for an array,
so that the exact nature of a class implementation can be fully hidden. This technique is used extensively in
implementations of container classes in the Standard Template Library, and can be applied in any list class that
has a “current element” member. Here is an appropriate extension for a List class that has members named
Head, Curr and Prior:

Cell* operator ++ (){ Curr = Curr->Next; return Curr; }
Cell* operator ++ (int){ Cell* tmp = Curr; Curr = Curr->Next; return tmp; }

Given this definition and an appropriate extension for <= in the Item class, we could write a List::Search function
as follows:

bool List::Search( Item T ){ // Search for T in list with ascending order.
for (Curr= Head; Curr!=NULL; )

if (T <= Curr->Data) break;
Prior = Curr++;

}
return T == Curr->Data // true for exact match, false for >.

}



Chapter 8: Interacting Classes

8.1 The Roles of a Class

Three more basic OO design principles:

A class is the expert on its own members.
Oil and water don’t mix.
Delegate! Simplify!

In this chapter we begin to build complexity by introducing classes that interact, or collaborate with each
other to get the job done. Classes serve a variety of purposes in OO programming, and we try to define our
classes so that they serve these purposes well. A class is. . .

• A type from which objects (instances) can be formed. We say the instances belong to the class.

• A collection of things that belong together; a struct with its associated functions.

• A way to encapsulate behavior: a public interface with a private implementation.

• A way to protect the integrity of data, providing the rest of the world with functions that provide a view
of the data but no way to modify it.

• A way to organize and automate allocation, initialization, and deallocation

• A reusable module.

• A way to break a complex problem down into manageable, semi-independent pieces, each with a defined
interface.

• An entity that can collaborate with other classes to perform a task.

8.1.1 Finding the Classes

In designing an OO application, we must first identify the classes that we need, based on the problem speci-
fication. This is more of an art than a science and experience plays a large role in making good choices. For
a beginner, it helps to have some idea of the kind of classes that others have defined in many kinds of OO
applications. These include:

• Physical or tangible objects or places: airplane, airport, document, graph

• Non-tangible objects or systems: creditAuthorization, authorizationSystem

• Specifications for, or records of, objects: floorPlan, receipt

• Events or transactions: sale, charge, reservation, crash

• Organizations: csDepartment

• Roles of people: administrator, clerk

• Containers of things: jobList, facultySet, partsInventory, cardCatalog

• Things that go into the container: job, faculty, part, card

77
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8.1.2 Diagramming One Class

A class is represented by a rectangle with three (or, optionally
four) layers, as shown on the right:

• class name

• data members (type and name)

• function members (prototypes)

• other relevant information: friends, etc

Members are marked with + for public, # for protected, or –
for private. In simplified diagrams, some of the layers may be
omitted.

Mine

data members
name1: type1    
name2: type2   
name5: type5      

Mine (param list)
~Mine()
funA(param list): type3 
funB(param list): type4 
funC(param list): type6
funD(param list): type7

-
-
+

function members

+
+
-

constructors
destructor

other relevant information

-
+
+

8.2 Class Relationships

Several relationships may exist between two classes: composition, aggregation, association, derivation, and
friendship. These are explained in the paragraphs below and illustrated by class relationship diagrams. The
four relationships at the top of this list provide the most protection for members of class B. As we move down
the list, protection decreases, that is, class A functions get more privileges with respect to the private parts of
B.

8.2.1 Composition.

Class A composes class B if a B object is part of every A object. The B member must be born when A is born,
die when A dies, and be part of exactly one A object. Class A could compose any definite number of B objects;
the number is indicated at the B end of the A-B link . The black diamond on the A end of the link indicates
composition.

In this diagram, class A has one member named m of class B, which
is constructed when an A object is constructed. When the A object is
deallocated, it will cause the deallocation of the corresponding instance
of B. A can use the public functions of B to operate on m.

A B
1

m: B

8.2.2 Aggregation.

Class A aggregates class B if a B object is part of every A object, but the lifetime of the B object does not match
the lifetime of the A object. The B object may be allocated later and attached to A with a pointer. Also, one
B object might be aggregated by more than one A object, and A could aggregate more than one B object.

In the diagram, the white diamond on the A end of the A-B link indicates
aggregation. Class A has one member named mp of class B*. When an
instance of A is deallocated, it might or might not cause the deallocation
of the corresponding instance(s) of B. A can use the public functions of
B by using mp->.

A B1

m: B*  

8.2.3 Association.

Class A is associated with class B if a member of A points at an instance of class B (or a set of instances),
but both kinds of objects have an independent existence. Neither one is “part of ” the other. The B object is
generally not created by A’s constructor; it is created independently and attached to A.

Simple Association. In a simple association, class A is associ-
ated with a definite number of B objects, often one. This is usually
implemented in A by one pointer member that may be NULL or may
be connected to an object or array of objects of type B. A can use
the public functions of B by using mp->.

0..1
1

A
  mp: B*

B
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One-many Association. Class A is associated with a set of ob-
jects of class B. This set may be ordered or not. The relationship
can be implemented by a member of A that points at a data struc-
ture containing objects of type B. In this case, A can use the public
functions of B by using mp->. Alternatively, using STL classes, a
member of A is an iterator for the set of B objects.

*
1

A
  mp: B*

B
next: B*  

8.2.4 Derivation.
Class B can be derived from class A, which means that a B object is
one possible variety of type A. Using derivation, a single object may
have more than one type at the same time. Every instance of B or
C is also an instance of A; it has all the properties of A, and inherits
all of A’s functions. The derived classes will extend either the set
of A’s properties, or functions, or both, and B and C will extend A
differently.

In the diagram, the triangle with its point toward A indicates that
classes B and C are derived from class A. We will study derivation
after the midterm.

A
B

C

8.2.5 Friendship.

Class B can give friendship to A. This creates a tightly-coupled pair
of classes in which the functions of A can use the private parts of
B objects. This relationship is used primarily for linked data struc-
tures, where A is a container for items of type B and implements the
interface for both classes. All members of class B should be private
so that outside classes must use the interface provided by A to access
them. (An alternative is to declare the class B inside class A, with
all members of B being public.)

In the diagram, we show a dashed “rubber band” around the two
class boxes, indicating that each one relies on the other.

*
1

A
  mp: B*

B
next: B*  

8.2.6 An example.

Suppose you wish to implement a family datebook:

• The Datebook will have an array of linked lists, one for each family member.

• Each List points at a Node.

• Each Node contains one appointment and a pointer to the next Node.

• One appointment can be shared by two or more lists.

The resulting data structure is illustrated in Figure 7.1. In this structure, the Datebook composes four Lists,
each list has a one-many association with a set of Nodes, and each Node aggregates one Appointment. Finally,
friendship is used to couple the List and Node classes because the List class will provide the only public interface
for the Node class. The UML diagram in Figure 7.2 shows these relationships.

8.2.7 Elementary Design Principles

Several design issues arise frequently. We list some here, with guidelines for addressing them and the reasons
behind the guidelines.
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1

0
0

3

2001

April 27 9:15 Dr. Ma

April 29 5:30 CS626

May 3 6pm Mary

Figure 8.1: The data structure: an array of linked lists.

List AppointmentDatebook Node4 *

Figure 8.2: UML diagram for the Datebook data structure.

Privacy. Data members should be private. Public accessing functions should be defined only when absolutely
necessary. [Why] This minimizes the possibility of getting inconsistent data in an object and minimizes the
ways in which one class can depend on the representation of another. In the Bargraph program, later in this
chapter, all data members of all classes are private.

Expert. Each class is its own expert and knows best what should be done with its members and how to do it.
All functions that use data members should be class functions. If a class seems to need access to a member of
another class in order to carry out an operation, it should delegate the operation to the class that is the expert
on that data member.

There is one exception to this rule: To implement a linked structure, such as a List in the previous example,
an auxiliary class is needed (Node). These two classes form a tightly coupled pair with an interface class (List)
and a helper class (Node). A “friend class” declaration is used to create this relationship. All access to Nodes
is through functions of the List class.

In the Bargraph program (later in this chapter) the two members of class Item are private. All access
to Items is through the constuctor, destructor, and Print functions that belong to the class. However, in the
tightly coupled pair of classes, Row and Cell, Row provides the interface for Cell, so Cell gives friendship to
Row, allowing Row to set, change, and print the members of Cell.

Creation. The class that composes or aggregates an object should create it. [Why] This minimizes the ways
in which one class depends on another (coupling).

In the Stack class, stack allocates storage for the objects (characters) stored in it. When that storage
becomes full, the class allocates more space. In the Bargraph program, the Row class allocates space for Cells
because the Row class contains the list of cells. It allocates the Items also, because Cell is a subsidiary class for
which Row supplies the interface.

Deletion. The class that aggregates an object should generally delete it. [Why] To minimize confusion, and
because nothing else is usually possible.

The array that was allocated by the Stack constructor and aggregated by the Stack class is freed by the
Stack destructor. Also, in the push() function, each time the stack “grows”, the old storage array is freed as
soon as the data is copied into the new allocation area. In the Bargraph program, allocation happens at two
levels. The Graph constructor allocates and aggregates 11 Rows, and the Graph destructor deletes them. The
function Row::Insert allocates an Item and a Cell, which are then associated with the Row. At termination, the
Row destructor deletes all the Items and all the Cells associated with it.

Consistency. Only class functions should modify class data members. There should be no “set” functions
that allow outsiders to freely change the values of individual data members. [Why] To ensure that the object
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always remains in a consistent state.

Consider a class such as Row, that implements a linked list. All actions that modify the list structure should
be done by Row class functions. The only class that should even know about tis structure is Row, itself. Under
no circumstances should the Row class provide a function that lets another class change the pointer in a Cell.
If another class is allowed to change list pointers, the list may be damaged beyond recovery.

Delegation. If a class A contains or aggregates a data member that belongs to class B, actions involving
the parts of that member should be delegated to functions in class B. [Why] To minimize dependency between
classes.

In the Bargraph program, each public class has its own print function. The Graph class delegates to the
Row class the job of printing each Bar. That class, in turn, lets the Item class print the data fields of each Item.

Don’t talk to strangers. Avoid calling functions indirectly through a chain of references or pointers. Call
functions only using your own class members and parameters and let the member or parameter perform the
task by delegating it in whatever way makes local sense. [Why] To avoid and minimize the number of indirect
effects that happen when a class definition changes.

In the Bargraph program, the Graph class aggregates the Row class, the Row class associates with the Cell
class and aggregates the Item class. So the Graph class is free to call Row functions, but it should not be calling
Cell functions or Item functions. To do a Cell or Item operation, Graph should delegate the task by calling a
Row function (and Row should provide functions for all such legitimate purposes.)

Responsibility. Every class should “take care of” itself, validate its own data, and handle its own emergencies.
[Why] To minimize coupling between classes.

In the Stack program, the Stack checks whether it is full and if it is, it allocates more storage. There is no
reason that a client program should ever ask about or be aware of a “full” condition.

8.3 The Program: Making a Bar Graph

8.3.1 Specification

Scope: Make a bar graph showing the distribution of student exam scores.

Input: A file, with one data set per line. Each data set consists of three initials and one exam score, in
that order. (You may assume that all lines have valid data.) A sample input file is shown below, with its
corresponding output.

Requirements: Create and initialize an array of eleven rows, where each row is initially empty but will
eventually contain a linked list of scores in the specified range. Then read the file and process it one line at a
time. For each line of data, dynamically allocate storage for the data and insert it into the appropriate row of
scores.

Do this efficiently. When adding an item to a row, compute the subscript of the correct row. Do not identify
it using a switch or a sequential search. Also, do not traverse that row’s list of entries to find the end of the list;
insert the new data at the head of the list. This is appropriate because the items in a list may be in any order.

Formulas: Scores 0. . . 9 should be attached to the list in array slot 0; scores 10..19 should go on the list in
slot 1, etc. Scores below 0 or above 99 should go on the last list. The order of the items in each row does not
matter.

Output: A bar graph with 11 horizontal bars, as shown below.
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Input :

AWF 00

MJF 98

FDR 75

RBW 69

GBS 92

PLK 37

ABA 56

PDB 71

JBK -1

GLD 89

PRD 68

HST 79

ABC 82

AEF 89

ALA 105

Output :
Put input files in same directory as the executable code.

Name of data file: bar.in

File is open and ready to read.

00..09: AWF 0

10..19:

20..29:

30..39: PLK 37

40..49:

50..59: ABA 56

60..69: PRD 68 RBW 69

70..79: HST 79 PDB 71 FDR 75

80..89: AEF 89 ABC 82 GLD 89

90..99: GBS 92 MJF 98

Errors: ALA 105 JBK -1

8.3.2 The Main Program and Output

1 //==========================================================================
2 // Bargraph of Exam Scores: An introduction to class interactions.
3 // Read scores from a user-specified file; display them as a bar graph.
4 // A. Fischer, September 30, 2000 file: graphM.cpp
5 // Modified M. & A. Fischer, September 17, 2009
6 //==========================================================================
7 #include "tools.hpp"
8 #include "graph.hpp"
9

10 int main ( void )
11 {
12 banner();
13
14 Graph::instructions(); // Call of static class method
15 char fname [80];
16 cout << "Name of data file: ";
17 cin >> fname; // *** IRRESPONSIBLE CODE ***
18 // cin.getline(fname, 80); // Prevents buffer overrun
19 ifstream infile (fname); // Declare and open input stream
20 if (!infile) fatal( "Cannot open %s for input - aborting!!\n", fname );
21 else say ( "File is open and ready to read.\n");
22
23 Graph curve( infile ); // Declare and construct a Graph object.
24 // Realizes data structure from a file
25 cout <<curve; // Print the graph.
26 // OR: curve.print( cout ); // Print the graph.
27
28 bye();
29 // Storage belonging to curve will be freed by destructors at this time.
30 }

Notes on the main program. The main program forms the interface between the user and the top-level
class, Graph. It gives instructions (line 14) sets up an input stream for Graph’s use and gives appropriate
feedback (lines 15. . . 21), then calls the Graph constructor (line 23) and print function (line 25) to construct
and print a bargraph. Although four classes are used to implement this program, three of them are subsidiary
to Graph. No other classes are known to or used by main(). Thus, the only class header file included by this
module is "graph.hpp".

The output. The output consists of three sections. First are the banner, instructions and input prompt
printed by main. Following this is the normal program output (a bar graph, exactly like the one shown in the
specifications). Last is the trace that is printed by the class destructors. By including trace output in your
destructors, you can check that all parts of your data structures are freed properly and prove that you have no
memory leaks.
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Below, we give the first and last parts of the trace to illustrate the process of memory deallocation. (The
dotted line marks the part of the trace that was omitted.) The lines printed by the Graph and destructors are
not indented, those printed by the Item destructor are indented, and the Cell destructor prints one word on the
same line as the Item destructor. Rows and Items tell us which instance is being deleted. Note that the parts
of a data structure are freed before the whole, that is, the Item before the Cell, the Cells before the Row, and
the Rows before the Graph.

Here is the beginning and end of the program termination trace:
Normal termination.

Deleting Item AWF ... Cell

Deleting row 00..09: >>>

Deleting row 10..19: >>>

Deleting row 20..29: >>>

Deleting Item PLK ... Cell

Deleting row 30..39: >>>

Deleting row 40..49: >>>

Deleting Item ABA ... Cell

.............................

Deleting row 80..89: >>>

Deleting Item GBS ... Cell

Deleting Item MJF ... Cell

Deleting row 90..99: >>>

Deleting Item ALA ... Cell

Deleting Item JBK ... Cell

Deleting row Errors: >>>

Deleting Graph

8.3.3 The Data Structure and UML Diagrams

 Label                Head  

7

9
8

10

1
0

3
2

5
4

6

"00..09:  "
"10..19:  "
"20..29:  "

"30..39:  "
"40..49:  "
"50..59:  "
"60..69:  "
"70..79:  "
"80..89:  "
"90..99:  "
"Errors:  "

curve

"MJF" 98

Data   Next

"AWF" 00

Initials  Score

Figure 8.3: The graph data structure, after inserting two scores.

- Item( char*, int )
- ~Item 
- Print ( ostream& ): ostream&  

Item
char[4]
int

- Initials:
- Score:

operator <<
*

1

Row
char[10]
Cell*

-Label:
-Head:

+ Row ( int )
+ ~Row ()
+ Insert( char*,  int )
+ Print( ostream& ): ostream&  
operator <<

- Cell( Item*, Cell* )
- ~Cell ()

Cell
Item* 
Cell*

- Data:
- Next:

11Graph

+ Graph( istream& )
+ ~Graph()
+ Insert( char*, int )
+ Print( ostream& ): ostream&  

operator <<

Row* [ 11 ]- Bar:

1*

Figure 8.4: UML class diagram for Bargraph program.



84 CHAPTER 8. INTERACTING CLASSES

Class relationships.

1. Part of initializing the Graph class is to allocate eleven new Rows and attach them to the backbone array
(Bar). Since these are dynamically allocated, the relationship is not composition. But because there are
exactly eleven Rows and their lifetime will end when the Graph dies, this is aggregation (not association).

2. Classes Row and Cell are friends, with Row providing the interface for both classes and Cell serving as a
helper class for Row.

3. One Row contains an indefinite number of cells (zero or more), all allocated and deallocated at different
times. This is association.

4. Each Cell contains a pointer to an Item. The Item is created by the Cell constructor and dies with the
cell. This is aggregation. It is not composition because the Item is not physically part of the Cell (it is
connected to the Cell by a pointer).

8.3.4 Class Item

27 //===========================================================================
28 // Item: A student’s initials and one exam score.
29 // A. Fischer, October 1, 2000 file: item.hpp
30 // Modified M. & A. Fischer, September 17, 2009
31 //===========================================================================
32 #pragma once
33 #include <iostream>
34 #include <string.h>
35 using namespace std;
36 //---------------------------------------------------------------------------
37 // Data class to model a student exam score
38 // Alice’s design pattern:
39 // oil and water don’t mix -- keep data and data structure separate
40 // Constructor and destructor contain tracing printouts for debugging
41 class Item // One name-score pair
42 {
43 private: // Variable names are private
44 char initials [4]; // Array of char for student name
45 int score; // Integer to hold score
46
47 public:
48 inline Item (char* inits, int sc);
49 ~Item (){ cerr <<" Deleting Item " <<initials <<" ...\n"; }
50 ostream& print ( ostream& os );
51 };
52
53 //---------------------------------------------------------------------------
54 // Inline constructor, defined outside of the class but in header file
55 // Precondition: strlen(inits) <= 3
56 Item::Item (char* inits, int sc){
57 strcpy( initials, inits );
58 score = sc;
59 }
60
61 //---------------------------------------------------------------------------
62 inline ostream& // inline can be declared here or within class (or both)
63 Item::print ( ostream& os ){
64 return os <<initials <<" " <<score <<" ";
65 }
66
67 // Extend global output operator << -----------------------------------------
68 // Item::print() is expert at printing Item data
69 inline ostream&
70 operator << (ostream& out, Item& x){ return x.print( out ); }

We consider this class first because it is the simplest and relates to only one other class.
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• The four functions defined here should be provided for every class: a constructor, a destructor, a print
function, and an operator extension for <<.

• Every class function has a class object as its implied parameter, in addition to the explicit parameters
listed in the parentheses. Thus, the Item constructor has three parameters (one implied and two explicit).
We rarely refer to the implied parameter as a whole, but when we use the names of class members, we
mean the members of the implied parameter.

• This class is defined entirely within the .hpp file because there are only three class functions and they
are all short. The destructor fits entirely on one line, so it is given on line 49. The other two functions
are declared immediately after the right-brace that closes the class declaration (lines 53. . . 65). Both are
“inline”. Item is declared “inline” on line 48; print is declared “inline” on line 62. Better style would have
the word “inline” on both the declaration and the later definition.

• Lines 62–65 extend the << operator to work on Items by defining it in terms of Item::Print(). Some books
do this by declaring a friend function. However, friend declarations should be avoided wherever possible
because they give free access to all class members. The technique shown here lets us extend the global
operator without making data members public and without using a “friend function”.

• The Print function returns the stream handle it received as an argument. This makes it easier to extend
the << operator for the new class. The operator << must return an ostream& result to conform to the built-
in definitions of << and to make it possible to chain several << operators in one expression. The definition
given for Print returns an ostream& result to make it work smoothly with the operator extension given
for <<. Both local definitions could be changed, as shown below, but they need to be paired correctly: the
second definition of Print won’t work with the first definition of <<.

void Print ( ostream& os ){ os <<Initials <<" " <<Score <<" "; }
inline ostream& operator << (ostream& os, Item& T){ T.Print( os ); return os; }

• The C++ language designers defined << as a global (non-class) function so that it could be easily extended
for every new class. Even though it works closely with the Item class, the operator extension does not
belong to that class because << is a global function. Therefore, the extension must be written outside the
class.

• The extension of << is written within the .hpp file for a class so that it will be included, with no extra
effort, wherever the Item class is used. It must be declared “inline” to avoid linker errors due to multiple
inclusion. This is a confusing issue that we will defer to later. For now, copy this pattern.

• The class definition file has a minimal header; it gives the author’s name, last modification date, and the
name of the file. In a commercial setting, a more extensive header would be required.

• The preprocessor command, #pragma once is used routinely in header files to prevent the same declara-
tions from being included twice in the same compile module and to prevent circular #includes.

8.3.5 Class Graph

Notes on the Graph declaration.

• The class declaration starts and ends with the usual preprocessor commands. We include the header file
for the Row class because a graph is built of Rows. We do not need the header for the Item class because
the Graph functions do not deal directly with Items; all actions are mediated by the Row class.

• A Graph has only one data member, an array of pointers to Rows. Since the number of bars is known
at compile time, it would be possible to declare a Graph as an array of Rows, not an array of Row*.
Composing Rows is more efficient, but aggregating Row*s is more flexible. The Row* implementation was
chosen so that the Row constructor could be called eleven times, to construct eleven rows, with the row
number as an argument each time. This lets each Row be initialized with a different label. If an array of
Row were used, all rows would need to be initialized identically.

• The constructor and destructor for this class are public because the main program will declare (create) an
instance of Graph named “curve”. The Graph destructor will be called automatically, from main, after
the call on bye(), when curve goes out-of-scope.
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• The argument to the constructor is the stream that contains the data, which should already be open. The
argument is passed by reference for two reasons. First, call by value will not work here because reading
from a stream changes it. Second, the stream is an object with dynamic extensions. All such objects are
passed by reference or pointer to avoid the problem of shallow-copy and deep-deletion.

• Since all calls on Insert are within the Graph class, it is defined to be a private function. However, it is
quite reasonable that someone might want to reuse this class in a program that does interactive input as
well as file input. In that case, we would need to make the Insert function public.

• The extension of operator<< is included in the class header file because it is used as if it were a class
function. However, it cannot be an ordinary class function because its first parameter is an ostream&, not
a Graph. Being outside the class, the definition of operator<< cannot access the private parts of the class.
It does its job by calling Graph::Print, which is a public function. Print, in turn, accesses the private class
members. This is a typical illustration of how the privacy of class members can be maintained.

61 //===========================================================================
62 // Declarations for a bar graph.
63 // A. Fischer, April 22, 2000 file: graph.hpp
64 // Modified M. & A. Fischer, September 17, 2009
65 //===========================================================================
66 #pragma once
67 #include "tools.hpp"
68 #include "row.hpp"
69 //#include "rowNest.hpp" // alternative way to define a recursive type
70 #define BARS 11
71
72 //---------------------------------------------------------------------------
73 class Graph {
74 private:
75 Row* bar[BARS]; // Each list is one bar of the graph. (Aggregation)
76 void insert( char* name, int score );
77
78 public:
79 Graph ( istream& infile );
80 ~Graph();
81 ostream& print ( ostream& out );
82 // Static functions are called without a class instance
83 static void instructions() {
84 cout <<"Put input files in same directory as the executable code.\n";
85 }
86 };
87 inline ostream& operator<<( ostream& out, Graph& G){ return G.print( out ); }

84 //==========================================================================
85 // Implementation of the Graph class.
86 // A. Fischer, April 22, 2000 file: graph.cpp
87 // Modified M. & A. Fischer, September 17, 2009
88 //==========================================================================
89 #include "graph.hpp"
90 //--------------------------------------- Use an input file to build a graph.
91 Graph::Graph( istream& infile ){
92 char initials [4];
93 int score;
94 for (int k=0; k<BARS; ++k) bar[k] = new Row(k);
95 for (;;){
96 infile >> ws; // Skip leading whitespace before get.
97 infile.get(initials, 4, ’ ’); // Read three initials ... safely.
98 if (infile.eof()) break;
99 infile >> score; // No need to skip ws before using >>.

100 insert (initials, score); // *** POTENTIAL INFINITE LOOP ***
101 }
102 }
103
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104 // --------------------------------------------------------- Delete all Rows.
105 Graph::~Graph() {
106 for (int k=0; k<BARS; ++k) delete bar[k];
107 cerr <<" Deleting Graph\n";
108 }
109
110 // ------------------------------------------------ Insert a node into a Row.
111 void
112 Graph::insert( char *initials, int score ){ // Function is private within class.
113 const int intervals = BARS-1;
114 int index;
115 // Calculate insertion index for score
116 if (score >= 0 && score < 100) // If score is between 0-99, it
117 index = (score / intervals); // belongs in one of first BARS-1 rows.
118 else
119 index = BARS-1; // Errors are displayed on last row
120 bar[index]->insert( initials, score ); // delegation
121 }
122
123 // ---------------------------------------------- Print the entire bar graph.
124 ostream&
125 Graph::print( ostream& out ){
126 out << "\n";
127 for (int k=0; k<BARS; ++k)
128 out << *bar[k] <<"\n"; // Delegate to Row::print()
129 return out;
130 }

Notes on the Graph implementation. We put the definitions of all four class functions in a separate .cpp
file because all are longer than a line or two.

• After allocating eleven empty Rows, the Graph constructor reads lines from the data file and calls the
Graph::Insert function to store the data. Three lines of code are used to read each line of data because
one of the data fields is a string. When >> is used to read a string, there is no protection against long
inputs that overflow the bounds of the data array and start destroying other values in memory. For this
reason, we use get rather than >> to read all strings. It is necessary to skip whitespace before the call
on get, and calls on get and >> cannot be mixed in the same statement. Thus, three lines of code are
required. If we do not care whether the input is done “safely” or not, these three lines could be condensed
into one:

infile >> Inits >> Score;

• Eleven Rows are created by the Graph constructor, so the Graph destructor contains a loop that deletes
eleven Rows.

• The Insert function decides which row the new data belongs in, then delegates the insertion task to the
appropriate Row. This is a typical control pattern; as smaller and smaller portions of the data structure
are used, control passes from each class to the class it contains.

• Expertise: The Graph class is an expert on the meaning of its rows, so it selects the row to be used. The
Row class is the expert on how to store data in a Row, so it accepts the data, creates a storage cell, and
does the insertion.

8.3.6 Classes Row and Cell

Notes on the Cell class declaration.

• Together, the Cell and Row classes implement a linked list in which any number of data items can be
stored. A Cell consists of a pointer to an Item and a pointer to the next Cell.

• The Row and Cell class declarations have been placed in a single .hpp file because they form one conceptual
unit. Each class depends on the other and neither makes sense alone.
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• Friendship. The Cell class is a private class (all of its members are private). It is used only to implement
the Row class. It gives friendship to Row, which implements the interface for both classes. The private
class (Cell) comes first, because the interface class (Row) refers to it. No way of any kind is provided for
other parts of the program to access Cells.

• Each Cell aggregates one Item, which holds the data for one student. On the UML diagram, Cell and
Item are connected by a line with a white aggregation diagram at the Cell end and an optional “1” at
the Item end. As with Graph and Row, composition could be used, rather than aggregation, to put the
Item in the Cell. In that case, the type of Data would be Item, not Item*. Aggregation is less efficient
because it involves an extra layer of pointers, but it permits us to construct Items that are independent
of the Cells. These items can be constructed and used in other parts of the program that have no relation
to Cells or Rows.

• The Cell class constructor and destructor are short and routine and are defined inline. They, also, are
private because they will be used only by Row functions. No other part of the program has any reason to
create or destroy a Cell.

126 //===========================================================================
127 // Class for a linked-list row and its cells
128 // A. Fischer, October 1, 2000 file: row.hpp
129 // Modified M. & A. Fischer, September 17, 2009
130 //===========================================================================
131 #pragma once
132 #include <iostream>
133 #include "item.hpp"
134 using namespace std;
135 //---------------------------------------------------------------------------
136 // Dependent class. Holds an Item and a link to another Cell
137 class Cell
138 {
139 friend class Row;
140 private:
141 Item* data; // Pointer to one data Item (Aggregation)
142 Cell* next; // Pointer to next cell in row (Association)
143
144 Cell (char* d, int s, Cell* nx){ data = new Item(d, s); next = nx; }
145 ~Cell (){ delete data; cerr <<" Deleting Cell " <<"\n"; }
146 };
147
148 //---------------------------------------------------------------------------
149 // Data structure class
150 class Row { // Interface class for one bar of the bargraph.
151 private:
152 char label[10]; // Row header label
153 Cell* head; // Pointer to head of row
154
155 public:
156 Row ( int n );
157 ~Row ();
158 void insert ( char* name, int score ); // delegation
159 ostream& print ( ostream& os );
160 };
161
162 //---------------------------------------------------------------------------
163 inline ostream& operator << ( ostream& out, Row& T){ return T.print( out ); }

The Row class declaration.

• Row has a One-to-Many association with Cell, denoted in the UML by a “1” at the Row end and a “*”
at the Cell end. Together, these classes form a classical container class for Items.

• Unlike a typical C or Pascal implementation of a linked list, the type Row is not the same as the type
Cell*. The head of the linked list of Cells is one (but only one) of the members of Row. Other data
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members include scanners and functions for processing lists and, in this example, an output label for the
Row.

• The constructor and destructor are not defined inline because they are long and contain loops. The
destructor for a linked-list class needs to free all the storage allocated by the constructor and by other
class functions that add items to the linked list.

• As always, a Print function (and a corresponding extension for <<) are defined for Rows. No such functions
are defined for Cell because Row provides the interface for both classes.

• Many times, a container class is used to implement an active database, so it has functions to Insert, Delete,
Modify, and Lookup items. In this program, the container is used as a way to sort exam scores, and needs
only one database function: insert an Item.

Notes on the Row class implementation. All of the functions in the row.hpp file belong to the Row class
because the Cell functions were all defined inline. This code file is the heart of the program.

• The Row constructor creates an output label for the row and initializes the pointer, Head, that will point
at the list of Item Cells. Head is set to NULL because, at this time, the list is empty. A scanning pointer,
Curr, is also set to NULL but could be left uninitialized.

• Following the expert pattern, the Graph::Insert function calls the Row::Insert function to do the actual
insertion. In general, this is the way operations should be implemented: the task is handed down the line,
from the user interface to the primary class, and from class to class below that, until it reaches a low-level
class that knows how to carry out the task.

161 //===========================================================================
162 // Implementation of class Row.
163 // A. Fischer, April 22, 2000 file: row.cpp
164 // Modified M. & A. Fischer, September 17, 2009
165 //===========================================================================
166 #include "row.hpp"
167 //---------------------------------------------------------------------------
168 // Row number is used to construct a label for the row
169 Row::Row( int rowNum ){
170 if (rowNum == 10) strcpy( label, "Errors: " );
171 else {
172 strcpy( label, " 0.. 9: " );
173 label[0] = label[4] = ’0’+ rowNum; // example: label=="70..79"
174 }
175 head = NULL; // represents empty list of data
176 }
177 //---------------------------------------------------------------------------
178 // Row is responsible for deleting everything created by this class
179 Row::~Row(){
180 Cell* curr;
181 while (head != NULL){
182 curr=head;
183 head=head->next;
184 delete curr;
185 }
186 cerr << " Deleting row " << label <<" >>> \n";
187 }
188 //---------------------------------------------------------------------------
189 // Create and insert Cell into linked list at head
190 // Design pattern: creator. Item is created by Cell constructor.
191 void
192 Row::insert( char* name, int score ){
193 head = new Cell( name, score, head ); // put new cell at head of list
194 }
195 //---------------------------------------------------------------------------
196 // Design decision: print Cell data directly; no delegation of print
197 ostream&
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198 Row::print( ostream& os ){
199 Cell* curr;
200 os << label;
201 for (curr=head; curr!=NULL; curr=curr->next)
202 curr->data->print( os ); // OR: os << *(curr->data);
203 return os;
204 }

• Row::Insert does not pass the insertion command on to Cell::Insert because Row is the lowest level class
that is “expert” on multiple Cells. The Row class allocates a new Cell and passes the data to it because
the Cell is the “expert” on Items. The Cell constructor finally creates an item and stores its pointer. In
C, eight routine and tedious lines of code are needed to to the allocation and initialization:

Item* tempI = (Item*) malloc( sizeof(Item) );
strncpy( tempI->Initials, 4, name );
tempI->Score = score;
Cell* tempC = (Cell*) malloc( sizeof(Cell) );
tempC->Data = tempI;
tempC->Next = Head;
Head = tempC;

A good demonstration of the power and convenience of C++ constructors is that they permit us to do
the same job in one line: Head = new Cell( new Item(name, score), Head );

In this program we do part of the construction in the Row class and part in the Cell class, following the
principles of Creator and Expert:

In Row: Head = new Cell( name, score, Head );
In Cell: Data = new Item( name, score );

• The Print function loops through the Cells on the linked list and sends a Print command to the Item in
each cell. Arrows are used in this command (rather than dots) because each Item is attached to the Cell,
and each Cell is attached to the Row through a pointer.

• The Row destructor uses a loop to delete, or free, all of the memory blocks allocated by Row::Insert.
When it deletes each Cell, the Cell destructor will delete the Item it contains.

8.4 An Event Trace

In one common programming pattern, a program has five phases of operation:

• During the setup phase, the main program acquires resources and creates its primary data structure(s).

• During the input phase, files and interactive entry are used to store data in that structure.

• Processing accesses and modifies the information.

• The output phase prints an analysis of it.

• Finally, during the cleanup phase, the data is written back onto some permanent storage medium, streams
are closed, and storage is freed.

In C, and even more in C++, some phases are often combined. For example, setup can be partially merged
with input, and processing can be merged with either input or output. In the Bargraph program, there is no
processing step. This leaves four major phases: setup, input, output, and cleanup. The event traces in the next
four diagrams illustrate these four phases of the program’s operation.

Interpreting a trace. An event trace provides a dynamic 2-dimensional view of the phases of program
execution. It shows the order in which things are created and freed and how control passes back and forth
between the classes. Figures 7.5. . . 7.8 show the event trace for the bargraph program.

• The columns. An event trace has dashed vertical lines. Each represents the “territory” of one program
module: either main() or one of the classes used by the program.
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• Passing control. Arrows represent the flow of control. When an arrow stops at a vertical line, control
enters that class. The label on an arrow indicate the function call that caused control to leave one class
and enter another.

• Loops. Loops are indicated by large ovals and are documented informally.

alloc Row* [11]
loop k=0..10

Graph

allocate 
80 chars

open file and 
initialize stream

main Row and Cell Item

declare fname

Graph curve(
                 infile)

allocate 
ifstream object

 ifstream

abort
open failed?

read file name 
and declare infile 

initialize bar[k] 
bar[ k] = new Row[k]

initialize curve using infile

 print
instructions

Figure 8.5: Event trace phase 1–Constructing the Graph.

• The passage of time. When the program begins, the system sends control into main() at the upper
left corner of the graph. As long as control remains within the same class, time flows downward along
its dotted line. A broad white time line indicates that control is within a class. Solid arrows represent
function calls. As time passes, they take control from one class to another and also lead down the page.

Phase 1: Setup. During this phase (Figure 7.5), the main program interacts with the user to set up the
input stream. Then two major data structures are declared and initialized: an istream named input and a
Graph named curve. When curve is declared, the system creates storage for an array of eleven pointers, then
calls the Graph constructor to initialize that array and construct its extensions.

During construction, space is allocated for the eleven rows of the graph. As each Row is created, the Row
constructor is called to initialize it. (It creates a label for the row and sets the list pointers to NULL.)

calculate bar# n
Bar[n].Insert

infile >> 
Inits and Score

get  eof  status
true / false

true

loop

curve is 
constructed

false:  Insert (
   Inits, Score)

Graphmain Row and Cell Item ifstream

allocate new Item initialize using 
Initials, Score

allocate new Cell

initialize Cell with 
new Item, Head. 
Head = the Item * 

Figure 8.6: Phase 2, Filling the Graph.

Phase 2: Input. A loop is used to read data lines from the input stream. For each, storage is allocated, and
the resulting structures are linked into the appropriate Row, at the head of its list of Cells. The new storage is
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loop  using Next from Curr = Head 
while Curr != NULL

Curr->Data->
            Print(cout)

 loop k=0..10
cout << *Bar[k]

print Initials, 
Score

curve.Print

cout <<'\n' 

Graphmain Row and Cell Item ifstream

cout << Label

Figure 8.7: Phase 3, Output.

initialized by the constructors in the Row, Cell, and Item classes. (Figure 7.6) Nothing is deleted during this
process because no extra or temporary locations are created. We are building a database; every object allocated
gets connected to it and used later in the program.

Phase 3: Output. The purpose of this program is to organize the data into a meaningful format, a bar
graph. The organization is done by the constructors during the input phase. No other processing is required,
so printing the graph is the next step (Figure 7.7). Most programs print header and footer titles. Here, none
are required by the specifications, so we print the graph by simply printing each of its 11 rows. To do so, we
use the extended << operator, which calls on Row::print() (the expert on displaying rows) to do the job.

After Row::print() prints the row labels, it must print the data. Since Item::print() is the expert on how
an Item should look, Row::print() calls it to print the Item in each Cell, starting with the Head cell and ending
with NULL.

return to 
system

 loop 11 times
delete bar[k]

delete Curr->Data
free Item 
storagefree Cell storage

free Bar 
storageno action

close file
free buffers
free stream storage

delete curve

bye()

Graphmain Row and Cell Item ifstream

flush cout
close cin, cout, cerr
release all storage

loop  using Next from Curr = Head 
while Curr != NULL

delete infile

End of program code;  beginning of termination process

Figure 8.8: Phase 4, Deallocation.

Phase 4: Deallocation. When the data in the primary data structure has been created or modified during
execution, it must usually be written to a file at the end. It is appropriate to have the destructors write the
output file during the process of freeing the memory. This has the nice property that the data resides in exactly
one place at any time; there is always one copy of it, not two, not zero.

In this program, no data was created during the run, so no output file is needed. The destructors are therefore
simple: they call delete for each pointer that was created by new, and finish by printing trace comments.

Declared objects are deleted automatically in the order opposite their creation order (Figure 7.8). Thus,
the Graph is deleted, then the istream, then the character array. The trace shows calls on destructors for the
class objects.



Chapter 9: Array Data Structures

A fundamental principle of good construction and good programming:

Function dictates form. First, get the right blueprints.

This chapter covers some major array-based data structures that have been or will be used in the sample
programs and/or assignments in this course. These are:

1. Arrays of objects and arrays of pointers.

2. The resizeable array.

3. The stringstore, an efficient way to store dynamically allocated strings.

4. The hashtable.

At the end of the chapter, these data structures are combined in a hashing program that uses an array of
pointers to resizeable arrays of string pointers.

General Guidelines. Common to all data structures in C++ are some fundamental rules and guidelines
about allocation and deallocation. Here are some guidelines, briefly stated: The method of deallocation

should imitate the method of creation.

• If you allocate memory with new (and no []), you should free memory with delete.

• If you allocate memory with new in a loop, you should free memory with delete in a loop.

• If you allocate memory with new and [], you should free memory with delete [].

Basic Rules. The guidelines are derived from more fundamental rules about how C++ memory management
works:

• If you allocate memory with a declaration, is is allocated on the run-time stack and is freed automatically
when control leaves the block that contains the declaration.

• Dynamic memory is allocated using new and freed using delete. It is allocated in a memory segment
called “the heap”. If it is not freed, it continues to exist in the heap until program termination.

• If the base type of an array is a class type, you must use delete[] to free it. This automatically calls the
base-type destructor function for each element of the array, to free the dynamic extensions attached to it.

• As a general habit, use delete [] to free arrays, even when the [] are not needed. Some programming tools
and IDE’s become confused when you omit the []. Note, however, that if the base type of an array is a
pointer type or a non-class type, it does not matter whether you use delete or delete[] because there are
no destructors to run. Dynamic memory attached to the elements of an array of pointers must be freed
by explicit calls on delete.

• In one common data structure, the flexible array, an array “grows” by reallocation, as needed. After
growth, the array contents are copied from the old array to the new, longer array. In this case, you must
free the old array but you must not free anything more than that, so delete must be used without the
brackets.

Which should I use? A fundamental dat modeling decision is whether to create the program’s objects using
declarations (stack allocation) or using pointers and dynamic (heap) allocation. Even in a simple data structure,
such as an array of structures, four basic combinations of dynamic and stack allocation are possible, and all are
commonly used. We look at these next.

93
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9.1 Allocation and Deallocation of Arrays.

In this section, we will be using arrays of a representative class type named Item, which has three data members,
as shown below.

part_name costquant

class Item {
char part_name[20];
int quant;
float cost;

public:
Item();
~Item();

};

Four array data structures are presented, all of which implement some form of two-dimensional structure.
However, they have different storage requirements and dynamic possibilities. It is important for you to under-
stand how they differ theoretically and practically, how to create and use each one, and when each one might
be preferred.

A diagram is given of the storage allocated for each data structure. Core portions of these objects are
allocated on the run-time stack and are colored gray. Extensions are allocated in the heap and are colored
white. To the right of each diagram is a code fragment that shows how to use new and delete to create and
deallocate the structure.

The first data structure given is a simple array of Items whose size is fixed at compile time. Each succeeding
example adds one level of dynamic allocation to the data structure, until the last is fully dynamic. For the
sake of comparison, these four data structures are implemented as uniformly as possible. All are five slots long
and have offboard end pointers to assist in sequential array processing. (Note: inventory+5 is the same as
&inventory[5].)

1. A declared array. This data structure is used if the length of the array is known at the time control
enters the block containing the declarations. All storage is allocated by the array declaration, so no “new”
is necessary. For an array of class objects, a default constructor must be provided and will be used to
initialize the array.

No “delete” is necessary and using “delete” or “delete[]” is a fatal error because this storage will be
automatically deallocated at the end of the function that contains the declarations and storage must not
be deallocated twice.

inventory part_name costquant

[4]

[1]
[2]
[3]

[0]

end

scan
?

Item inventory[5]; // Allocate array.
Item* end = &inventory[5]; // Connect end pointer.
Item* scan; // Processing pointer.

2. A single dynamic array of class objects. This data structure is used if the length of the array is
not known at compile time but is known at run time, before any data is stored in the array. It could be
combined with automatic reallocation to store data sets that might grow larger than the initially allocated
size. However, this requires that all data in the array be copied into the reallocated memory area, a
potentially large cost.

The core portion of this object is created by declaring two Item pointers. The extension is created by a
call on “new”, often in the constructor for some class that contains the array. A default Item constructor
must be present and will be used to initialize the array. Dynamic arrays of non-class base types cannot
be initialized.

Since “new” was used with [] to create this array, “delete[]” must be used to deallocate it.
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inventory part_name costquant

[4]

[1]
[2]
[3]end

scan
?

Item* inventory; // Head pointer (core).
Item* end; // Sentinel pointer (core).
Item* scan; // Processing pointer (core).

inventory = new Item[5]; // Allocate array (extension).
end = &inventory[5]; // Connect end pointer.

delete[] inventory; // Delete the array.

3. A declared array of pointers to individual dynamic objects. This data structure can be used if the
Item constructor needs parameters or if the maximum amount of storage needed is predictable, but you
wish to avoid allocating the storage until you know it is needed. An array of Item pointers is pre-allocated
and initialized to NULL. A new Item is allocated and attached to the data structure each time new storage
is needed. Any constructor (not just a default constructor) can be used to initialize these items because
they are individually created. Since “new” was used without [] to create the Items, “delete” must be used
without [] to deallocate them. Since a loop was used for allocation, a loop must be used for deallocation.

inventory

part_name costquant

[4]

[1]
[2]
[3]

[0]

p

end

Item* inventory[5]; // Create core.
Item** end = &inventory[5]; // Tail sentinel.
Item** p; // Scanner.

for (p=inventory; p<end; ++p) { // Allocation.
// Read and validate data.
*p = new Item(field_1...field_n); // Install data.

}
for (p=inventory; p<end; ++p) {
// Deletion loop.

delete *p;
}

4. A dynamic array of pointers to individual dynamic objects. This data structure is used when
the amount of storage needed is unpredictable. An Item** is declared and initialized at run time to a
dynamic array of Item pointers, each of which should be initialized to NULL. By using a flex-array data
structure, the array of pointers can be easily lengthened, if needed. The cost of the reallocation and copy
operations is minimal because only the pointers (not the Items) need to be copied.

Another Item is allocated and attached to the data structure each time new storage is needed. Any
constructor (not just a default constructor) can be used to initialize these items because they are indi-
vidually created. Since “new” was used without [] to create the Items, “delete” must be used without []
to deallocate them. Since a loop was used for allocation, a loop must be used for deallocation. After the
deallocation loop, the main array (the backbone) must also be freed by using delete with [].

inventory part_name costquant

[4]

[1]
[2]
[3]

[0]

p

end

Item** inventory = new Item*[5]; // Allocate *s.
Item** end = &inventory[5]; // Tail pointer.
Item** p; // Scanner.
for (p=inventory; p<end; ++p) { // Allocation.

// Read and validate data.
*p = new Item(field_1...field_n); // Install data.

}

for (p=inventory; p<end; ++p) delete *p;
delete[] inventory;
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9.2 The Flexible Array Data Structure

A flexable array is a container class, that is, a class whose purpose is to contain a set of objects of some other
type. The C++ standard template library (formerly called STL) contains a template class, named vector, from
which a flexible array of any type may be created. Java supports a type named vector and another named
arraylist, that are basically similar. All of these classes are based on a dynamically allocated array that is
automatically reallocated, when necessary to contain more data. Class functions are used to store data in the
container and retrieve it.

A flexible array is a good alternative to a linked list for applications in which an array would be appropriate
and desirable but the amount of storage needed is unpredictable. It works especially well when sequential (not
random) access is used to add data to the array, as in the simple program below. In this section, we present
a simple version named FlexArray, which does not rely on the use of templates. We then use a FlexArray to
create an array of characters that can hold an input string of any length.

9.2.1 Implementation in C++

The flexible array data structure consists of a pointer to a long dynamically-allocated array for data, an integer
(the current allocation length), and the subscript of the first unused array slot. When there is data to be stored
in the container, but it is full, the flexible array automatically doubles in length. The cost is a modest amount
of time spent reallocating and copying storage. This can easily be less than the time required to manipulate
links and traverse lists. Wasted space is minimal for a flexible array, often less than for a linked structure, but
the major advantage of the flexible array is that a programmer can use array-based algorithms (quicksort) and
random access to process the data in the array.

The class FlexChars is an implementation of a flexible array with base type char. It is a good example of
how a class can (and should) take care of itself. It has one private function, grow() (lines 14 and 68–76), which
is called whenever there is a object to store in the FlexChars, but the array storage space is full. The existence
and operation of this function is completely hidden from the client program; the data structure simply “grows”
whenever necessary.

Before enlarging the array, we test the value of Max. If it is a legal array length, it is doubled; otherwise
it is set to the default length. The array is then reallocated at the new, longer, length, the data is copied from
the old array into the new one, and the old one is freed.

The FlexChars class declaration.

• Lines 17–21 define the constructor. Note that the parameter ss has a default value of FLEX_START. This
permits a client program to call the FlexChars constructor with or without an argument.

• Line 22 is the destructor. Note that it tests for a NULL pointer before attempting to free the array, and
it uses delete[] because the corresponding constructor used new with [].

• Two “get” functions, length() and message() (lines 28 and 29) provide read-only access to the number
of chars actually stored in the flexible array and to the character string itself..

• A print function is (lines 31. . . 34) allows the FlexChars client program to print the contents of the array
without knowing how it is implemented.

• The put function (lines 25 and 61–66) allows us to store information in the next free slot of the FlexChars.
It checks for available space, calls grow() if necessary, stores the data, and increments N, the address of
the first available slot. This function provides the only way to store new data in the FlexChars.

• The grow function (lines 14 and 68–76) is the heart of this class. It is called from put when the array is
full and more input must be stored. The diagrams on the next page illustrate its operation, step-by-step.

• The extension of the subscript operator (lines 26 and 55–59) is not used in this application but will be
used later in the chapter. It will be explained in Chapter 10.

1 //--------------------------------------------------------------------------
2 // Class declaration for a flexible array of base type char.
3 // A. Fischer, February 7, 2003 file: flexChars.hpp
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4 #ifndef FLEXC
5 #define FLEXC
6 #include "tools.hpp"
7 #define CHARS_START 4 // Default length for initial array.
8
9 class FlexChars {

10 private: // --------------------------------------------------------------
11 int Max; // Current allocation size.
12 int N; // Number of array slots that contain data.
13 char* Data; // Pointer to dynamic array of char.
14 void grow(); // Double the allocation length.
15
16 public: // ---------------------------------------------------------------
17 FlexChars( int ss = CHARS_START ) {
18 Max = ss; // Current allocation length
19 N = 0; // Number of data items stored in array.
20 Data = new char[Max]; // An array to contain objects of type char.
21 }
22 ~FlexChars() { if (Data != NULL) delete[] Data; }
23
24 void inputLine( istream& ins );
25 int put( char data ); // Store data and return the subscript.
26 char& operator[]( int k );
27
28 int length() { return N; } // Provide read-only access to array length.
29 const char* message() { return Data; } // Read-only access to the chars.
30
31 ostream& print(ostream& out) { // Print the filled part, ignore the rest.
32 Data[N] = ’\0’;
33 return out <<Data;
34 }
35 };
36 inline ostream& operator<< (ostream& out, FlexChars& F){ return F.print( out ); }
37 #endif

The FlexChars class implementation.

38 //-------------------------------------------------------------------------------------
39 // Implementation of the FlexChars class.
40 // A. Fischer, February 7, 2003 file: flexChars.cpp
41
42 #include "flexChars.hpp"
43 void FlexChars :: // ------------------- Read and return one line from input stream.
44 inputLine( istream& ins ){ // Discard prior contents of the buffer.
45 char ch;
46 for (N=0; ; ){ // Start with slot 0 of the buffer.
47 ins.get( ch );
48 if (!ins.good() || ch == ’\n’) break; // Go until eof or newline.
49 put( ch ); // The put function takes care if itself.
50 }
51 put( ’\0’ ); // Terminate the string in the buffer.
52 //cerr <<"Input length = " << N <<endl;
53 }
54
55 char& FlexChars :: //-------------------------------- Access the kth char in the array.
56 operator[]( int k ) {
57 if ( k >= N ) fatal("Flex_array bounds error.");
58 return Data[k]; // Return reference to desired array slot.
59 }
60
61 int FlexChars :: // --------------------------------------- Copy a char into the array.
62 put( char ch ) {
63 if ( N == Max ) grow(); // Create more space if necessary.
64 Data[N] = ch;
65 return N++; // Return subscript at which item was stored.
66 }
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67
68 void FlexChars :: // ------------------------------------ Double the allocation length.
69 grow() {
70 char* temp = Data; // hang onto old data array.
71 Max>0 ? Max*=2 : Max = CHARS_START;
72 Data = new char[Max]; // allocate a bigger one.
73 memcpy(Data, temp, N*sizeof(char)); // copy info into new array.
74 delete temp; // recycle (free) old array.
75 // but do not free the things that were contained in it.
76 }

The main program. The main program for this example shows a simple application for a flexible array:
reading a line of input whose length is not known ahead of time. The main program creates a FlexChars named
sentence (line 87) and uses it to read one line of input. The input is then echoed, with its length, as shown
below:

77 //==========================================================================
78 // Using a FlexChars of characters.
79 // A. Fischer, May 4, 2002 file: flex_test.cpp
80 //
81 #include "tools.hpp"
82 #include "flexChars.hpp"
83 //--------------------------------------------------------------------------
84 int main( void )
85 {
86 banner();
87 FlexChars sentence; // A FlexChars of 20 chars.
88
89 cout <<"\nFlexible Array Demo Program \nEnter a long sentence:\n";
90 // Read an entire line of text; the buffer will grow when necessary.
91 sentence.inputLine( cin );
92
93 // End of input phase -- ready for output.
94 cout <<"\nSentence length is " <<sentence.length() <<endl;
95 cout << sentence.message() <<endl; // Print an ordinary string.
96 }

The output:
Flexible Array Demo Program

Enter a long sentence:

Today is May 4. It has been a lovely day outside -- I planted some flowers and enjoyed the soft,

warm, spring air. Now evening is coming and the sun shines only on the treetops.

Sentence length is 181

Today is May 4. It has been a lovely day outside -- I planted some flowers and enjoyed the soft,

warm, spring air. Now evening is coming and the sun shines only on the treetops.

Tracing the operation of the FlexChars. The FlexChars data structure created by main() is illustrated
in five stages of growth during the input operation. The object named sentence is shown on the left side of
Figure 8.1, just after the constructor is done initializing it (line 21). The initial length of the array is STARTSIZE,
or 4 characters.

Inside the inputLine() function, a loop is used to read characters one at a time and put them into the
flexible char array. (A newline or eof condition will end the loop.) The right side of Figure 8.1, shows sentence
again after four characters have been put into it, making it full.
When the command to put a fifth character into sentence is given, the FlexChars must grow. (Figure 8.2,
left). This is done in the grow() function. In the C++ implementation, the Max length is doubled and a new
data array of the new, larger length is allocated. then the data is copied from the old array to the new and the
old array is deleted. Finally, the fifth character is stored in the newly-lengthened array.
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Figure 9.1: An empty FlexChars object (left) and one that is ready to grow (right).
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Figure 9.2: A FlexChars object after first growth spurt (left) and ready for second (right).

Input then continues normally, filling the rest of the slots (Figure 8.2, right). When the command is given to
store the ninth character, the FlexChars must grow again. The doubling process is repeated, resulting in an
array of 16 characters. The ninth character is then stored in the new space and input continues. Figure 8.3
shows the array after the tenth character is input, with ten slots in use and space for six more letters.

oT d a y i s M

Max
N
Data

sentence
16
10

Figure 9.3: The same FlexChars object after doubling the second time.

Costs. This is an acceptably efficient algorithm. After the first doubling, the number of array slots allocated
is always less than twice the number in use, and the total number of objects that have been copied, including
all copy operations, is slightly less than the current length of the array.

Caution. Because the entire array is moved during the growth process, any pointers that point into the array
must be re-attached after the reallocation. Because of this, a flexible array is not an appropriate data structure
when many pointers point into an array. Pointers pointing out of the reallocated array are not a problem.

9.2.2 Implementation in C

In C, the doubling is accomplished using the realloc() function:

data = (char*)realloc( data, new_size );

This function takes any memory area that had been created by malloc, calloc or realloc and changes its size
to the new size requested. If the new size is shorter, the excess memory is returned to the system for future
re-use. If the new size is longer and the adjacent memory area is free, the existing area is simply lengthened.
Otherwise, a new, larger area is allocated somewhere else in memory and the contents of the array are copied
into the new area. This is easier and more efficient than the C++ implementation, in which the reallocation
and copying must be done step-by-step.

9.3 Ragged Arrays

A ragged array is a convenient data structure for representing any list of phrases such as a menu, labels for a
graph, or error comments. It has two advantages over the traditional 2-dimensional array of characters.

• Since the length of the strings in the ragged array can vary, the space they take is kept to a minimum.
(Each phrase requires one byte per letter, one for the ’\0’, and four bytes of overhead.)

• Dynamic modification of the data structure is possible. The strings can be allocated and connected as
needed and can be repositioned by swapping pointers.
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Figure 8.4 illustrates the two kinds of ragged array: a constant version built from literals, and a dynamic version
that can contain user input.

p r i n c e 0

w i l l 0

c o m e 0\

\

A dynamically allocated ragged array 

\"some"

"day"

"my"

A ragged array of literals

Figure 9.4: Two kinds of ragged arrays.

A literal ragged array is most easily constructed by a declaration with a list of literals as the initializer:

char* vocabulary[] = { "Some", "day", "my" };

9.3.1 Dynamic Ragged Arrays

A dynamic ragged array is straightforward to build. Each “rag” is constructed separately and attached to a
slot in a “backbone” array, which could be either declared or allocated dynamically. Several steps are required
to construct a rag, as shown by the getRag() function:

97 // --------------------------------------------------------------------------
98 // Read one string and store in dynamic memory. file: getRag.cpp
99 //

100 #include "tools.hpp"
101
102 char* getRag( istream& fin )
103 {
104 static char buf[80]; // Input buffer limited to 80 chars.
105 int len; // Length of input phrase.
106 char* item;
107
108 fin.getline( buf, 80 ); // Don’t read past end of buffer.
109 len = fin.gcount(); // Measure the input string.
110 item = new char[len]; // With getline, len is always >= 1.
111 strcpy( item, buf ); // Copy input into the new space.
112 return item; // Return dynamic storage containing input.
113 }

Attaching the rags. The following main program uses getRag() in a common way: to create a list of options
from a file. This approach is better than building the menu into a program because it allows the menu to be
changed easily.

For the backbone of the data structure, this main program uses an array with a fixed maximum size (line
124). However, a flexible array could be used and would often be a better choice. The main loop calls getRag()
repeatedly (line 132) and attaches the resulting rags to the backbone. Filling all the array slots (line 131) or an
end-of-file condition (line 133) ends the input loop. Finally main() prints the complete list (line 135).

Note that main() is the function that tests for eof, not getRag(). This is a common pattern in C++ because
many input functions read only a single data set and deliver the resulting single object to a client program.
The input function takes a stream as a parameter and does not know what kind of stream that might be: an
istream or an ifstream or a istringstream.

In contrast, the calling function must get and store many inputs. It knows where the inputs come from and
how many can be handled. Therefore, the calling function has the responsibility for ending an input loop.

114 #include "tools.hpp"
115 #define INPUT "menu.in"
116
117 char* getRag( istream& );
118 void print_menu( char*[], int );
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119
120 // ------------------------------------------------------------------
121 int main (void)
122 {
123 int k; // Line counter.
124 char* menu[20]; // Backbone of ragged array.
125
126 cout <<"Ragged Array Demo Program\n";
127 ifstream menufile( INPUT ); // Open file named by define.
128 if (!menufile) fatal( "Cannot open file %s." INPUT );
129
130 cout <<"Reading menu items from " <<INPUT <<"\n";
131 for(k=0; k<20; ++k) {
132 menu[k] = getRag( menufile );
133 if (menufile.eof()) break; // User decided to quit.
134 }
135 print_menu( menu, k );
136 return 0;
137 }
138
139 // ------------------------------------------------------------------
140 void print_menu( char* menu[], int n )
141 {
142 int k; /* subscript variable for loop */
143 cout <<"\n" <<n <<" skating sessions are available:\n";
144 for (k = 0; k < n; ++k) cout << ’\t’ <<menu[k] <<endl;
145 }

9.4 The StringStore Data Structure

Each time we allocate space dynamically, the C and C++ systems allocate extra bytes to store the length of
the allocation. This can use a significant amount of storage if many separate small allocations are done. A
StringStore is a more efficient way to store an unlimited number of variable-length strings, such as might be
needed for a dictionary or a long menu. This data structure consists of one or more long dynamically allocated
arrays called “pools”, each of which will hold many strings. When the first pool is full, another is allocated.
These pools are linked together to facilitate deallocation at the end of their useful lifetime. Figure 8.5 shows
the first pool allocated for a stringstore, pointing at NULL. The oldest pool will always be at the end of the list
of pools; the newest pool will be at the head of the list.

A StringStore has three fields: a pointer to the beginning of the most recently allocated pool, the amount
of space remaining in that pool, and the subscript of its first unused slot. Figure 8.6 shows a StringStore with
one Pool.

Prev:
...\0es d \0ya \0m y \0r ip cn e w i ll \0 \0c o m eLetters: o m

Figure 9.5: A Pool that contains 6 words.

9.4.1 The StringStore and Pool Classes.

1 //===========================================================================
2 // Class declarations for StringStore and Pool.
3 // A. Fischer, June 4, 2000 file: sstore.hpp
4 #ifndef SSTORE
5 #define SSTORE
6
7 #include "tools.hpp"
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Current
Remain: 971
Next     : 29

...\0o m es d \0ya \0m y \0r ip cn e w i ll \0 \0c o m e

Figure 9.6: A StringStore with one Pool.

8 #define MAXLETS 1000 // Pool size.
9 //===========================================================================

10 class Pool {
11 friend class StringStore;
12 private:
13 char Letters[MAXLETS]; // Memory behind stringarray.
14 Pool* Prev; // Previous StringStore, for deallocation.
15
16 Pool( Pool* pv = NULL ) { Prev = pv; }
17 ~Pool(){}
18 };
19
20 //===========================================================================
21 class StringStore {
22 private:
23 Pool* Current; // Pool that is currently being filled.
24 int Remain; // Space remaining in current Pool.
25 int Next; // Subscript of next available slot.
26
27 public: //-------------------------------------------------
28 StringStore( int sz = MAXLETS ): Current(new Pool), Remain(sz), Next(0) {}
29 ~StringStore();
30 char* put( const char* s, int len );
31 };
32 #endif

The advantage of this structure over individually-allocated strings is that both space and time are used efficiently.
There are fewer calls for dynamically allocation, so there are fewer areas to delete later and less space wasted
in overhead. The disadvantage is that, if strings are deleted out of the middle of the array, the space cannot
be easily reclaimed or reused. Thus, the data structure is appropriate for relatively stable lists of alphabetic
information.

The StringStore interface. A StringStore serves only one purpose: to store a large number of strings
efficiently, on demand. The strings are not accessed through functions of the StringStore class. Instead, the
class that calls StringStore::put() receives a pointer to the stored string and provides access to the string through
that pointer. Thus, the only functions that are needed in this class are a constructor, a destructor, and the put
function. During debugging, it might help to have a print function, but that would never be called by a client
class.

Each StringStore class has one or more Pools associated with it. A one-many relationship of this sort is
usually implemented by having the primary class point at a list of objects of the secondary class. Neither class
makes sense without the other; they form a tightly coupled pair. There are two ways a tightly-coupled pair of
classes can be implemented: the secondary class can be defined inside the primary class, or the secondary class
can be declared to be a friend of the primary class. I dislike placing the definition of the helper class inside the
interface class because it is wordy and syntactically awkward.

I prefer using friendship. It is easier to write and clearer to read. Friendship gives the primary (or interface)
class unrestricted access to all of the members of the secondary (or helper) class. The helper class only needs
constructor and destructor functions; all other functionality can be handled by the primary class. In my
StringStore definition, the Pool class gives friendship to the StringStore (line 11).

33 //============================================================================
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34 // StringStore data structure -- implementation.
35 // A. Fischer, May 29, 2000 file: sstore.cpp
36
37 #include "sstore.hpp"
38 //----------------------------------------------------------------------------
39 StringStore::~StringStore() {
40 Pool* p;
41 while (Current != NULL) {
42 p = Current;
43 Current = p->Prev;
44 delete p;
45 }
46 }
47
48 //----------------------------------------------------------------------------
49 char*
50 StringStore::put( const char* s, int len ) {
51 char* where;
52 len++; // number of characters including ’\0’.
53 if ( len > Remain ) { // no room to store s in current Pool.
54 Current = new Pool( Current ); // Attach new pool at head of chain.
55 Next = 0; // New pool is empty.
56 Remain = MAXLETS; // All slots are unused.
57 }
58 where = &Current->Letters[Next]; // Number of characters including ’\0’.
59 Next += len; // Move pointer to next empty slot.
60 Remain -= len; // Decrease number of remaining bytes.
61 strcpy( where, s ); // Copy the new string into the array.
62 //cerr << where <<" ";
63 return where; // First letter of newly stored string.
64 }

The StringStore implementation. Internally, the StringStore and pool classes follow the usual form for a
linked list. The interface class, StringStore, points at a linked list of pools, and the pool class gives friendship to
StringStore. Each pool contains a long dynamically allocated char array and points at the previously allocated
pool (or NULL). Each char array is long enough for 1000 characters, and we expect to be storing words or
phrases that vary from a few to about 30 characters. Thus, we expect to waste less than 15 chars at the end of
each pool array, a modest amount.

As strings are read in by a client program, they are stored by calling StringStore::put(). This function copies
the string into the next available slot of the current pool, updates next and remain, and returns a pointer to
the beginning of stored string. The client must store this pointer in some other data structure such as a linked
list, array, flex_array, or hash_table. If the space remaining in the current pool is not large enough to hold
the current input string, another pool is allocated and attached to the head of the list of pools. The length
of the pools should be great enough so that the space wasted at the end of each pool is only a small portion
of the space allocated. One of the pointers at the top of this StringStore diagram will be returned each time
StringStore::put() is called. The caller must store the pointer in some data structure such as an array or a
linked list.

9.5 The StringArray

A StringStore can be used with any data structure that stores string pointers. Of these, the simplest is the
StringArray, shown below, which is simply an array of string pointers. This data structures has two strong
advantages over a linked list of words: the elements of an array can be searched and sorted much more efficiently
than the same data stored in a linked list. In the diagram below, we show a StringArray named SA, which has
a StringStore named Letters as its first member. The second member is an array of string pointers named
Words. Each of the six items stored in Words is a pointer to one of the strings in Letters.
The program below illustrates the use of a StringArray to organize a set of pointers to words in a StringStore.
It also demonstrates how to use the standard quicksort function (from stdlib.h) to sort that array.

Notes on the StringArray class declaration.
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Figure 9.7: A String Array named SA.
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Figure 9.8: UML diagram for the String Array program.

• Three header files are included: sstore.hpp is needed because one member of this class is a StringStore.
FlexChars.hpp is needed because we will use a flexible array as an input buffer. compare.hpp is needed
because one of the StringArray class functions is sort() that cannot be part of the class because it must
interact with which qsort(), a standard C library function.

• This implementation restricts the word list to 300 words. This is an arbitrary maximum, large enough to
test the code but not large enough to be useful for most word lists. The Vector class or a flexible array
of strings could be used to remove this limitation.

• The sort function (Line 87) is defined as a class member because it must refer to the data members of
the class. It sorts the strings by calling qsort(). The arguments are (1) the array to be sorted, (2) the
number of data items stored in that array, (3) the size of the base type of the array, and (4) a function
that qsort() will call many times to compare pairs of array elements. The compare() function is a global
function in the file compare.hpp.

• Line 85 is a do-nothing destructor. It is good style to define a destructor for every class, even if it does
nothing.

65 //===========================================================================
66 // Class declaration for StringArray: an array of words using a StringStore.
67 // A. Fischer, October 3, 2000 file: sarray.hpp
68 //
69 #ifndef SARRAY
70 #define SARRAY
71
72 #include "flexChars.hpp"
73 #include "sstore.hpp"
74 #include "compare.hpp"
75 #define MAXWORDS 300 // Limit on number of words in vocabulary.
76
77 //---------------------------------------------------------------------------
78 class StringArray {
79 private: //-------------------------------------------
80 StringStore Letters; // Storage behind string array.
81 char* Words[MAXWORDS]; // String array.
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82 int Many; // Number of words and first available slot.
83 public: //-------------------------------------------
84 StringArray( istream& in );
85 ~StringArray(){}
86 void print( ostream& out ) const;
87 void sort(){ qsort( Words, Many, sizeof(char*), compare ); }
88 };
89 #endif

91 //===========================================================================
92 // Implementation of StringArray: an array of words using a StringStore.
93 // A. Fischer, February 8, 2003 file: sarray.cpp
94
95 #include "sarray.hpp"
96 // --------------------------------------------------------------------------
97 StringArray::StringArray( istream& sin )
98 {
99 Many = 0; // Array is empty; the first available slot is [0].

100 const char* word;
101 for (;;) {
102 FlexChars buf; // Allocate a new flexible char array for the input.
103 buf.inputLine( sin ); // A flexible buffer has no fixed maximum length.
104 if ( sin.eof() ) break;
105 word = buf.message();
106 if ( word[0] != ’\0’) {
107 Words[Many++] = Letters.put( word, buf.length() );
108 //cout << "\n> " << word <<"\n";
109 }
110 }
111 }
112
113 // --------------------------------------------------------------------------
114 void StringArray::print( ostream& outs ) const
115 {
116 for (int k=0; k<Many; k++) cout << Words[k] << endl;
117 }

Notes on the StringArray class implementation.

• Line 103 reads the input into a temporary buffer; it is later put into a more efficient permanent data
structure. Use of a flexible array for an input buffer enables us to safely see, validate, and measure any
input string before we need to allocate permanent storage for it.

• Line 104 tests for the end of the file and breaks out of the loop if it is found. This is both correct and
commonly done, even though some other function did the actual input.

• Line 107 copies the input word from the temporary buffer into the StringStore and saves the resulting
pointer in the StringArray.

• The use of postincrement on the left side of line 107 is the normal and usual way to store a value in an
array and update the array index to be ready for the next input.

• Line 108 is commented out; it was useful when I debugged this class.

• The const on lines 86 and 114 indicates that the print() function does not change the values of any
class members. This is useful as documentation and as insurance that you have not accidentally assigned
a value to a class member.

The compare() function.
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118 #ifndef COMPARE
119 #define COMPARE
120 // --------------------------------------------------------------------------
121 // Called by qsort() to compare two strings (non-class objects).
122 // To compare two class objects, the last line would call a class function.
123 //
124 inline int
125 compare( const void* s1, const void* s2 )
126 {
127 char* ss1 = *(char**)s1;
128 char* ss2 = *(char**)s2;
129 return strcmp( ss1, ss2 ); // This compares two non-class objects
130 }
131 #endif

• This function compares two strings in a way that is compatible with the standard qsort() function. The
complexity of the call and the compare function are due to the general nature of qsort(): it can sort
an array of any base type containing any number of data elements. Several casts and the use of pointer-
pointers are necessary to achieve this level of generality.

• The parameters are type void*, which is compatible with any pointer type. The arguments will be pointers
to strings, that is, char**. First, we need to cast the void* to type char**, to match the argument. Then,
to use strcmp, we need to extract the char* from the char**.

• You can use qsort() and write compare() functions by following this example, even if you don’t fully
understand it. To sort a different data type, just change the char* to float or int or whatever you need,
and change the strcmp to the appropriate comparison operator or function.

The main program.

132 //===========================================================================
133 // StringArray, StringStore, and qsort Demo Program
134 // A. Fischer, February 8, 2003 file: ArrayQsort/main.cpp
135 //===========================================================================
136 #include "tools.hpp"
137 #include "sarray.hpp"
138
139 int main ( int argc, char* argv[] )
140 {
141 banner();
142 if (argc < 2) fatal( "Usage: ArrayQsort input_file");
143 ifstream vocabIn( argv[1] );
144 if (!vocabIn) fatal( "\nCould not open file vocab.in" );
145
146 StringArray vocab( vocabIn );
147 cout << "\nFile successfully read; ready for sorting.\n\n";
148 vocab.sort();
149 vocab.print( cout );
150 return 0;
151 }

Notes on the main program. This program reads a list of words, prints it, sorts it, and prints it again. The
relationships among the main program and all the functions called are illustrated by the call chart below. The
main program follows the typical form. It includes only one application-specific header file (for the main data
structure). Two objects (a stream and a string array) are declared. All work is delegated to class functions.

The output. The input file (left) and the output (right) have been arragned in two columns below, to fit the
space. The banner and bye messages have been omitted from the output.
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Figure 9.9: A call chart for the sorting example.
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At the end of this chapter, we implement a Typing Tutor application using a hash table and a FlexString
class, which is a built by combining the techniques of the flexible array and the String Array.

9.6 Hashing

A hashtable is a container class that can store and retrieve data items quickly and efficiently but does not keep
them in a predictable or sorted order. The position of a data item in the hash table is derived from a key data
field, or a key constructed from parts of several data fields. When implementing a hash table, three issues must
be decided:

1. The backbone of a hash table is an array. How many slots will it have?

2. Each slot of the hash array is called a bucket. What data structure will you use to implement a bucket?

3. What algorithm should be used for your hash function? To assign an item to a bucket, a table subscript
is calculated from the key field. The algorithm that does the calculation is called the hash function. It
must be chosen to work well the expected data set. Hashing is the act of applying the algorithm to a data
item’s key field to get a bucket number.

In most hashing applications, an Item is a structure with several fields and the key field is just one of many.
In such applications, distinct Items may have the same key. In this discussion, we imagine that we are hashing
words for a dictionary. Since the Item will be a simple null-terminated string, the entire item will be the key
field.

9.6.1 The Hash Table Array

Table structure. There are two basic ways to implement a hash table:

• Each bucket in the main hash array can store exactly one Item. Using this plan, the array must be longer
than the total number of Items to be stored in it, and will not function well unless it is nearly twice that
long. When a key hashes to a bucket that is already occupied, it is called a collision and some secondary
strategy must be used to find an available bucket. Often, a second (and possibly a third) function is used;
this is called rehashing.

• Each bucket in the main hash array can store an indefinite number of Items. Rehashing is not necessary;
dynamic allocation takes its place. Ideally, the list of items in a bucket should be short so that it can be
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searched quickly. This fact is used in calculating NBUK: if the goal is an average of B items per bucket,
and we expect to have N items total, then NBUK should be approcimately N/B.

This kind of hash table is much easier to implement and will be used here. The bucket can be implemented
by any dynamic data structure; most commonly used are linked lists, hash tables, and flex-arrays. In this
discussion, we use a flex array to implement a bucket, as in Figure 8.6.
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Figure 9.10: An empty Bucket (left) and one containing three Items (right).

Our chosen hash table implementaion is an array of NBUK buckets where each bucket is a flexarray, as
shown in Figure 8.7. The buckets will be initialized in the Bucket constructor to be empty flex-arrays with 4
slots of type Item* where items can be attached later.
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Figure 9.11: A HashTable with 11 Buckets and 6 Items.

Table length. For reasons related to number theory, and beyond the scope of this discussion, hashing works
best when the number of the buckets is not a multiple of 2. Normally, the programmer would choose a large
prime number for the table length. Here, we choose a small one so that the diagrams will fit on a page. When
you implement your own hash table, start with a small number of buckets and do the initial debugging with a
modest number of data items. When the program is ready for a full-scale trial, change the NBUK to a large
prime.

Inserting a new Item. Suppose that D is a data item and that the program wants to insert it into a hash
table. Before insertion, the program should search the table to determine whether it is duplicate data. If
not, space whould be allocated for for the new data dynamically. The key field is then hashed to find the
correct bucket number, and the FlexArray::put() function is used to insert the resulting pointer at the end of
the appropriate list. Because a flex-array is being used, each list will automatically extend itself if it becomes
overfull.

Retrieving an Item. To find an item in the table, we must hash its key field and search the correct bucket
and search it for the desired key. Since every hash bucket should be fairly short, a simple sequential search
is appropriate. If more than one item may have the same key field, more comparisons are needed to confirm
whether or not the desired item (or another with the same key) has been located.

9.6.2 Hash Functions.

When choosing a hash function, several things are important.
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1. It should use all of the information in the hash key, not just the beginning or end.

2. Its result must be a subscript between 0 and NBUK-1. This is easily accomplished by using the key to
generate a larger number and using the mod operator (%) to reduce it to the desired range.

3. It should be efficient. Hash functions that make a lot of unnecessary calculations should be avoided. Bit
operations (bitwise exor and shifts) are fast; addition and subtraction are slower, multiplication is slow,
and division and mod are very slow. The last operation in the hash function must be mod, but, with that
exception, the slower operators should be avoided. Remember—the object is to calculate a meaningless
random number based on the key.

4. It should spread the data as evenly as possible throughout the table, that is, it should choose each bucket
number equally often, or as near to that as possible.

Thus, the nature of the hash function depends on the data type of the key and the number of bytes in the key.
Two sample hash functions are given below for strings; they are not perfect, but they give some ideas about
what might be done. There is no limit on the number of possibilities.

Hash algorithm 1. This algorithm is appropriate for strings of 1 or 2 characters.

1. Initialize hash, an unsigned long, to the first char in the string.

2. Shift hash 7 bits to the left.

3. Add the second character.

4. Return hash % table length.

Hash algorithm 2. This algorithm can be used for strings of four or more characters. It uses the first four
and last three letters of the string.

1. Set len = number of characters in the string, which must be four or greater. (Use strlen().)

2. Set a pointer p to the first letter in the string.

3. Set a pointer q to the last letter in the string, = &p[len-1].

4. Initialize an unsigned long, hash = *p;

5. Loop three times:

(a) left shift hash 6 bits.
(b) exor it with *q and decrement q.
(c) left shift hash 3 bits.
(d) exor it with *(++p).

6. Return hash % table length.

9.7 Example: Combining Several Data Structures

This sample program is a typing tutor: it provides a list of target words to practice and uses a simple spelling
checker to check the accuracy of the user’s typing. Its real purpose, however, is to demonstrate the use of several
of the data structures presented in this chapter:

• The spelling checker relies on a dictionary of words, which is implemented using a hash table.

• The hash table’s buckets are an array of FlexArrays.

• The FlexArrays store pointers to a set of vocabulary words.

• The characters of these words are stored in a StringStore.
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9.7.1 The Main Program

1 //===========================================================================
2 // HashTable, FlexArray, and StringStore Demo Program
3 // A. Fischer, February 7, 2003 file: Tutor/main.cpp
4 //===========================================================================
5 #include "tools.hpp"
6 #include "dictionary.hpp"
7
8 int main ( int argc, char* argv[] )
9 {

10 cout <<"Typing Tutor\n------------\n";
11 if (argc < 2) fatal( "Usage: tutor input_file");
12 Dictionary Dic( argv[1] ); // Create dictionary from words in the input file.
13 cout << "\n\nReady for typing practice? "
14 << "At each prompt, type one of the words shown above.";
15
16 int k, right = 0; // Prompt for a word 10 times and count correct entries.
17 for (k=0; k<10; ++k) {
18 FlexChars buf; // Allocate a new flexible char array for the input.
19 cout << "\n> ";
20 buf.inputLine( cin ); // A flexible buffer has no fixed maximum length.
21 if ( Dic.find(buf.message()) ) { // Is input in dictionary?
22 cout << "\t Correct!";
23 ++right; // Keep score.
24 }
25 else {
26 cout <<"\t " << buf <<" is wrong.";
27 }
28 }
29 cout << "\nYou typed "<<right <<" words correctly, out of 10";
30 return 0;
31 }

Here is some sample output (several lines have been omitted):

Typing Tutor
------------
paper piper pauper pupa puppet pepper

Ready for typing practice? At each prompt, type one of the words shown above.
> paper

Correct!
...
> puper

puper is wrong.
> pepper

Correct!
> payper

payper is wrong.
You typed 8 words correctly, out of 10
Tutor has exited with status 0.

Notes on the main program. This main program is typical for an OO-application: it creates one object (a
Dictionary, line 12) and uses that object in a simple way (line 21). Almost all of the work is done within the
classes.

The name of the input file is supplied as a command-line argument so that it will be very easy to change the
vocabulary. The main program picks up that argument and sends it to the Dictionary constructor (lines 11–12).
When dictionary construction is complete, the user is prompted to enter a series of words from the given list,
and the tutor checks each one for correctness and counts the correct entries. After ten trials, the typist’s score
is displayed.

The input buffer used here (line 18) is a flexible array of characters; this means that any input word, no
matter how long, can be safely read. To test that property, I ran the program again and entered a string of 142
random characters. The program dutifully read and echoed them all, stated that the spelling was wrong, and
went on with the game. Having an input buffer of unlimited length is overkill in this demo program. However,
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in a real application, being free from the need to limit the length of an input string can make it much easier for
a programmer to achieve bug-free program operation. An added simplification is that a new FlexChars object
is created for each input line, making it unnecessary to worry about reinitializing the data structure.

9.7.2 The Dictionary Class

32 //===========================================================================
33 // Class declarations for Dictionary.
34 // A. Fischer, April 25, 2001 file: dictionary.hpp
35 #ifndef DICT
36 #define DICT
37
38 #include "tools.hpp"
39 #include "sstore.hpp"
40 #include "flexChars.hpp"
41 #include "flexString.hpp"
42
43 //===========================================================================
44 class Dictionary {
45 private:
46 StringStore SS; // Vocabulary is stored in the StringStore.
47 FlexString* HT; // Vocabulary is accessed using a HashTable.
48 ifstream fin; // Stream for reading the vocabulary file.
49 int NumBuk; // Number of buckets in the HashTable.
50 int CurrentBuk; // Bucket currently in use; set by hash.
51 void hash( const char* s ); // Sets CurrentBuk to correct bucket for s.
52 void put( char* s ); // Put new words in the dictionary.
53
54 public: //-----------------------------------------
55 Dictionary( char* infile, int buckets=101 );
56 ~Dictionary(){ delete[] HT; }
57 bool find( const char* s );
58 };
59 #endif

This class implements the dictionary to be used by the typing tutor. Dictionary words are stored in a
StringStore (SS) and organized by a hash table (HT) which is implemented as an array of FlexArrays. These
powerful data structures are not needed for the little list of words used by the typing tutor demo. However,
the hash table and StringStore would be essential tools in a real spelling checker that must handle thousands
of words.

Line 104 is commented out, but was very helpful during debugging. You will see similar debugging lines,
commented out, in several classes in this program. They have been left in the code as examples of the kind of
debugging information that you are likely to need.

The data members of Dictionary All data members are private because all classes should protect data
members. They should not be accessed directly by a client program.

Two purposes of the first two data members are obvious: StringStore SS and FlexString* HT implement
the primary data structure of the dictionary. Note that the hash-table array is dynamically allocated (line 101).
The third data member is an ifstream. It is part of this class because the vocabulary list that is in the input
file is only relevant to the dictionary, not to the main application. Declaring an input or output stream within
a class is common when the class ”owns” the stream. It must be a class member (rather than a local variable
in one function) if more than one class function needs to use the stream.

60 //===========================================================================
61 // Class implementation for the Dictionary.
62 // A. Fischer, April 25, 2001 file: dictionary.cpp
63
64 #include "dictionary.hpp"
65 //---------------------------------------------------------------------------
66 void
67 Dictionary::hash( const char* s ){
68 int len = strlen(s);
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69 const char* p = s;
70 const char* q = &p[len-1];
71 unsigned long hashval = *p;
72 for(int k=0; q>=s && k<3; ++k){
73 hashval = hashval << 6 ^ *q--;
74 hashval = hashval << 3 ^ *(++p);
75 }
76 CurrentBuk = hashval % NumBuk;
77 }
78
79 //---------------------------------------------------------------------------
80 void
81 Dictionary::put( char* word ){
82 char* saved; // Pointer to beginning of word in StringStore.
83 if (!find( word )){
84 saved = SS.put( word, fin.gcount() -1 );
85 HT[CurrentBuk].put( saved );
86 }
87 }
88
89 //---------------------------------------------------------------------------
90 bool
91 Dictionary::find( const char* s ){
92 hash( s );
93 int result = HT[CurrentBuk].find( s );
94 return result >= 0; // -1 indicates not found.
95 }
96
97 //---------------------------------------------------------------------------
98 Dictionary::Dictionary( char* infile, int buckets ){
99 fin.open( infile );

100 if (!fin) fatal( "Cannot open %s for input - aborting!!", infile );
101 HT = new FlexString[ NumBuk = buckets ];
102
103 char buf[80];
104 //cerr <<"Reading words from file " <<infile <<".\n";
105 for (;;) {
106 fin >> ws;
107 fin.getline( buf, 80 );
108 if (!fin.good()) break;
109 put( buf );
110 cout << buf <<" ";
111 }
112 if ( !fin.eof() ) fatal( "Read error on tutor file" );
113 fin.close();
114 }

Using the state of the object. The last two data members, Numbuk and CurrentBuk are state variables. A
state variable is a private data member that describe some essential property of the class or stores the current
setting of some internal pointer or index. Numbuk is set by the constructor and used to compute every hash
index.

In an OO-program, two functions in the same class often use state variables to communicate with each
other. In this program, CurrentBuk stores the number of the bucket in which the current data item belongs.
It is set by hash() and usedlater by find() and put(). This is more efficient and more secure than recalculating
the bucket number every time it is needed.

Private function members of Dictionary.

• NumBuk (line 49) is the number of buckets in the hash-table array. The hash() function (lines 51 and
66. . . 77) selects a bucket number (0. . . NumBuk-1) by making a meaningless computation on the bits of
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the data to be stored in the table. These two class members are both private because they relate to the
inner workings of the Dictionary class.

• A hashing function is supposed to compute a legal array subscript that has no apparent relationship to
its argument. It must also be efficient and repeatable, that is, the same argument must always hash to
the same subscript. However, if the hash function is called many times to hash different arguments, it is
supposed to distrubute the data evenly among the legal bucket numbers. Bit operations (such as xor and
shift) are often used to combine, shift around, and recombine the bits of the argument so that they end
up in a seemingly-random (but repeatable) pattern (lines 73 and 74). The mod operator % is always used
as the last step to scale the final number to the size of the array (line 76).

• The put() function (lines 52 and 80. . . 87) is used by the constructor to build the vocabulary list. It
searches the table for a word, then puts the word into the table if it is not there already. This function is
private because it is used only by the class constructor; it is not designed to be used by the client program.
A more general implementation of a hash table would also provide a public function (with a reasonable
interactive interface) that would allow the user to enter new words and store them in the Dictionary by
calling this private put() function.

Public function members of Dictionary.

• The constructor. Given the name of a file containing vocabulary words, the Dictionary constructor builds
and initializes a dictionary. There are two parameters: the input file name is required, and the length of
the hash array is optional. If the optional integer is not supplied by main, in the Dictionary declaration,
a default value of 101 will be used. (See Chapter 9, Bells and Whistles, for an explanation of default
parameters.)

This is a long function because it opens (lines 99–100), reads (lines 106–07), processes (lines 108–11), and
closes (line 113) the input file. To process one word or phrase from the file, we first test for valid input,
then delegate the rest of the job to the put function.

• The find() function (lines 57 and 90. . . 95) searches the dictionary for a given word and returns a boolean
result. This is a public function becausethe purpose of the class is to allow a client program to find out
whether a word is in the dictionary.

To find out whether or not a word is in the dictionary, we must first select the right bucket then search
that bucket. The hash function computes the number of the bucket in which the argument string, s,
should be stored. We then delegate the remainder of the task, searching one bucket, to the Bucket::find
function, and return the result of that function.

• The put() function. It is quite common to name a function put if its purpose is to enter a data item into
a data structure. Following this naming convention, we would define put() instead of push() for a stack
or enqueue() for a queue.

This function takes care of its own potential problems. Because it is undesirable to have the same item
entered twice into a hash table, the first action of put() (line 83) is to call find to check whether the new
word is already there. If so, there is no further work to do. If not, two actions are required: to enter the
word into the stringstore (line 84) using StringStore::put() , and to enter the resulting pointer into the
appropriate bucket of the hash table (line 85) using FlexString:put(). Both actions are delegated to the
put() functions of the servant classes.

• The destructor. The task of a destructor is to free any and all storage that has been dynamically al-
located by class functions. In this class, only the constructor calls new, so the destructor has only one
thing to delete. The StringStore was created by declaration as part of the Dictionary, and will be freed
automatically when the Dictionary is freed, at the end of main().

The form of the delete command follows the form of the call on new: Line 101 allocates an array of class
objects, so line 56 uses delete[] to deallocate that array; Line 101 stores the allocation pointer in HT, so
line 56 deletes HT. Attempting to delete anything else, such as SS or CurrentBuk would be a fatal error.
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9.7.3 The FlexArray and StringStore Classes

The code for StringStore was given earlier in this chapter. The code for a flexible array of characters (FlexChars)
was also given. We use both classes here without modification.

For this application, we add another class, FlexString, a flexible array of C strings. It is like the FlexChars
except:

• The base type of the flexible array is char*, not char.

• We added a function to search the array for a given string.

• We added an extension of the subscript operator to permit random access to the array.

The revised and extended class is given below. Later in the term we will see how two powerful techniques,
templates and derivation, let us create variations of important data structures without rewriting all fo the code.

The FlexString class declaration. The basic operation of a flexible array was described in Section 8.2 and
will not be repeated. However, some new techniques were used here and they deserve some mention. Note the
extensive debugging print statements that were needed in the course of writing this code.

• The typedef (line 122). This is a flexible array of strings, or char*. The pointer to the head of the array
is, therefore, a char**. We have defined a typedef name, handle, for this type because It is syntactically
awkward and confusing to use types that are pointers to pointers. Traditionally, a handle is a pointer to
a pointer to an object; this term is used frequently in the context of windowing systems.

• The constructor, Line 132, was rewritten to use ctor initializers instead of assignment to initialize the
members of a new FlexString. Ctors will be described fully in a future chapter; at this time, you should
just be aware that an initializer list (starting with a colon) can follow the parameter list of a constructor
function. In the initializer list, member names are given, followed by initial values in parenthess. Following
the list is the opening bracket of the body of the constructor function. More code can be given in the
body, if needed, or it can be empty, as it is here.

• The find() function. When searching for one data item in an array of data items, you must use a comparison
function. The function strcmp() is appropriate for comparing cstrings, so it is used here. The find function
must compare its argument to elements in the array. Since the kind of comparison to be used depends
on the base type of the array, we must either write a new find for every array base type or define a find
that takes a comparison function as a parameter. We chose the first option here.

• The subscript function. Chapter 10 will describe operator extensions. Here, it is enough to note that we
can extend the meaning of subscript to access array-like structures that are not just simple arrays. Like
the built-in subscript function, the new function extension returns a reference, allowing us to either store
data in the array or retrieve it.

115 //--------------------------------------------------------------------------
116 // Class declaration for a flexible array of base type T.
117 // A. Fischer, A. Fischer, February 7, 2003 file: flexString.hpp
118 #ifndef FLEXS
119 #define FLEXS
120 #include "tools.hpp"
121 #define STRINGS_START 20 // Default length for initial array.
122 typedef char** handle ;
123
124 class FlexString {
125 private: // --------------------------------------------------------------
126 int Max; // Current allocation size.
127 int N; // Number of array slots that contain data.
128 handle Data; // Pointer to dynamic array of char*.
129 void grow(); // Double the allocation length.
130
131 public: // ---------------------------------------------------------------
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132 FlexString( int ss = STRINGS_START ): Max(ss), N(0), Data(new char* [Max]){}
133 ~FlexString() { if (Data != NULL) delete[] Data; }
134
135 int put( char* data ); // Store data and return the subscript.
136 int length() { return N; } // Provide read-only access to array length.
137
138 char*& operator[]( int k ); // Extend subscript operator for new class.
139 int find( const char* ); // Return subscript of argument, if found.
140 handle extract(); // Convert a flex-array to a normal array.
141
142 ostream& print(ostream& out) { // Print the filled part, ignore the rest.
143 for (int k=0; k<N; ++k) out <<Data[k] <<endl;
144 return out;
145 }
146 };
147 inline ostream& operator <<( ostream& out, FlexString F ){ return F.print(out); }
148 #endif

149 //--------------------------------------------------------------------------
150 // Implementation of the FlexString class.
151 // A. Fischer, A. Fischer, February 7, 2003 file: flexString.cpp
152
153 #include "flexString.hpp"
154 int //------------------------- search for the word in the dictionary array.
155 FlexString::find( const char* word) {
156 int k;
157 //cerr <<" Looking for " <<word <<" " <<"N is " <<N <<" ";
158 for (k=0; k<N; ++k) {
159 //cerr <<Data[k] <<" ";
160 if (strcmp( word, Data[k] ) == 0) break;
161 }
162 return (k < N) ? k : -1;
163 }
164
165 int // --------------------------------- Copy a char* into the FlexString.
166 FlexString::put( char* data ) {
167 if ( N == Max ) grow(); // Create more space if necessary.
168 //cerr <<"Putting " <<data <<" into bucket " <<N <<endl;
169 Data[N] = data;
170 return N++; // Return subscript at which item was stored.
171 }
172
173 char*& //------------------------------- Access the kth string in the array.
174 FlexString::operator[]( int k ) {
175 if ( k >= N ) fatal("Flex_array bounds error.");
176 return Data[k]; // Return reference to desired array slot.
177 }
178
179 void // ------------------------------------- Double the allocation length.
180 FlexString::grow() {
181 handle temp = Data; // hang onto old data array.
182 Max>0 ? Max*=2 : Max = STRINGS_START;
183 Data = new char*[Max]; // allocate a bigger one.
184 memcpy(Data, temp, N*sizeof(char*)); // copy info into new array.
185 delete temp; // recycle (free) old array.
186 // but do not free the things that were contained in it.
187 }
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9.7.4 A Better Way

The FlexChars class and FlexString class are the same except for the type of data item being stored in the array
and minor differences in the functions provided by the class. Yet, because of these small differences, we have
written and debugged the code twice and used both versions in the same program. There’s got to be a better
way to accomplish this goal. In fact, there are several C++ tools that, together, provide a better way.

1. If we want to use a standard data structure, and if we want only one version of that data structure, we
can define the class with an abstract base type name, like T, and use a typedef at the beginning of the
program file to map T onto a real type. This method was illustrated by the generic insertion sort in
Chapter 2.

2. The C++ standard library supports several basic data structures in the form of templates. These templates
are abstract code with type parameters, written using techniques very much like those used in the generic
insertion sort. These templatea are often referred to as the “Standard Template Library”, or STL. Vector
is the template type corresponding to our flexible arrays. To use a template from the library, you must
supply a real type in any the declaration that creates an object of the template class; technically, we say
that you instantiate the template. The complier will combine your type with the template’s abstract
code at compilation time, to produce normal compilable code.

STL is an amazing piece of work. It covers all of the most important data structures, and brings them into
a unified interface, so that a program written using one data structure could be changed to use another
simply by changing one line of code: the line that instantiates the template. The implementations it
provides are efficient and correct, and their performance characteristics are thoroughly documented.

3. You could write your own template type. Templates will be covered in Chapter 13, where we will revisit
the flexible array class.

4. You could start with a standard template type or with your own template, and use derivation to add more
functions to the class. Such functions might be needed for some base types but not for others. Derivation
will be covered in Chapters 12, 14, 15, and 16.
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The way of existence in C++:

Because of my title I was the first to enter here. I shall be the last to go out.—The
Duchess d’Alencon, refusing help during a fire at a charity bazaar in 1897.

10.1 New C++ Concepts

Dumps. Some of the most troublesome program bugs are caused by mishandling storage allocation, or failure
to understand what happens, when, and why. During the long process of mastering C++, it is a good idea to
track the constant allocation and deallocation actions:

• By printing comments in constructors and destructors.

• By using dump functions, as in the Van and Box classes.

• By printing an object (or part of it) when it is created.

10.1.1 Talking About Yourself

The keyword this is used to refer to the implied paramter within a class function. In class T, the type of this
is T* because “this” is a self-pointer; it points at the implied argument. Thus, “cout << this” prints the
address of the current object (in hexadecimal) and “cout << *this” prints the value of that object. If a class
had a member named data, you could use this->data to refer to it. However, this is bad style: anywhere it
is legal to say this->data it means the same thing to say, simply, data. There is never a need to write the
this-> in front of a member name.

In this chapter, we use “this” three times in the Van program (lines 25 and 86), once in the Layers program
(line 129) and once in the Copy program (line 225). These lines show correct usage of this and are repeated
below:

(line 25) out <<" Box @ " <<this <<" : " <<*this;
(line 86) out <<" Van @ " <<this <<" Load @ " <<&Load <<".\n";
(line 129) out << "Instance is: " <<this <<" name: " <<name <<endl
(line 225) return *this;

In lines 25 and 86, we wish to print the memory address of the implied parameter, so we write << this. At the
end of line 25, we wish to print the object itself, not its address, so we write *this. Line 225 returns a Copy&,
which is a reference to the implied parameter.

10.1.2 Constructor Initializers

In C and C++, initialization follows rules that are more permissive than the rules for assignment. Anything
written in the body of a constructor function follows the rules for assignment. If an action can only be done
with initialization, it must be done using a ctor (constructor-initializer).

The term “constructor initializer” is shortened to “ctor”. Ctors exist to provide a way to initialize an object
during construction, rather than by using assignment later, in the body of the constructor function. The initial
value for any non-static data member may be supplied this way and ctors are often used if the initial value is
a parameter to the constructor. To illustrate ctor syntax, the constructor for the Stack class (Chapter 4) is
repeated, below, then rewritten using three ctors. In this case, the choice is a matter of style.

117
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Stack::Stack( cstring label, int sz ) {
s = new char[max=sz];
top = 0;
name = label;

}

Stack::Stack(char* label, int sz): max(sz), top(0), s(new char[sz]), name(label){}

Why use ctors? Ctors provide a compact and easy way to initialize the data members of any object, but
they are actually essential in three situations:

• A ctor is required if a class member is declared as const but optional for member variables.

• An object can compose other objects. Sometimes the constructor for the composed object has parameters;
these must be supplied by a ctor.

• When class derivation is used, an object (the derived object) may be an extension of another object (the
base object). If the constructor for the base class needs arguments, they must be supplied by a ctor.

What is the syntax? How you write a ctor depends on the type of the member it will initialize.

• If a class member is a non-class type, the name of the member is written followed by its initial value in
parentheses. The initial value follows the same syntactic rules as an initializer in a declaration.

• If a data member is a class type, you must supply arguments for the constructor of the component class.
To do so, write the member name followed by parentheses that enclose the name of its class and arguments
for its constructor.

• To initialize the base portion of an object in a derived class, the name of the base class is written followed
by the arguments for its constructor, in parentheses.

Where do you write them? The ctors are written before the beginning of the body of a constructor,
between the closing parenthesis and the opening curly bracket. The list of ctors is preceded by a colon and
separated by commas. Each ctor is used to initialize one data member of the class. If there is more than one
ctor, they should be listed in the same order as the members are listed in the class declaration.

10.2 Dynamic Allocation Incurs Overhead.

The allocation functions “malloc” and “new” must calculate and store bookkeeping information for later use by
“free” or “delete”. In this discussion, we will use the declarations below (an Item* initialized to a dynamically
allocated Item) to illustrate the way things work. Figure 10.1 shows how the allocation area is configured on
many systems.

The memory management system needs to know the block length. In both C and C++, the system
must know how many bytes are in each dynamically allocated storage block. This could be stored as part of
the block, computed from the sizeof the base type, or kept in a hidden table, indexed by the first address of the
block.

struct Item { char name[20]; int count; float price; };
Item* purchase = new Item;
Item* inventory = new Item[5];

purchase

32

Figure 10.1: Allocation overhead.
There is no rule in the language standard that the system must allocate a particular amount of overhead

space, or where it must be. However, every compiler must do something of this sort. Here we illustrate an old
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and common strategy, which was used for both C and C++ for many years. Extra space was allocated at the
beginning of every dynamically allocated area and initialized to the actual number of bytes in the allocation
block, including the overhead. In Figure 10.1, this length field is shown against a pale gray background. Note
that this field precedes the user’s storage area, and the address returned by malloc() was the address of the
beginning of the user’s area.

A C++ system needs to know the number of slots in an array. When “new” is used to allocate an
array of class objects, it stores the number of allocated array slots immediately before slot 0. This number is used
by “delete[]” to loop through the array elements and call the appropriate destructor to recycle the extensions
of each element before recycling the array itself. Figure 10.2 is a diagram of the actual storage allocated for the
dynamic array on the third line of code, above. The array length is shown against a pale gray background.

If, in addition, the allocation length is stored with the array, it would be stored before the number of array
elements. The remaining diagrams will show the array length but not the overall block length.

end

[4][1] [2] [3][0]

inventory

5

Figure 10.2: Overhead for an array of class objects.

10.2.1 Allocation Example: a Van Containing Boxes

The following short demonstration program will be used throughout this chapter to illustrate the allocation and
deallocation semantics of C++. The first portion consists of a main program and two classes, Box and Van
(which contains an array of Boxes). A second example builds on these two classes, introducing a third class
named Layers that composes Van and Box. The memory diagrams shown are taken from actual runs of the
program compiled by Gnu C++ for OS-X.

The Box class.

1 //--------------------------------------------------------------------------------
2 // A. Fischer October 9, 2000 file: box.hpp
3 //--------------------------------------------------------------------------------
4 #pragma once;
5 #include "tools.hpp"
6 //--------------------------------------------------------------------------------
7 class Box {
8 private:
9 int length, width, high; // The 3 dimensions of a box; occupies 12 bytes.

10
11 public:
12 Box(int ln, int wd, int ht){
13 length=ln; width=wd; high=ht; cout<<"\n Real Box ";
14 }
15 Box(){ length = width = high = 1; cout <<"Default Box ";}
16
17 ~Box() { cerr<< " Deleting: "; dump( cerr ); }
18
19 ostream& print( ostream& out ){
20 return out <<length <<" by " <<width <<" by " <<high <<". ";
21 }
22 inline void dump( ostream& out );
23 };
24 //-------------------------------------------------------------------------------
25 inline ostream& operator<< (ostream& out, Box& B) { return B.print( out ); }
26 inline void Box::dump(ostream& out){ out <<" Box @ " <<this <<" : " <<*this <<endl;}

1. In order to declare an array of class objects, the class must have a default constructor, that is, one that
can be called without parameters. This class has two constructors: a default constructor (line 15) for
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initializing the array and a real constructor (lines 12–14) for building data objects. By using default
parameters, these two definitions could be combined into one:

Box (int ln=1, int wd=1, int ht=1) { length=ln; width=wd; high=ht; }

2. A dump is a kind of debugging output that shows the machine addresses of your objects as well as their
values. Dumps are helpful in C++ to verify what is happening with allocation, copying, and deallocation.
This class contains a Dump function (line 22 and line 26).

3. Box::Dump() uses the keyword “this” to access its own address and print out its own contents.

4. operator<< must be defined before Box::Dump() because Dump() uses << to print a Box.

The Van class.

27 //------------------------------------------------------------------------------
28 // Van is a container class that can hold a load of Boxes.
29 // A. Fischer October 9, 2000 file: van.hpp
30 // Hex addresses from a run on OS-X, March 1, 2009
31 //------------------------------------------------------------------------------
32 #pragma once;
33 #include "tools.hpp"
34 #include "box.hpp"
35 //------------------------------------------------------------------------------
36 class Van {
37 private:
38 int Count; // @ f718, 4 bytes
39 int Max; // @ f71c, 4 bytes
40 Box* Load1; // @ f720, 4 bytes -> 1001b4, 0x40 = 48 bytes: 12*3 + 4 + ?
41 Box* Load2; // @ f724, 4 bytes -> 1001f4
42
43 public:
44 Van (int n=6);
45 ~Van();
46 ostream& print( ostream& out );
47 void dump( ostream& out );
48 int load_dim(){ return *( (int*)(&Load1) - 1 ); }
49 };
50 //----------------------------------------------------------- Global declaration
51 inline ostream& operator<< (ostream& out, Van& V) { return V.print( out ); }

52 //--------------------------------------------------------------------------------
53 // Array construction example: Class implementation for Van.
54 // A. Fischer October 4, 2000 file: van.cpp
55 //--------------------------------------------------------------------------------
56 #include "van.hpp"
57 Van::Van (int n){ //--------------------------------------------------------
58 int a, b, c;
59 Count = 0;
60 Load1 = new Box[Max=n];
61 Load2 = new Box[2];
62
63 cout <<"\nEnter the boxes; use a 0 dimension to quit\n";
64 for (Count=0; Count<Max; ++Count) {
65 cout <<" Dimensions: ";
66 cin >> a >> b >> c;
67 if (a*b*c == 0) break;
68 Load1[Count] = Box(a, b, c); // Make a local box, copy it using assignment.
69 } // Delete the local box at end of loop body.
70 }
71
72 Van::~Van(){ //----------------------------------------------------------------
73 delete[] Load2; // Delete the boxes in the Load array.
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74 cerr <<" Deleted Load2.\n";
75 delete[] Load1; // Delete the boxes in the Load array.
76 cerr <<" Deleted Load1.\n";
77 }
78
79 ostream& Van::print( ostream& out ){ //----------------------------------------
80 out <<"Load 1 has " <<Count <<" Boxes.\n";
81 for (int k=0; k<Count; ++k) out <<" " <<Load1[k];
82 return out << endl;
83 }
84
85 void Van::dump( ostream& out ) { //----------------------------------------
86 out <<" Van @ " <<this
87 <<"\n Count @ " <<&Count <<" = " << Count
88 <<"\n Load2 @ " << &Load2 <<" = " << Load2<<".\n"
89 <<"\n Load1 @ " << &Load1 <<" = " << Load1
90 <<" slots " << load_dim() <<endl;
91 for (int k=0; k<Count; ++k) Load1[k].dump( out );
92 out << endl;
93 }

Only two comments are given here. Most of the commentary on this class is in the next section, where
allocation, initialization, and deallotion actions are examined in detail.

1. The Van constructor (lines 44 and 57–70) has a default parameter. This lets us declare a Van with or
without parentheses and a dimension following the name, as in “Van V1” or “Van V2(10)”.

2. Van::Dump() calls the function defined at the bottom of van.hpp (line 48). This functions accesses
the hidden dimension field that precedes the beginning of the array named Load1. After printing this
information, Van::Dump() calls Box::Dump() in a loop (line 91), to dump the Boxes in the van.

A test run on OS-X.

A dynamic array of class objects.
Default Box Default Box Default Box Default Box Default Box Default Box Default Box
Enter the boxes; use a 0 dimension to quit

Dimensions: 2 2 2

Deleting: Box @ 0xbffff328 : 2 by 2 by 2.
Real Box Dimensions: 3 3 3

Deleting: Box @ 0xbffff328 : 3 by 3 by 3.
Real Box Dimensions: 4 3 2

Deleting: Box @ 0xbffff328 : 4 by 3 by 2.
Real Box Dimensions: 0 0 0

About to dump the van:
Van @ 0xbffff3d8
Count @ 0xbffff3d8 = 3
Load1 @ 0xbffff3e0 = 0x500184 slots 5 length 3
Load2 @ 0xbffff3e4 = 0x5001c4.
Box @ 0x500184 : 2 by 2 by 2.
Box @ 0x500190 : 3 by 3 by 3.
Box @ 0x50019c : 4 by 3 by 2.

Normal termination.
Deleting: Box @ 0x5001d0 : 1 by 1 by 1.
Deleting: Box @ 0x5001c4 : 1 by 1 by 1.
Deleted Load2.
Deleting: Box @ 0x5001b4 : 1 by 1 by 1.
Deleting: Box @ 0x5001a8 : 1 by 1 by 1.
Deleting: Box @ 0x50019c : 4 by 3 by 2.
Deleting: Box @ 0x500190 : 3 by 3 by 3.
Deleting: Box @ 0x500184 : 2 by 2 by 2.
Deleted Load1.
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The main program.

94 //--------------------------------------------------------------------------------
95 // Array construction example, October 8, 2000 file: vanM.cpp
96 //--------------------------------------------------------------------------------
97 #include "tools.hpp"
98 #include "van.hpp"
99 //--------------------------------------------------------------------------------

100 int main( void )
101 { cout << "\nA dynamic array of class objects.\n";
102 Van V; // Make a Van with space for 5 Boxes.
103 // Van V(2); // Alternate version has 2 Boxes.
104 cout <<"\nAbout to dump the van:\n";
105 V.dump( cout );
106 bye();
107 }

10.2.2 How Allocation and Deallocation Work

Consider the Van program above, which declares a Van named V (line 102). In response, the system allocates
space for the four core data members of a Van (dark gray in Figure 10 .3) and calls the Van constructor to
initialize that space.

Construction of the Van. The Van constructor allocates space for an array of five Boxes and stores the
pointer in V.Load. Automatically, the default constructor for Boxes is run five times, once for each array slot.
The five Box objects are initialized by the default Box constructor, so the dimensions of all five are initialized
to 1 1 1. Figure 10 .3 illustrates the actual storage that was allocated for this object on my machine, with
the initial values from the default constructor. The core portion of the object “V” is colored dark gray. The
extensions consist of overhead (light gray) and usable storage (white).

Max
Load1

5
Count 0V.

Load2

5 1
1
1

[4][1] [2] [3][0]

1
1
1

1
1
1

1
1
1

1
1
1

0184 0190 019c 01a8 01b4

2 1
1
1

[1][0]

1
1
1

01c0 01c4 01cc

0180

Figure 10.3: Creating a Van full of Default Boxes

Storing Boxes in the Van. Then control passes to the code part of the Van constructor. Line 63 prints
instructions and the following loop prompts the user for the dimensions of a series of boxes. For each set of
dimensions entered, line 68 constructs a new temporary Box and copies it into one slot of the array of Boxes.
This replaces one set of dummy data in the Van by real information. The default assignment operator is used
for this purpose.

Load1[Count] = Box(a, b, c);

When control reaches the end of the loop body (line 69), the temporary object is automatically deleted and we
see a deletion comment. In the run shown above, data for three boxes were entered, followed by a dummy box
with a volume of 0, which ended the input phase. Figure 10.4 illustrates the contents of the Van at the end of
the input phase.

By the end of the input loop, ten Boxes have been allocated and seven still exist:

• Five are part of Load1.

• Two are part of Load2.

• Three were allocated, initialized, copied into Load1, and freed.
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Max
Load1
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Count 3V.
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Figure 10.4: After storing real Box data in the Van.

As proof of this deletion, we see three trace comments:

Deleting: Box @ 0xbffff328 : 2 by 2 by 2.
Deleting: Box @ 0xbffff328 : 3 by 3 by 3.
Deleting: Box @ 0xbffff328 : 4 by 3 by 2.

Note that the addresses of these three boxes are the same! that happens because the first one is created, used,
and deleted, then the second is created in the same memory location. Also note that these boxes were allocated
at an address that is very distant from the Van boxes (shown at the end of the output). This difference happens
because the temporary Boxes are allocated on the run-time stack while the Van Boxes are allocated in the
dynamic storage area.

Dumping the Van. Line 105 of main() dumps the Van, producing the second block of output. This block
shows the machine addresses of the Van and its core parts, as well as the addresses of its two dynamically
allocated extensions. From the dump, we see that the data from the temporary boxes has, indeed, been copied
into the permanent boxes that are attached to the van.

Deallocation of the Van with delete[ ]. When we wish to delete dynamic storage, we use the name of the
variable that points at the dynamically allocated block. Assume this pointer is named X. There are two forms
of the deallocation command: delete X and delete[] X. The conservative rule for usage is:

If you allocate with [], use delete[] with [].

Different treatment is necessary for arrays and non-arrays. For a non-array, the only memory space that needs
deletion is the single variable that X points at. But for an array, we need to deal with the array itself and with
the objects stored in it. Allocating the array caused the constructors to be run for the objects in the array, so
deleting the array must cause the destructor to be run for each individual array object.

In the Van program, the statements that create the dynamic storage are on lines 60 and 61: Load1 = new
Box[Max = n]; and Load2 = new Box[2]; Since we allocate this array in the Van constructor, and since this
statement stores the allocation pointers in Load1 and Load2, we write delete[] Load1 and delete[] Load2
in the Van destructor. The result is:

• The Box destructor will be run for each Box in the array, in the opposite order from their creation. The
number that is stored just before the &Load1[0] will control the deletion loop.

• Last of all, the array, itself, will be deallocated.

The last line of main() is the call on bye(), which prints the “Normal termination” message. The program’s
work is done and it is time for it to return to its caller (the system). We say that the variables in main() go
out-of-scope, which causes the destructors for main’s variables to be run. (Van::~Van is run to delete V.) You
do not need to write anything to cause this to happen, and there is no way to prevent it. In our test run, the
third block of output shown is the result of the automatic destruction. First, the Van destructor was called by
the system. On line 73, it called the Box destructor: delete[] Load2. When the 2 Boxes have been deleted,
control returns to the Van desctuctor. In the output, we see the trace comments from deleting two boxes,
followed by the trace for deleting the array. On line 75, the Box destructor is called again: delete[] Load1.
When all the Boxes have been deleted, control again returns to the Van desctuctor. In the output, we see the
trace comments from deleting five boxes, followed by the trace for deleting the array.
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10.3 Construction of C++ Objects

10.3.1 A Class Object is Constructed in Layers

• Space is allocated for the core portion of the whole object.

• Starting with the first component member, the constructor functions for the members are called. These
initialize the components and may cause extensions to be allocated and initialized. If any of these con-
structors have parameters, they must be passed as ctor initializers (see below).

• Members of the class are initialized from ctor initializers, if any.

• The constructor for the class, itself, is called. It may store values in components and may also create
extensions.

10.3.2 Layering Demo Program

The goal of the Layers program is to illustrate the order in which aggregate objects are constructed and deleted.
The trace comments in the Layers functions, together with those in Van and Box provide step-by-step evidence
of how C++ storage management works. The Layers class is given next, followed by comments that lead you
through the step-by-step construction process and, finally, the output.

The Layers class.

110 //--------------------------------------------------------------------------------
111 // The Layers class aggregates Van and Box.
112 // A. Fischer October 10, 2000 file: layers.hpp
113 //--------------------------------------------------------------------------------
114 #pragma once;
115 #include "van.hpp"
116
117 class Layers { //------------------------------------------------------------
118 char* name; // Memory is allocated by body of Layers constructor.
119 Box B;
120 Van V;
121
122 public: //------------------------------------------------------------
123 Layers( char* nm ) : B(8,7,6), V(4) { // constructor with ctors
124 cout <<" Constructing " <<nm <<"\n";
125 name = new char[strlen(nm) + 1];
126 strcpy(name, nm);
127 cout <<" " <<nm <<" is complete.\n\n";
128 }
129
130 ~Layers() { // destructor
131 cout << " Deleting name @ " <<(unsigned)name <<": " <<name << endl;
132 delete name;
133 }
134
135 void print( ostream& out ){
136 out << "Instance is: " <<this <<" name: " <<name <<endl
137 <<" Box: " <<B <<"\n Van: " <<V;
138 }
139 };

• An object of class Layers has three members: a char*, a Box, and a Van.

• The Layers constructor has a char* parameter; this name will be used in the output to help clarify which
object is being constructed or deleted. Most of the output, below, came from the class constructors and
destructors.

• Line 123 uses two ctors to initialize the Box and Van portions of the object. This is necessary because we
want a real box, not a dummy, and we want a Van with 3 slots, not 5 (the default).
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• A cast is used in the destructor to print the address of the name string (line 131). Without the cast, we
would print the word itself. The contents of name is the address of the dynamic allocation area (a pointer).
We are allowed to cast pointers to type unsigned.

• The last part of the trace, after the “normal termination” comment, shows that six Boxes were created
as part of the Layers object created when line 149 of main was executed. The first box created was the
loose box declared on line 119 and initialized by a ctor in the Layers constructor on line 123. The ctor
supplies initialization paramters, so this box was initialized by the “Real” Box constructor, the one with
parameters.

• The other five Boxes are inside the Van that is declared on line 120 and initialized by the second ctor on
line 147. The Van constructor is on lines 57. . . 70. On lines 60 and 61, the constructor creates two new
arrays of Boxes. Since these boxes are in an array, they are initialized by the default constructor.

• The first half of the output and shows the user-dialog that occurred during the process of constructing three
real boxes and storing them in the Van, lines 63. . . 69 in the Van constructor. The Box objects created
there are local temporary variables that are deallocated when control reaches line 70. These variables
exist just long enough to copy their contents into the blank box that is part of the Van array (using the
default definition of the assignment operator, which is the same as the default copy constructor).

• The parts of an object are initialized before calling the constructor for the whole. Note that control enters
the Van constructor (output line 170) after initializing all the Boxes to default values. It enters the Layers
constructor and prints the object’s name, “PackRat”, after initializing the Van.

• The main program creates an instance of class Layers (line 149) and prints it. From the output, you can
see that the Layers object contains a Box and a Van, and the Van contains two more real Boxes (the
default boxes are not printed here).

• The post-termination output verifies the order in which objects are deleted: the destructor for the out-
side class triggers the destructors for the inside classes before it executes itself. Within an array, as in
Van.Load1, the array elements with the largest subscripts are deleted first and the object in slot 0 is
deleted last. Then the array itself is deleted.

The main Layers program.

140 //--------------------------------------------------------------------------------
141 // Layered construction and destruction example.
142 // A. Fischer October 10, 2000 file: layersM.cpp
143 //--------------------------------------------------------------------------------
144 #include "tools.hpp"
145 #include "layers.hpp"
146 //--------------------------------------------------------------------------------
147 int main( void ) {
148 cout << "Creating an object of class Layers. ";
149 Layers f1( "PackRat" );
150 f1.print(cout);
151 // Layers f2(f1); // A call on the copy constructor.
152 bye();
153 }

The trace.

Creating an object of class Layers.
Real Box Default Box Default Box Default Box Default Box Default Box
Enter the boxes; use a 0 dimension to quit
Dimensions: 3 2 3

Deleting: Box @ 0xbffff624 : 3 by 2 by 3.
Real Box Dimensions: 2 2 2

Deleting: Box @ 0xbffff624 : 2 by 2 by 2.
Real Box Dimensions: 4 2 1

Deleting: Box @ 0xbffff624 : 4 by 2 by 1.
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Real Box Constructing PackRat
PackRat is complete.

Instance is: 0xbffff708 name: PackRat
Box: 8 by 7 by 6.
Van: Load 1 has 3 Boxes.
3 by 2 by 3. 2 by 2 by 2. 4 by 2 by 1.

Normal termination.
Deleting name @ 1049120: PackRat
Deleting: Box @ 0x1001c0 : 1 by 1 by 1.
Deleting: Box @ 0x1001b4 : 1 by 1 by 1.
Deleted Load2.
Deleting: Box @ 0x10019c : 4 by 2 by 1.
Deleting: Box @ 0x100190 : 2 by 2 by 2.
Deleting: Box @ 0x100184 : 3 by 2 by 3.
Deleted Load1.
Deleting: Box @ 0xbffff70c : 8 by 7 by 6.

10.4 Constructors and Construction

C++ objects are created and initialized in three situations:

1. A call on new

2. Declaration of a class-type variable.

3. A call on a constructor function embedded in an expression.

In Java, the the first way listed is the only way to create non-array objects. n both languages, an object created
with new is allocated in the dynamic memory area called the “heap”. These objects are used through references
(in Java) or pointers (in C++). Because they are in the heap, they can outlast the execution of the function
that created them and the lifetime of the variables that store them. In C++, these objects must be specifically
deallocated by calling delete when they are no longer needed.

Unlike Java, C++ also permits local objects to be created by a declaration or by calling any constructor.
These objects are allocated in the current stack frame and deallocated when they go “out of scope”. (That is,
when control leaves the block of code that contains the declaration or constructor call.)

Kinds of Constructors The terminology regarding constructors is confusing. However, the types of con-
structors and the various terms for them must be mastered before you will understand C++ reference books.
The types of constructors are:

1. Constructors with parameters. This is the usual case and is the kind we have been using. Examples
are found in the Van program on lines 14, 44 / 60–73, and are in the Layers program on lines 146–151.
These constructors can be used in declarations (lines 106 and 129), ctors (line 146), and calls on new that
allocate a single object, not an array. Line 71 calls a constructor in an assignment statement. This builds
a temporary object that will be discarded as soon as its value is copied into the array.

2. Null constructor. A null constructor is one that initializes nothing. A null constructor for a class named
named Zilch looks like this:

Zilch(){}

Sometimes we add trace output to constructors; these are still null constructors, even though the function
body is non-blank. A null constructor with a trace might look like this:

Zilch(){ cerr << "Constructing a Zilch object."; }

Every class has a constructor. If you don’t provide any constructor at all, C++ generates a null constructor.
If you provide some sort of constructor, a null constructor will not be supplied automatically, although
you can define one yourself.
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3. Default constructor. A default constructor is a one with no parameters (line 15) or one that has a
default value for every parameter (line 44 / 60–72). A null constructor is a default constructor, but non-
null constructors constructors can also be default constructors. A declaration that uses the default Van
constructor is on line 105.

If you declare an array of class objects, the class must have a default constructor which will be used to
initialize the elements. The calls on new on lines 63–64 use the default Box constructor to initialize all
the boxes.

4. Default copy constructor. A copy constructor is used whenever there is a need to initialize a newly
constructed object from another object of the same class. The most common and important application
is call-by-value parameter passing, but uses of the copy constructor are also shown on lines 71 and 130.
Each class has exactly one copy constructor (either by default or by explicit definition) with one of these
prototypes:

Classname( const Classname& );
Classname( Classname& );

A default copy constructor is supplied automatically if no explicit copy constructor is present. It performs
a shallow copy from the initializing object into the newly-constructed object. If a user-defined copy
constructor is present, it is used instead of the default copy constructor for call-by-value. If operator=
is not redefined for a particular class C, then the default copy constructor is used to implement c1 = c2,
where c1 and c2 are objects of class C.

5. A deep-copy constructor. A deep copy is a complete copy of a data structure, including its extensions.
A programmer-defined copy constructor that performs a deep copy is shown on Lines 220. . . 224 of the
Ball program (next). Calls on this copy constructor are made on lines 200. . . 201.

If a data structure structure is small, the time and space used to create this copy are often not important.
However, if the data structure is large, making a deep copy for every call on every function would waste
an excessive amount of time and space and would cause an unacceptable performance slowdown. For this
reason, deep-copy constructors are rarely used.

10.4.1 A Variety of Constructors

This section introduces a class named Ball with four constructors and a redefinition of the assignment operator.
The main program calls each one to illustrate the differences in syntax.

Calling the constructors:

1. A static class member is shared by all instances of the class. In this program, we use a static member to
count the total number of instances that have been created. This static member is created and initialized
on line 306.

2. The ID field of each instance is the value of the counter at the time the instance was initialized. This
counter is incremented by every constructor except the null constructor which has been commented out.

3. The declaration on line 311 has just the class name and an object name; this calls the constructor on lines
345–49 and uses the default value for the parameter. Line 378 of the output shows that the Name field
has been initialized to the default value, ’B’, the ASCII version of the argument 66.

4. Line 312 calls the same constructor as line 311 but supplies the optional parameter. The result is shown
on line 379: the Name field has been initialized to ’K’, rather than to the default, ’B’.

5. The declaration on line 313 provides a char* argument for the constructor; this calls the normal constructor
(lines 350–54). Line 380 of the output shows that the Name field has been initialized to the argument
provided in the declaration.

300 // ------------------------------------------------------------------------
301 // Syntax and semantics for copy constructors, initialization, assignment.
302 // Alice E. Fischer May 6, 2001 file: ballM.hpp
303 // ------------------------------------------------------------------------
304 #include "tools.hpp"
305 #include "ball.hpp"
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306 int Ball::Counter = 0; // Create & initialize the static class member.
307
308 // ------------------------------------------------------------------------
309 int main( void ) {
310 cout <<" ID Name\n";
311 Ball One; cerr <<"a. " << One <<endl; // Default constructor
312 Ball Two( 75 ); cerr <<"b. " << Two <<endl; // Normal constructor
313 Ball Three("Ali"); cerr <<"c. " << Three <<endl; // Normal constructor
314 Ball Four( One ); cerr <<"d. " << Four <<endl; // Copy constructor
315 Ball Five = Three; cerr <<"e. " << Five <<endl; // Copy Constructor
316 cout << "\nReady to construct an array:" <<"\n";
317 Ball Six[2]; cerr <<"\t" <<"f. "<< Six[0] <<"\t " <<Six[1] <<"\n";
318 // Ball Bad = Ball(77); // Bad: Ball(77) not a Ball&
319 cerr <<"\nNow " << One.getcount() <<" Ball objects have been created.\n";
320 Four = Two; cerr << "g............................\n" // Assignment
321 <<"\t" << Four <<"\n\t" << Two <<endl;
322 bye();
323 return 0;
324 }

6 The argument in the declaration on line 314 is an object of class Ball; this calls the copy constructor (lines
355-59). This copy constructor gives the new object a unique ID#, then makes a deep copy of the rest
of the argument. It does not change the argument. Within this function, the parameter name is used to
refer to the object being copied and the corresponding fields of the new object are called by the member
name alone. Line 381 of the output shows the result: the Name field has been initialized to “B”, a copy
of the Name in One.

7 Line 315 uses another syntax to call the copy constructor, initializing the new object, Five, as a copy of
Three. The result is on line 382.

8 At this time, five objects have been created and intialized. We now create an array of two more Balls, on
line 317, giving us a total of seven Ball objects. The output (lines 384–87) shows that the constructor on
lines 345–49 was used, with the default value of the parameter, to construct both.

9 We now use the redefined assignment operator (line 320 / 360–64). This is a very strange definition for
operator= because it only copies one character from the right operand into the left operand, but it does
illustrate how redefinition works. Initially, Four.Name was “B”. After executing line 362, Four.Name has
been changed to “K”, as shown on line 390.

10 We have reached the end of the program; the call on bye() prints a termination comment (lines 322 /
393). After that, we see the trace comments printed by the destructor on line 345. As each object is
deleted, we decrement the object counter. The last line of the trace tells us that the Ball class does not
have a memory leak.

11 A class cannot have two functions with the same calling sequence. The null constructor on line 339 is
commented out because it conflicts with the default constructor on lines 345–49. When both are in the
code, the compiler produces comments like this:

ballM.cpp: In function ‘int main ()’:
ballM.cpp:12: call of overloaded ‘Ball()’ is ambiguous
ball.hpp:17: candidates are: Ball::Ball ()
ball.hpp:27: Ball::Ball (int = 66)

In this program, we fix the problem by commenting out the null constructor. If, instead, we comment
out the default constructor on line 345. . . 349 (and the call on line 312), we see output from the null
constructor:

Null constructor........a. 782336

The ID and Name fields contain garbage because they have not been initialized.

12 The system’s final status comment (line 402) assures us that the Ball program’ s memory has been freed
without crashing.
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The Ball class.

327 // ------------------------------------------------------------------------
328 // Syntax and semantics for copy constructors, initialization, assignment.
329 // Alice E. Fischer May 6, 2001 file: ball.hpp
330 // ------------------------------------------------------------------------
331 #pragma once;
332 class Ball { // --------------------------------------------------------
333 private:
334 static int Counter;
335 const int ID;
336 char* Name;
337
338 public: // --------------------------------------------------------
339 //Ball(){ cerr<< "Null constructor........"; } // Null constructor
340 //~Ball(){} // Null destructor.
341 ~Ball(){
342 --Counter; delete Name;
343 cerr <<"\tDestructor..." << Counter <<" Balls remain.\n";
344 }
345 Ball( int alpha = 66 ): ID( ++Counter ) { // --- Default constructor.
346 cerr <<"Default or normal constructor. ";
347 Name = new char[ 2 ];
348 Name[0] = alpha; Name[1] = ’\0’;
349 }
350 Ball( char* arg ): ID( ++Counter ) { // -------- Normal constructor.
351 cerr <<"Normal constructor.............";
352 Name = new char[ 1+strlen(arg) ];
353 strcpy( Name, arg );
354 }
355 Ball( Ball& a ): ID( ++Counter ) { // ---------- Deep copy constructor.
356 cerr <<"Copy constructor...............";
357 Name = new char[ 1+ strlen(a.Name) ];
358 strcpy( Name, a.Name );
359 }
360 Ball& operator = ( Ball& source ){ // -- Changes data but not identity.
361 cerr<<"Assignment function...........\n ";
362 Name[0] = source.Name[0];
363 return *this;
364 }
365
366 void print() { cerr <<ID <<" " <<Name ; }
367 int getcount() { return Counter; }
368 };
369 ostream& operator <<( ostream& out, Ball& C ){ C.print(); return out; }

The output:

377 ID Name
378 Default or normal constructor. a. 1 B
379 Default or normal constructor. b. 2 K
380 Normal constructor.............c. 3 Ali
381 Copy constructor...............d. 4 B
382 Copy constructor...............e. 5 Ali
383
384 Ready to construct an array:
385 Default or normal constructor. Default or normal constructor. f. 6 B 7 B
386
387 Now 7 Ball objects have been created.
388 Assignment function...........
389 g............................
390 4 K
391 2 K
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392
393 Normal termination.
394 Destructor...6 Balls remain.
395 Destructor...5 Balls remain.
396 Destructor...4 Balls remain.
397 Destructor...3 Balls remain.
398 Destructor...2 Balls remain.
399 Destructor...1 Balls remain.
400 Destructor...0 Balls remain.
401
402 The Debugger has exited with status 0.

10.5 Destruction Problems

Deep deletion after a shallow copy When call-by-value is used to pass an argument to a function, the
class copy constructor (default or user-defined) is used to initialize the parameter variable with a copy of the
argument value. The default copy constructor does a shallow copy.

At function-return time, the class’s destructor will be run on the parameter. A correctly-written destructor
deallocates object extensions and frees dynamic memory (deep destruction). However, when shallow copy is
used to pass an argument, the parameter variable and the underlying argument variable both point to the same
object extensions. Using deep destruction will cause a serious problem because the object extensions will be
deleted. However, the calling program still needs them.

Therefore, call-by-value generally cannot be used with parameters of class types. Use call by reference
(more efficient, less modular) or define a copy constructor that does a deep copy (miserable efficiency, great
modularity). The next sample program shows a class with a copy constructor that makes a deep copy.

Important reminders.

• Deletion of stack objects happens when control leaves the block in which the object was declared.

• Deletion of dynamically-allocated (new) objects happens when delete or delete[] is called explicitly. An
attempt to use delete on a stack-allocated object is a fatal error.

• In both cases, the destructor from the appropriate class is called to deallocate memory.

• Memory leaks happen when you fail to delete a dynamic object at the end of its useful life, before the last
pointer to that object is reassigned to point at something else.

• Fatal (but subtle and delayed) errors happen when you attempt to use an object after it has been deleted,
when you delete the same thing twice, or when you delete something that was not created by new.



Chapter 11: Modules and Makefiles

11.1 Modular Organization and makefiles.

From the Fanny Farmer cookbook:

Before beginning to mix, be sure that all ingredients and utensils are on hand.

You can’t bake a good cake if you don’t have enough eggs or if your butter is spoiled. You can’t compile or run
a program successfully if you need files that are missing or out of date.

11.1.1 History

The C++ standard does not address the issues of code files and header files. These and makefiles developed
as part of the Unix system environment because of a clear and evident need to mechanize and automate the
production of large-scale applications.

Projects. Both Unix-based and Windows-based systems have supported projects as part of an integrated
development environment (IDE). The project facilities vary greatly in both power and convenience of use, and
can be more difficult for a newcomer to use than the old-fashioned makefile. At this time, the Microsoft project
facility is both confusing and intolerant of error. Mac’s XCode is flexible and less intolerant of error, but highly
complex. Both organize the project using a special project file. The cross-platform Eclipse IDE gives the
programmer a choice of producing a traditional makefile or a non-portable project file.

A modern IDE offers much more than just a project facility. Most useful are syntax coloring, global renaming
and refactoring, and global search-and-replace. It is clear that, as IDEs improve and our experience with them
increases, they will gradually replace the old ways of doing the job: compiling from the command line and
hand-built makefiles.

Whether you are using a project or a makefile, one kind of information must be supplied: the full pathname
of every source code file and every header file that is needed by the project. Given this information, a project
facility and some makefile facilities will generate a list of which modules depend on which other modules. This
dependency list is used to determine which modules are unaffected by a change to part of the program. When
you ask to build the application, the only modules that will be recompiled are those that have been affected
by some editing change since the last build. Thus, if one module of a massive application is changed, we avoid
recompiling almost all of the program. Re-linking will happen if anything was recompiled.
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row.cpp
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item.hpp

graph.cpp
CS626
CS636
CS670
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sortins.c
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Figure 11.1: A typical directory structure.
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Namespaces. Very recently, the C++ standard adopted the concepts of namespaces, and Visual C++ imple-
mented them in conjunction with workspaces. These facilities may or may not replace the traditional makefiles
and separate compilation. At the moment the added facility leads more to confusion than to ease of use. The
purpose of namespaces is the same as one of the purposees of separate compilation: to allow many modules to
define objects and functions freely without concern about conflict with other objects of the same name in other
modules.

File and Directory Organization. A multi-module program in C++ consists of pairs of .cpp and .hpp
files, one pair for each class (or closely related set of classes), and one .cpp file that contains the main program.
(Exceptions: he main program may or may not have a matching .hpp file, and some simple classes are written
entirely within the class .hpp file.) Each .cpp file includes just its own .hpp file. Each .hpp file in the project
must include the other .hpp files that contain the prototypes it uses.

Experienced programmers define a separate directory for each project. (This saves much pain in the long
run.) This directory contains the .cpp, .hpp, and .o files for the project as well as the makefile, the executable
file, the input, and the output. Since many projects may use the tools files, they are placed a level or two above
the project directories, as indicated by Figure 11.1.

g++ -c -Wall graphM.cpp

row.o

row.hpp

graphM.cpp

graphM.o

g++ -c -Wall row.cpp

g++ -o graph  -Wall  graphM.o  graph.o  row.o  tools.o

graph

graph.hpp

graph.cpp row.cpp

g++ -c -Wall graph.cpp

graph.o

Source code files

Header files

Object files

Executable file

Compilation steps

Linking step

tools.o

item.hpp

g++ -c -Wall tools.cpp

tools.cpp

tools.hpp

Figure 11.2: The BarGraph application with four code modules.

11.1.2 General Concepts

• A program that is physically located in many files will be compiled as a single module if the main program
includes (directly or indirectly) the .cpp files for the other modules. In a multi-module compilation, main()
includes the header files of the other modules, not their source code.

• When doing a multi-module compile, each module is compiled separately to make a .o file, as shown in
Figure 11.2. Then the linker integrates these .o files with the .o files for the libraries to make an executable
file.

• A makefile (in Unix) automates the process of separate compilation and linking. The project files in
Windows systems accomplish the same goals as a makefile, but a makefile has somewhat more power and
flexibility because it can be hand-coded and/or hand-modified. Project files are automatically generated
and, therefore, rigid. Makefiles are universally portable in the Unix world.

• One .hpp file may be included by several others, so we must do something to prevent definitions from
being included twice in the same module. (This would cause the compiler to fail.) Many systems support
this directive at the top of a header file:

#pragma once;

This is advice to the compiler to include the header only once per module. If your system does not support
this, you must surround the entire .hpp file with conditional compilation commands.
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#ifndef MYCLASS_H
#define MYCLASS_H
... put the class declaration here ...
#endif

If an attempt is made to include the same header twice in one module, this ”wrapper” will cause the
inclusion to be skipped the second time, avoiding conflicts due to duplicate definitions. The ”wrapper”
always follows the pattern shown above, where MYCLASS is traditionally the same as the class name,
but written in upper-case (instead of mixed case) letters. Anything that might be the same as a standard
library header file name should be avoided.

• Naming. Three names are associated with each module. These could be completely unrelated, but it is
better to make them alike. One suggestion is to use the name of the major class within the module, but
write that name in three ways:

– The name of the pair of the .hpp and .cpp files. Use all lower case here because it is the most portable
from file system to file system.

– The name of the class within the file. Use Mixed Case here because that seems to be becoming
customary for class names: List, Cell, BarGraph

– If your system does not recognize #pragma once;, you need to put conditional compilation directives
at the top and bottom of each header file. Use ALL UPPER CASE letters for the #define symbol
at the top of the .hpp file, since that is customary for defined symbols. It is also customary to end
each one with _H. Example: LIST_H.

• The linker can fail for three reasons:

– Some required symbol (usually a function name) is not in any of the modules that are being linked,
usually caused by a missing module.

– Some symbol is defined in two of the modules (double inclusion).

– Lack of disk space to store the executable file.

• The linker will not succeed if same object is defined outside the class declarations in two .hpp files, or
in one .hpp file that is included by two others. This causes double inclusion. The #pragma once; and
#ifndef directives cannot help with this problem because they operate at the level of a single module.
The linking problem occurs when one method or object is part of the .o file for two modules.

However, if a function is defined entirely inside a class declaration (in an .hpp file), or defined as an inline
function after the class (in an .hpp file), the .hpp file may be included by several other modules without
causing a conflict.

If a data object (such as a constant array of strings) must be directly visible to two modules, you must
define it in one module and use extern declarations to link it to the other modules.

11.1.3 Enumerations and External Objects

The problem. An enum declaration creates a type, and types are usually defined globally. Several parts of a
program typically need to use the enumerated type, so it cannot be conveniently put inside a single class. The
best place is a header file, enums.hpp, that contains the enum declarations for the whole application.

Further, to use enum types effectively, you need a civilized way to input an enum value and to output it.
Numeric codes are not civilized. Input can be easily handled by reading a menu selection and processing it with
a switch. Output is a harder problem because we must go from the enum constant to an English word that the
user will understand. We can do this by creating an array of output strings, parallel to your enum list, and
using the enum value to subscript the array when we want output.

However, this array is an object, so it cannot go into the .hpp file with the corresponding enum declaration.
If that .hpp file were included in more than one compile module, the array object would be compiled more than
once and be part of two .o files. The linker would then be unable to link the application because it would see
two objects with the same name.
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The Solution The solution to this linking problem is to use the extern storage class. Identical extern
declarations are included by several files, but this does not cause a linking problem because an extern declaration
with no initializer does not create an object. (It instructs the linker to look for and link to an object that was
created elsewhere.) An extern declaration with an initializer creates the object that all the other modules will
link to. Therefore, we write one copy of an extern declaration with an initializer in some .cpp file. For this
purpose, you might use the file that contains main(), a .cpp file that contains the application’s primary class,
or a separate file called enums.cpp.

Details of the Solution

1. Create a file named enums.hpp.

(a) Into it, put all the enum declarations needed by your application. Suppose you need an enumeration
of colors: red, white, blue. Sometimes you need an additional code for errors:

enum Color { ERROR, RED, WHITE, BLUE };

(b) For each enum declaration, you need an array of strings for making civilized output. Below each
enum declaration, put a declaration similar to this just :

extern const char* colorNames[4];

(c) #include enums.hpp in the .hpp file for every class that needs to use the colors or the column status.
For output, simply use an enum constant to subscript this array of words.

Color itemColor = RED;
cout << color ordered << " \t" << colorNames[itemColor];

2. In enums.cpp or some other .cpp file, put a matching extern declaration for
extern const char* colorNames[4] = {"Error","Red","White","Blue" };

11.1.4 Rules

It should be clear by now that the physical division of source code into .hpp files and .cpp files is not easily
compatible with the logical division of code into classes. Thus, the traditional compilation and linking methods
that worked well for C are not a good fit for C++. These rules need to be understood when trying to debug
the global structure of a project file or makefile:

1. Every function, variable, or class must be declared before it can be referenced.

2. If two definitions need to reference each other, the cycle must be broken by declaring one, declaring and
defining the second in terms of it, then giving the full definition of the first one.

3. When given in different places, a definition must exactly match its declaration.

4. Every function (and external variable) that is used must be defined exactly once in the completed, linked,
project.

11.2 A Makefile defines the project.

In a Unix environment, a makefile automates and speeds up the process of compiling and linking the application
and makes it much easier to keep everything consistent.

• It allows you to list the object modules and libraries that comprise the application and say how to produce
and use each one.

• For each module, it allows you to specify the code and header files on which it depends.

• When you give the command to make or build the project, the facility generates the executable program.
Initially, this means it must compile every module and link them together.

• When you say make, control goes immediately back to you if nothing has changed since the last linking.

• When you change a source-code module, the corresponding object module becomes obsolete. The next
time you make the application, it will be recompiled.
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• When you change a header file, the object files for all modules that depend on it become obsolete. The
next time you make the application, they will be recompiled.

• When you recompile a module, the corresponding executable program becomes obsolete, so the application
will be relinked.

• It allows you to easily specify a set of flags that control how the compiler will work. Some useful flags are
described later in this handout.

• It lets you automate the process of deleting files that are no longer needed.

Makefile syntax.

• Any line that starts with a # is a comment. (Lines 1, 6, 9, 18, 22.)

• To define a macro, write a name followed by an = sign and the definition. We define symbols this way on
lines 7 and 10. To use a macro, enclose its name in $(...). We use the defined symbols in lines 12, 13.
16, and 20.

• Object and executable files are built from source and header files and, therefore, depend on them. To
define a dependency, list the name of a target file followed by a colon and the list of source files that are
used to create it. Lines 12, 19, 23, 24, and 25 define dependencies. If any file on the right changes, the
file on the left will be regenerated the next time “make” is executed.

• Any line that is indented MUST start with a single tab character; it won’t work if the tab is missing or if
it is replaced by spaces.

11.2.1 Making the Bargraph Application

The makefile.

1 # Rule for building a .o file from a .cpp source file
2 .SUFFIXES: .cpp
3 .cpp.o:
4 g++ -c $(CXXFLAGS) $<
5
6 # Compile with debug option and all warnings on.
7 CXXFLAGS = -g -Wall -I../..
8
9 # Object modules comprising this application

10 OBJ = graphM.o graph.o row.o ../../tools.o
11
12 graph: $(OBJ)
13 g++ $(CXXFLAGS) -o graph $(OBJ)
14
15 clean:
16 rm -f $(OBJ) graph
17
18 # Use tools source file from grandparent directory --------
19 ../../tools.o: ../../tools.cpp ../../tools.hpp
20 g++ -c $(CXXFLAGS) ../../tools.cpp -o ../../tools.o
21
22 # Dependencies
23 graph: graphM.cpp graph.hpp row.hpp item.hpp ../../tools.hpp
24 graph.o: graph.cpp graph.hpp row.hpp
25 row.o: row.cpp row.hpp item.hpp

• Please note that the line numbers are part of this explanation, they do not belong in the makefile.

• Lines 3 and 4 are a template, or general rule, for creating a compilation command. Line 3 says that this
rule tells how to convert a .cpp file to a .o file. The command is on line 4. It refers to two macro symbols,
CXXFLAGS (defined on line 7) and $< which stands for the name of a .cpp file that will be supplied later.
This template will be used automatically generate a compilation command every time a .o file is needed
and there is no specific rule for creating it.
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• Line 7 defines the symbol CXXFLAGS, a listof the options, or flags, to be used by the C++ compiler and
linker. I sometimes use these flags:

– -Wall to turn on all warnings and -Wno-char-subscripts to turn off the single warning about using
characters as subscripts.

– Since I keep my tools one or two levels higher in my directory tree, I use the -I.. or -I../.. flag
to define the search path for files included from this other directory.

– If you want to use the on-line debugger, you must also give a -g flag.

• Line 10 defines the symbol OBJ to be the list of object files that compose this application. We define
the list once, and use it three times, in lines 12, 13, and 16. The defined symbol makes it easy to write
three commands that work with the same list of object files and makes it easy to modify that list when a
module is added or removed.

• This makefile defines two commands (lines 12. . . 16) that can be used from the command line:

make graph Lines 12 and 13 Compile and link the graph application.
make This is the same as make graph.
make clean Lines 15 and 16 Clean out any existing .o files and, finally, delete the exe-

cutable file.

• Line 13 is the linking command that will be used.

• Line 16 is a command that will delete all the generated files. We use it to clean up a directory after
finishing a project or to force a fresh compilation of all modules.

• Lines 19 and 20 define the dependency and the compile command for the tools file. This rule is given
separately because it is different from the general rule on line 4.

• Line 20 is the command that will be used to compile the tools file in the grandparent directory. If the .o
file already exists, this step will be skipped. After the first project is compiled once, tools.o will be in the
grandparent directory where the linker will find it for other projects.

• If the tools were only one directory level up, instead of two, the following lines would be changed:

7. CXXFLAGS = -g -Wall -I..
10. OBJ = graphM.o graph.o row.o ../tools.o
18. # Use tools source file from parent directory ----------
19. ../tools.o: ../tools.cpp ../tools.hpp
20. g++ -c $(CXXFLAGS) ../tools.cpp -o ../tools.o
23. graph: graphM.cpp graph.hpp row.hpp item.hpp ../tools.hpp

• This file should be named Makefile or makefile and should be in the same directory as the majority of
the source code files.
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A consequence of inheritance:

The sins of the father are to be laid upon the children.
. . . Euripides, Exodus, and Shakespeare.
. . . And so are the strengths and skills of the father, in C++.

12.1 How Derivation is Used

Purposes. A class may be derived from another class for several possible reasons:

1. To add functions to those defined by an existing class.

2. To extend and specialize the actions of a function defined in an existing class.

3. To mask a function in an existing class and prevent further access to it.

4. To create a different interface for an existing class.

5. To add data members to those included by an existing class.

6. To further restrict the protection level of data members that belong to an existing class.

Declaration syntax.

1. The first line of the class declaration declares the derivation relationship. The following two lines are taken
from the demo program below.

class Printed : private Pubs { ... };

class Book : public Printed { ... };

2. The style of derivation (public or private) will be clarified later. It affects future derivation steps but not
the current derived class.

3. The base class must be defined first; in this case, it is Pubs. The second class (Printed) was derived from
Pubs using private derivation. The third class, Book, was derived from Printed by public derivation.

Usage patterns and rules.

1. Typically, more than one class is derived from a base class, but the derived classes form a bush, not a
chain.

2. Inheritance chains such as Pubs -�-- Printed -�-- Book do occur in real programs but are not the
most important use of derivation.

3. Two or more derived classes at the same level (brothers) are used to implement polymorphic types and/or
multiple interfaces for the same type.

4. It is also possible to derive one class from two or more printed classes. When that is done, an object of
each base class is a part of the derived class.

UML for derived classes. To diagram a derived class, we use a line and a triangle with its point toward
the printed class and its flat side toward the derived class. The sign written on the lines (+, #, or -) denotes
public, protected, or private derivation, respectively. Figure 12.1 gives a UML diagram for the Publications
demo program, below. (Note: the Online and Periodical classes are not implemented.)
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Publication

-

 Online  Printed

Periodical  Book

+

Base Class

Derived Classes

.................Private Derivation

.................Public Derivation

Figure 12.1: UML diagram for private and public inheritance.

12.1.1 Resolving Ambiguous Names

It is normal for a base class and a derived class to have methods with the same name (purposes 2 and 3, above).
In this case, we say that the method in the derived class overrides the base method. This relationship is the
basis of polymorphism (covered in a later chapter). Most of the time, it causes no confusion to have two methods
(or data members) in the same class hierarchy that share the same name. When a function method in class A
refers to a class member named mem, the instance of mem in class A will be used if there is one. Otherwise, the
compiler will look for an inherited instance of mem. (It will look in A’s base class and continue searching up the
hierarchy until a definition of mem is found.)

Sometimes, however, a class may contain a definition for mem but one of its methods must refer to a different
instance of mem defined in the base class. For example, suppose you wish to print the data for a Book, and class
Book is derived from class Printed. To print all the Book data, we first tell the base class to print all its data,
then we output the local data. To do this, we must be able to call the print method in the base class. This is
the purpose of the scope-resolution operator, which is written with two colons (::).

In the demo program that follows, all three classes have members named serial, name, and print(), so these
names are ambiguous. Line 69 shows the :: operator used to call the base-class Pubs::print() from within
the print method of the derived class, Printed::print(). On line 93 of Book::print, we write <<name to print
Book::name. On the next line, we want to print the name from the base class, so we write <<Printed::name.

93 out <<name <<" #" <<serial
94 <<"\n\tis " <<Printed::name <<endl
95 <<"\tmy Pubs name is hidden from me." <<endl;

On line 100 we want to print Pubs::name, but this member is not visible to the Book functions because of the
private derivation step even though this member is public for the world at large (a strange combination). In
earlier versions of standard C++, the Pubs data could be accessed by using a relabeling cast to convert this to
a Pubs* and use the result to access the name. In the current ISO standard C++, even this cast is prohibited,
and there seems to be no way that a function in the Book class can access data in the Pubs class, even when
that data is public.

12.1.2 Ctor Initializers

The difference between initialization and assignment is important in both C and C++ because the rules for
initialization are more liberal than the rules for assignment. For example, you can and must initialize a const
variable but you cannot assign a new value to it.

In C++, the differences are even more important because operator= and the copy constructor may have
different definitions. Thus, ctor initializers are a necessary part of C++, and we must be able to use ctors
to initial the base-class portion of an object in a derived class. Construction and initialization happen in this
order:

• Space on the run-time stack is allocated for the core portion of the new object. This includes space for
the core portion of all inherited and new data members of the class. Base class members come first in this
object, followed by members declared in the derived classes, in order.



12.2. VISIBILITY AND PROTECTION LEVEL 139

Once the core space exists, the extensions must be created and both core portions and extensions must
be initialized. These tasks are always done in the same order, starting at the first data member and
progressing downward (in the source code) or to higher addresses (in memory).

• If the object is of a derived class, the members of the base class must be initialized first, since other parts
of the object might refer to them. To do this, one of the constructors for the base-class is selected and run.
It initializes the core portion of the base-class object (which has already been allocated). In the process,
it constructs the extensions for this part of the new object.

• If the constructor for the base class requires parameters, they must be supplied by a ctor of this form:

BaseClassName( argument-list )

If the base class has more than one constructor, the compiler will select the one whose parameter list
matches the list of agruments given by the ctor. If no ctor is given for the base class, the compiler will
use the default constructor, if it exists.

If an object (like a Book object) has a base class (such as Printed) that is also a derived class, the
constructor for the middle-level class must pass on parameters to the constructor of the original base
class.

• Next, the remaining ctor initializers are used to initialize the data members of the object. These ctors
have the form:

member_name( initial_value )

• Finally, the code portion of the object constructor is run. This code can do anything. It is usually used
to allocate the extension portion of the object, set various fields to 0, and connect pointers into a legal
and meaningful data structure.

12.2 Visibility and Protection Level

Protected members. Previously, we have used just two protection levels: private and public. A third level,
protected, is intermediate between these two. A public member can be read or written by any part of the
program in which its name is known. A private member can be used only by the functions in the same class. A
protected class member can also be used by functions of any derived class. In “family” terminology, a Printed
keeps his bedroom private, shares protected resources (the home) with his Bookren and his grandBookren but
not with strangers, and may provide some resources (such as a sidewalk) for public use.

Public and private derivation. Members of a base class can be declared as private, protected, or public.
During a derivation step, the protection level can be kept the same (by using public derivation) or tightened
up (by using private or protected derivation). If public derivation is used, inherited members have the same
protection in the derived class as in the base class. With protected derivation, public members become protected
in the derived class. With private derivation, all inherited members become private.

The chart in Figure 12.3 summarizes the effects of each of the possible protection combinations. In it, the
first column lists members of the Pubs class with protection levels, the second lists the three ways the Printed
class can be derived from the Pubs class. In all cases, the Book class is derived publicly from the Printed. The
fourth and sixth columns show which members of the Pubs class are visible in the derived class after the first
and second derivation steps. From the chart you can see:

• The protection level of a member in a derived class (Printed or Book) is the maximum of the protection
level in the base class (Pubs) and the styles of all following derivation steps.

• Accessibility in the second (Printed) is determined by the protection level of a member in the first class
(Pubs). The functions of the derived Printed class can access the public and protected members that have
been inherited, but not the private members. The inherited private members are there and take up space
in a Printed object, but they are “invisible” to the functions of the Printed class. To use such members,
a Printed class function would call a public or protected Pubs function.
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• Accessibility in the third class, (Book), is determined by the style of the first derivation (Printed:Pubs).
For example, suppose we tried to write the following code in Book::print():

cout <<"\n\tMy Pubs is " << Pubs::name<<’\n’;

If Printed is derived privatly from Pubs, this code generates a compile-time protection error: “member
‘Pubs::name’ is private in this context”. However, the same code in Printed::print() is legal because in
the context of the Printed class, name is public.
In earlier versions of standard C++, the Pubs data could be accessed by using a relabeling cast to convert
this to a Pubs* and use the result to access the name:

out <<" my Pubs is " <<((Pubs*)this)->name <<endl;

In the current ISO standard C++, even this cast is prohibited, and there seems to be no way that a
function in the Book class can access data in the Pubs class, even when that data is public.
In contrast, if protected derivation is used to derive Printed from Pubs, the same code is legal in the Book
class. It is OK because Pubs::name is protected in the Printed class and, therefore, visible within Book.

Original Style of After 1st derivation After 2nd derivation
protection level 1st Accessible Protection Accessible Protection
in Pubs Derivation in Printed in Printed in Book in Book
Grands (private) public No private No private
serial (protected) Yes protected Yes protected
name (public) Yes public Yes public
Grands (private) protected No private No private
serial (protected) Yes protected Yes protected
name (public) Yes protected Yes protected
Grands (private) private No private No private
serial (protected) Yes private No private
name (public) Yes private No private

Figure 12.3: How derivation affects protection level.

12.2.1 Inherited Functions

Functions (as well as data members) are inherited, and the protection rules for inherited functions are the same
as for inherited data members. Inherited functions play an important role in maintaining privacy: they enable
an object to use its inherited private parts that otherwise would be “invisible” to objects in the derived class.
The derived class can use the inherited function without modification or redefine it. A redefinition can take the
form of an extension or an override.

Function redefinition. The functions of a class are closely tied to the representation of the class. Also,
certain functions should be defined for every class (print, operator<<) using the same name and with the
same general meaning (output the values of all data members in an appropriate format). Taking these two facts
together, we see that function-naming conflicts will almost always occur between a derived class and its base
class.

An extension is a redefinition of the function that calls the inherited version and also does additional work.
Almost every class needs to have a redefinition of the print() function. Normally, this redefinition will call the
inherited function using the scope-resolution operator, like this: return Pubs::print( out );

An override is a redefinition that fundamentally changes or adds to the meaning of the inherited function
or blocks access to it completely, preventing any further derived classes from using it. In each of the two derived
classes above, a new method for print is defined that overrides the inherited method. As is typical, the function
in the derived class prints some data itself, then calls the inherited function to print the rest of the data.

In a derivation hierarchy, a middle-level class sometimes overrides an inherited function in this way. The
effect is to remove that function from the set of functions available to classes further down the inheritance
hierarchy. This is a powerful tool, but rarely used.
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12.3 Class Derivation Demo

The main program. We instantiate some Pubs, Printeds and Books and use them to illustrate the syntax
and semantics of derivation and inheritance.

1 //------------------------------------------------------------------------------
2 // Class Derivation and Static Class Members file: main.cpp
3 // A. Fischer March 2, 2009
4 //------------------------------------------------------------------------------
5 #include "Pubs.h"
6 #include "Printed.h"
7 #include "Book.h"
8
9 int Pubs::pubCount = 0; // Number of Pubs objects that now exist.

10 int Printed::prinCount = 0; // Number of Printed objects that now exist.
11 int Book::bookCount = 0; // Number of Book objects that now exist.
12
13 //------------------------------------------------------------------------
14 int main( void ) {
15 Pubs A("A-Wesley");
16 Printed B("Trade Books", "Pearson");
17 Book D( "Anatomy", "Out-of-print", "P-Hall" );
18 Book G( "Applied C", "Textbook", "McGraw-Hill" );
19 cout <<"\nThe population is:\n"<< A << B << D << G;
20 bye();
21 return 0;
22 }

23 /* ----------------------------------------------------------------------------
24 * Pubs: the base class. file: Pubs.h
25 * Created by Alice Fischer on 3/2/09.
26 */
27 #pragma once;
28 #include "tools.hpp"
29
30 class Pubs {
31 private: static int pubCount; // Number of Pubs that exist.
32 protected: const int serial; // Serial number of this instance.
33 public: const char* name; // Name given in the declaration.
34
35 //----------------------------------------------------------------------------
36 Pubs( char* g ): serial(++pubCount), name(g) {
37 cerr <<"Creating " <<name <<endl;
38 }
39 ~Pubs(){
40 cerr <<"deleting "<<name
41 <<", leaving " <<--pubCount <<" Pubs\n";
42 }
43 ostream& print( ostream& out) const { // Name, rank, serial number.
44 out <<name <<" #" <<serial <<" out of " <<pubCount <<’\n’;
45 return out;
46 }
47 };
48 inline ostream& operator<< (ostream& out, const Pubs& x){ return x.print(out); }

12.3.1 Inherited Data Members

Each derivation step adds members to the ones present in the base class. We say that the base-class members
are inherited by the derived class. An object of the derived class starts with the data members of the base class,
followed by the new members declared within the derived class. You could say that the derived object is an
extension of the base object. (To do the same derivation in Java, you would write class Printed extends
Pubs.) Some classes have static data members that are allocated in a non-contiguous part of memory. These
members are also inherited.
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For example, the first part of a Printed object is a Pubs object. In addition, a Printed has three more data
members (name, serial, and prinCount) making a total of six data members in a printed object. Similarly, as
shown in the diagram below, the first part of a Book object is a Printed object, to which Book adds another
static member (bookCount) and two more ordinary members (name, serial), for a total of nine data members.
A book has all these members even though some of them are allocated remotely and others are private and
cannot be accessed from methods in the Book class.

4Pubs::pubCount

Static Storage Area

3Printed::prinCount

2Book::bookCount

Pubs::serial
Pubs::name

Book::serial
Book::name

Printed::serial
Printed::name

G
4

3

2

McGraw-Hill\

Textbook\

Applied C\

3
D

2

Anatomy\

P-Hall\
1

Out-of-
print\

Figure 12.2: A derived object contains an object of its base class.

The data diagram in Figure 12.2 shows the last two objects allocated by main(), two Books named D and
G. Each has nine data members: three shared members in the static storage area and six instance members.
Medium gray denotes the members that were inherited from the Pubs class; those that came from the Printed
class are light gray. Null characters are denoted by a backslash. This diagram is complicated by that fact that
all three classes have static members that are stored in another area of storage. The three static members are
shared by all Book objects in the program.

49 /* ----------------------------------------------------------------------------
50 * Illustrates private derivation and static class members file: Printed.h
51 * Created by Alice Fischer on 3/2/09.
52 */
53 #pragma once;
54 #include "Pubs.h"
55 //--------------------------------------------------------------------------------
56 class Printed : Pubs {
57 private: static int prinCount; // Number of Printed objects that exist.
58 protected: const int serial; // Serial number of this instance.
59 public: const char* name; // Name given in the declaration.
60
61 Printed( char* np, char* pub ): Pubs(pub), serial(++prinCount), name(np) {
62 cerr <<"Creating " <<name <<" based on #" <<Pubs::serial
63 <<" Pubs named " <<Pubs::name <<endl;
64 }
65 ~Printed(){ cerr <<"deleting "<<name <<", leaving " <<--prinCount <<" Printeds\n";}
66
67 ostream& print( ostream& out) const {
68 out <<name <<": " <<" #" <<serial <<"\n\twhose base object is ";
69 return Pubs::print( out );
70 }
71 };
72 inline ostream& operator<< (ostream& out, const Printed& x){ return x.print(out);}

73 /* ----------------------------------------------------------------------------
74 * Public Derivation and static const class member. file: Book.h
75 * Created by Alice Fischer on 3/2/09.
76 */
77 #pragma once;
78 #include "Printed.h"
79 //--------------------------------------------------------------------------------
80 class Book : public Printed {
81 private: static int bookCount; // Number of Book objects that exist.
82 protected: const int serial; // Serial number of this instance.
83 public: const char* name; // Name given in the declaration.
84
85 Book(char* b,char* np,char* pub): Printed(np,pub), serial(++bookCount), name(b){
86 cerr <<"Creating " <<name
87 <<" based on #" <<Printed::serial <<" Printed named " <<Printed::name
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88 <<endl;
89 }
90 ~Book(){cerr <<"deleting "<<name <<", leaving " <<--bookCount <<" Book\n";}
91
92 ostream& print( ostream& out) const {
93 out <<name <<" #" <<serial
94 <<"\n\tis " <<Printed::name <<endl
95 <<"\tmy Pubs’ name is hidden from me." <<endl;
96
97 // out << Pubs::name; // error: Pubs::name is inaccessible.
98 // Pubs pp = (Pubs)(*this); // error: Pubs is an inaccessible base of Book.
99 // Printed p = (Printed)(*this); // This line compiles, triggers copying.

100 // out << p.Pubs::name; // error: Pubs is an inaccessible base of Printed.
101 return out;
102 }
103 };
104 inline ostream& operator<< (ostream& out, const Book& x){ return x.print(out); }

Ctors Required. Every C++ object is built by constructing the base portion, then constructing the composed
parts, then calling the class constructor. This means that various parts must be initialized by ctors – doing it
in the constructor is too late. In this demo, the constructors for Printed and Book illustrate this principle.

• The constructor for Printed starts on line 61 and has three ctors, all required. The base class, Pubs, does
not have a default constructor, so we must pass parameters to it. This is done by a ctor giving the name
of the base class, with parentheses enclosing the appropriate arguments: Pubs(pub).

• The serial number is a const int, so it must be initialized in a ctor, not assigned later. This ctor must
follow the ctor for the base class, since the base class members form the first part of the object and the
ctors must be in order. We see code that increments the shared counter and initializes the serial number:
serial(++prinCount).

• The third ctor, name(np) initializes the name field to the string literal written in the program. This
does not work for strings read as input, since it does not allocate any new space to store the characters of
the string.

• The constructor for Printed starts on line 85, It also has three ctors for its three parts. Note that the ctor
for the base class (Printed) has two arguments in parentheses because the Printed constructor needs two
parameters.

Access to inherited members. Various methods in the Printed and Book classes access inherited members.

• The Printed constructor prints trace comments that include two data members from the base class:
Pubs::serial and Pubs::name. The scope-resolution operator must be used to print them because the
Printed class has members with the same names.

• These two inherited members are visible in the Printed class because Pubs::serial is protected (not
private) and Pubs::name is public. The derivation method was private derivation, but that does not
restrict visibility at this level.

• The Printed::print() method also uses the scope-resolution operator to call the inherited print() method.
Without the Pubs::, this would be a recursive call (a bug).

• The constructor and print() method in Book do similar things using Printed::.

• Since private derivation was used to create Printed, all the members of the Pubs class become private in
Printed. Therefore, Book cannot see any of them, even those that were originally public. The evidence
for this is on lines 97..100. The compiler will not compile anything in the Book class that tries to breach
the privacy of the Pubs class.
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The output. The middle block of output is the “normal” program output. The first block of lines was printed
by the constructors, the last block by the destructors. This makes clear the order in which the pieces of these
objects are created and deleted. Note that as objects are created, the serial numbers increase in each class that
is part of the created object.

105 Creating A-Wesley
106 Creating Pearson
107 Creating Trade Books based on #2 Pubs named Pearson
108 Creating P-Hall
109 Creating Out-of-print based on #3 Pubs named P-Hall
110 Creating Anatomy based on #2 Printed named Out-of-print
111 Creating McGraw-Hill
112 Creating Textbook based on #4 Pubs named McGraw-Hill
113 Creating Applied C based on #3 Printed named Textbook
114
115 The population is:
116 A-Wesley #1 out of 4
117 Trade Books: #1
118 whose base object is Pearson #2 out of 4
119 Anatomy #1
120 is Out-of-print
121 my Pubs’ name is hidden from me.
122 Applied C #2
123 is Textbook
124 my Pubs’ name is hidden from me.
125
126
127 Normal termination.
128 deleting Applied C, leaving 1 Book
129 deleting Textbook, leaving 2 Printeds
130 deleting McGraw-Hill, leaving 3 Pubs
131 deleting Anatomy, leaving 0 Book
132 deleting Out-of-print, leaving 1 Printeds
133 deleting P-Hall, leaving 2 Pubs
134 deleting Trade Books, leaving 0 Printeds
135 deleting Pearson, leaving 1 Pubs
136 deleting A-Wesley, leaving 0 Pubs



Chapter 13: Templates

Templates are patterns. According to Merriam-Websters Unabridged dictionary:

template: Something that establishes a pattern.

archetype: The original model, form, or pattern from which something is made or from which
something develops.

From a review of Effective STL : 50 Specific Ways to Improve Your Use of the Standard Template Library
by ScottMeyers:

It’s hard to overestimate the importance of the Standard Template Library: the STL can simplify
life for any C++ programmer who knows how to use it well. Ay, there’s the rub.

Templates are the archetypes behind the “container” data structures whose processing methods depend only on
the structuring method and not on the type of the data contained in the structure. The C++ standard library
supports a set of pre-defined templates that implement stacks, queues, trees, and hash tables. A programmer
might use the STL templates, extend them, or define entirely new template classes.

A template consists of declarations and functions with one or more type parameters or non-type parameters.
Type parameters are used to represent the base type of a data structure. Non-type parameters are relatively
new in C++; they are generally integers and are used to define such things as array lengths. Both kinds of
parameters can be given default values.

By itself, a template is not compilable code. Before it can be compiled, actual types must be supplied to
replace the type parameters. The replacement process is called instantiation and happens at compile time. The
result of instantiation is a class declaration and definitions of the class functions.

13.1 Basic Template Syntax

A complete class template consists of a parameterized class declaration together with all its class functions and
all related functions such as an extension of operator¡¡. The entire template is written within a .hpp file because
it is a declaration, not compilable code and all these parts must be available at compile time for instantiation
by a client class.

• A template declaration starts with a “template” line: the keyword template followed by angle brackets
enclosing another keyword, class, and a name for the type parameter (or parameters). It is customary
to name template parameters with single, upper-case letters. Most templates have only one parameter. If
there are two or more, the parameter names are separated by commas. Examples:

template <class X>
template <class K, class T, int n>

• If a class template has remote functions or an extension for the output operator, each function (lines 32,
36, 44, 51) must start with a “template” declaration like the one that begins the class declaration (line
9). C++ supplies no reasonable syntax that lets us declare template <class T> once and include all the
parts that are needed within its scope.

• Following each template declaration is a class or function declaration with normal syntax. Within this
declaration, the name(s) of the type parameter(s) are used to refer to the future base type of the class.

• Being part of a template declaration does not require any extra words or punctuation within the class.
Specifically, we refer to the class name within this part of the code without using angle brackets.

145
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• A prototype or the definition of an inline function in a template is the same as for a non-template. (Note
the definition of FlexArray::flexlen and the prototype for FlexArray::operator[].)

• The definition of each remotely defined function starts with the name of the template WITH angle brackets
and the name(s) of the parameters. For example, the name of the put function is: FlexArray<T>::put

• Even though operator << is not part of the class, its definition must be given as part of the template (lines
32–33) because it depends on the type parameter, T.

A template for a recursively-defined type. Some data structures require definition of a pair of classes
such that each class definition refers to the other class. An example is a linked list defined as a friendly pair
of classes: List and Cell. The List class must have a data member of type Cell*. The Cell class must have a
friendship declaration for List. This circular dependency poses no problem for a non-template declaration: both
classes can be declared in one .hpp file, with the dependent class first, followed by the interface class.

However, when we transform this pair of classes into a template pair, a difficulty arises when the compiler
tries to process the friend declaration. Suppose we were defining the Cell<T> template. In that definition,
we must say: friend class List<T>. However, because the Cell<T> declaration comes before List<T>, the
compiler gives a fatal error comment for the friend declaration: Stack is not a template. This can be cured by
adding a forward declaration, like this, at the top of the file, above the Cell<T> declaration:

template <class T> class Stack; // A forward declaration for Stack<T>.

Note: every reference to Cell in the List class must say Cell<T>, and every reference to List in the Cell class
must say List<T>.

13.2 A Template for FlexArrays

1 #ifndef FLEX
2 #define FLEX
3 // ==========================================================================
4 // Template declaration for a flexible array of base type T.
5 // A. Fischer, May 14, 2001 file: flexT.hpp
6 #include "tools.hpp"
7 #define FLEX_START 4 // Default length for initial array.
8
9 template <class T>

10 class FlexArray {
11 protected:// ------------------------------------------------------------
12 int Max; // Current allocation size.
13 int N; // Number of array slots that contain data.
14 T* Data; // Pointer to dynamic array of T.
15
16 private: // --------------------------------------------------------------
17 void grow(); // Double the allocation length.
18
19 public: // ---------------------------------------------------------------
20 FlexArray( int ss = FLEX_START ) : Max(ss), N(0), Data( new T[Max] ) {}
21 ~FlexArray() { if (Data != NULL) delete[] Data; }
22
23 int put( T data );
24 T& operator[]( int k );
25 int flexlen() const { return N; }
26 T* extract() { T* tmp=Data; Data=NULL; Max = N = 0; return tmp; }
27 ostream& print( ostream& out ) const {
28 for (int k=0; k<N; ++k) out << Data[k] <<" ";
29 return out;
30 }
31 };
32 template <class T> inline ostream&
33 operator<< ( ostream& out, FlexArray<T>& F){ return F.print(out); }



13.3. ADAPTING A TEMPLATE 147

34
35 // -------------------------------------------- copy a T into the FlexArray.
36 template <class T> int
37 FlexArray<T>::put( T data ) {
38 if ( N == Max ) grow(); // Create more space if necessary.
39 Data[N] = data;
40 return N++; // Return subscript at which item was stored.
41 }
42
43 //------------------------------------------- access the kth T in the array.
44 template <class T> T&
45 FlexArray<T>::operator[]( int k ) {
46 if ( k >= N ) fatal( "Flex_array bounds error." );
47 return Data[k]; // Return reference to desired array slot.
48 }
49
50 // ------------------------------------- double the allocation length.
51 template <class T> void
52 FlexArray<T>::grow() {
53 T* temp = Data; // hang onto old data array.
54 Max>0 ? Max*=2 : Max = FLEX_START;
55 Data = new T[Max]; // allocate a bigger one.
56 memcpy(Data, temp, N*sizeof(T)); // copy info into new array.
57 delete temp; // recycle (free) old array.
58 // but do not free the things that were contained in it.
59 }
60 #endif

Turning a working class into a template. If you have a class that implements a general data structure,
changing it into a template is easy.

1. Move all the code from the .cpp file to the end of the .hpp file.

2. Insert a template declaration before the class declaration and before every function that is outside of the
class.

3. Using the search and replace feature of your editor, replace the name of the class’s base type by a parameter
name like T.

4. Insert a pair of angle brackets enclosing the parameter name before every occurrence of :: .

The FlexArray class used in prior chapters is similar to, but much simpler than, the STL Vector class. We
use it to demonstrate how to define, extend, and use a template class.

13.3 Adapting a Template

All classes, including template classes, should encapsulate their members and provide public functions for all
essential tasks. This leads to a design conflict: should a template definition include every possible function that
someone might someday need? Or should the class be clean and focus all functions on its primary purpose?

Derivation solves this problem: the base template should be clean and derived templatess should be used
to add functionality for special purposes. Sometimes it is useful to have two or more templates available for
variations on one basic data structure. For example, the FlexArray template does not supply any functions for
searching the array, yet some potential applications of a FlexArray may require searching. In such situations,
the solution is to derive one or more variations from a basic template class.

Deriving from a template. Both template classes and non-template classes can be derived from a template,
and both derivation patterns are common. Template derivation is used when the original template provides
a useful data structure, but a different or more extensive interface is needed. Two FlexArray variations are
presented here: the FlexFind template adds a single capability (a find() function) to the class, and the Stack
template provides a wholly different interface. A few details should be noted:
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• The data parts of the FlexArrray class are protected, not private, because we intend to use derivation
with this class.

• Public derivation was used to build the derived template so that all the functionality of FlexArray will
remain available to a client program that derives from FlexFind.

• When a class is derived from a template, its constructor must have a ctor that supplies a type parameter
for the template class, plus any other parameters the template constructor needs.

Changing a template’s interface. The stack is a familiar data structure with restrictions on access. The
rule for pushing an item onto a stack fits well with the append-on-the-end rule of the FlexArray. However,
a Stack does not support random access or sequential search. Because of the basic similarity, we can use
a FlexArray to implement a stack. In this example, new functions provide the familiar stack interface, and
private derivation is used to hide the inherited FlexArray class members.

61 #ifndef STACKT
62 #define STACKT
63 // ==========================================================================
64 // Template class definition for a stack of T objects
65 // Alice E. Fischer June 10, 2000 file: stackT.hpp
66 //
67 #include "flexT.hpp"
68
69 template <class T>
70 class Stack : FlexArray<T> {
71 char* Name;
72 public: //-------------------------------------------------------
73 Stack(char* nm, int sz=4): FlexArray<T>(sz), Name(nm) {
74 cerr << " Create " <<Name <<" ";
75 }
76 Stack(const Stack<T>& s){ fatal( " Can’t shallow-copy stack %s", s.Name ); }
77 ~Stack() { cerr << " Delete " <<Name <<" ";}
78
79 void push(T& c) { put( c ); };
80 T pop() { return empty() ? (T)0 : Data[--N]; }
81 T top() const { return empty() ? (T)0 : Data[N-1]; }
82 bool empty() const { return N == 0; }
83 int depth() const { return N; }
84 ostream& print(ostream& out) const;
85 };
86
87 template <class T> //--------------------------------------------------------
88 ostream&
89 Stack<T>::print(ostream& out) const {
90 out <<"\nStack has " <<depth() <<" items: bottom<[";
91 FlexArray<T>::print( out );
92 out << " ]>top\n";
93 return out;
94 }
95
96 template <class T> inline //-------------------------------------------------
97 ostream& operator<< ( ostream& out, Stack<T>& s ){ return s.print( out ); }
98 #endif

Adding new functionality. The FlexArray template implements a general strategy for storage management
that can be useful in many kinds of situations. The FlexFind template extends the FlexArray template by
adding a function, find, that performs a sequential search. A find function is not part of the basic class
because searching is irrelevant in many array applications. The entire definition of the derived class is very
brief, having only one constructor and one added function.

The comparison on line 111 illustrates a typical template problem. A template is supposed to work with
many or all template parameter types, and the template creator cannot know what types will be used in the
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future as template paramters. However, he must write code that works in a broad range of situations, and this
must be done without breaking class encapsulation. The solution is to require a potential class parameter to
provide one or more public functions. The template code is then written to use those functions, In this case,
any type F that is used with this template must provide a definition for operator ==.

99 // ============================================================================
100 // Template variant of the FlexArray that supports sequential search.
101 // This class relies on an etension of == in class F to compare two F’s.
102 // Alice E. Fischer June 10, 2000 file: stackT.hpp
103 //-----------------------------------------------------------------------------
104 template <class F>
105 class FlexFind : public FlexArray<F> {
106 public:
107 FlexFind(int ss = FLEX_START): FlexArray<F>(ss){}
108 bool find( const F key ) const{
109 int k;
110 for (k=0; k<N; ++k) {
111 if (Data[k] == key) return true;
112 }
113 return false;
114 }
115 };

13.4 A Precedence Parser: Instantiation of a Template

Instantiation is the process of using a template, with actual arguments, to create a class declaration and
implementation. This is done at compile time, when the compiler reaches an instantiation command. In this
example, we instantiate the derived template class, Stack< T > twice to make two different kinds of stacks
that are used to implement an infix expression evaluator. This simplified evaluator could easily be extended to
handle parentheses and non-binary operators, but our purpose here is to explore the use of C++, not to write a
general and powerful evaluator. The Eval class is presented first, followed by a small Operator class, the main
program, and some output.

Using the Stack template.

• To instantiate a template, the programmer writes a declaration or a call on new using the class name with
an argument list in angle brackets. Two examples are given here, lines 134 and 135:

Stack<double> Ands;
Stack<Operator> Ators;

• Even though the keyword class is used in the template declaration, a non-class type such as double may
be used as an argument. A struct type may also be used.

• The name of the resulting class includes the < > and the type argument, and each instantiation with a
different parameter creates a new class with a unique name. It also creates a new module of compilable
code. Here, we create two complete and separate Stack classes, Stack<double> and Stack<Operator>.
Each Stack function is compiled twice, once for Stack<double>, then again for Stack<Operator>.

• If a class template is instantiated twice with the same arguments, a compilable module is produced the
first time and reused the second time. Suppose we added a third instantiation: Stack<double> Results.
This third call would refer to the class created by the first instantiation, Stack<double> Ands, and both
Results and Ands would be objects of the same class.

116 #ifndef EVAL_H
117 #define EVAL_H
118 // ========================================================================
119 // A. Fischer, June 9, 2002 file: eval.hpp
120 //
121 // Parse and evaluate a prefix expression. All operators are binary;
122 // they are: +, -, *, /, % (a mod b) and ^ (a to the power b)
123 // Whitespace must be used to delimit both operators and operands.
124 // Operands must start with a digit and may or may not have a decimal point.
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125 // Operands must not exceed 30 keystrokes.
126
127 #include "tools.hpp"
128 #include "stackT.hpp"
129 #include "operator.hpp"
130
131 class Eval {
132 private: // --------------------------------------------------------------
133 enum Intype { bad, number, op, end };
134 Stack<double> Ands; // Stack of operands and intermediate results.
135 Stack<Operator> Ators; // Stack of operators.
136 Intype classify( char ch );
137 void dispatch();
138 void force( int rprec );
139 double expError();
140
141 public: // ---------------------------------------------------------------
142 Eval(): Ands("Ands"), Ators("Ators") {};
143 ~Eval(){}
144 static void instructions( void );
145 double evaluate( istream& in );
146 ostream& print( ostream& out );
147 };
148 #endif

A private type.

• A private enumerated type is declared (line 133) and used to simplify the input and parsing operations.
One enumeration symbol is listed for each legal kind of keystroke and one for bad data. The enum symbols
are returned by the function classify() and used in evaluate().

• Note that the type of the value returned by classify() is declared within the class (line 136) as simply
Intype, and is used the same way to declare a variable in the definition of the evaluate() function
(line 169). However, the return type of the remote function (line 212) must be written as Eval::Intype
because:

– The definition of the enumeration is inside the Eval class.
– A remote function is defined outside its class and translated in the global context, not in the context

of the class.
– The encapsulated enum type is not visible to the compiler unless you qualify it with the class name.

A static class function. Static class functions can be called even when no object of the class type exists.

• Line 144 declares a static class function named instructions. It is static because we want main to be
able to call this function before creating the first Eval object. It is a class function (not global) because
it gives expert instructions about the usage and requirements of the Eval class.

• Note that the word static is used in the declaration on line 144 but not in the remote definition on line
156. This function is called from line 300, in main.

149 // ===================================================================================
150 // A. Fischer, June 9, 2002 file: eval.cpp
151 //
152 #include "eval.hpp"
153 #include "operator.hpp"
154
155 // ---------------------------------------------------- Instructions for the operator.
156 void Eval::instructions( void ){
157 cout << "This is an infix expression evaluator.\n"
158 << "* Operands start with a digit and may or may not have a decimal point.\n"
159 << "* Operands must not exceed 31 keystrokes.\n"
160 << "* All operators are binary operators. Parentheses are not supported.\n"
161 << "* Operators are: +, -, *, /, % (a mod b) and ^ (a to the power b).\n"
162 << "* Whitespace must be used to delimit both operators and operands.\n"
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163 << "* End each expression with a semicolon.\n\n"
164 << "To quit, type semicolon instead of an expression.\n";
165 }
166 //------------------------------------------------ Read input and evaluate expression.
167 double
168 Eval::evaluate( istream& in ) {
169 Intype next; // Classification of next input character.
170 Operator inOp; // Operator object constructed from inSymbol.
171 double inNum; // Read input operands into this.
172 char ch;
173
174 for(;;) {
175 in >> ws >>ch;
176 if (in.eof()) next = end;
177 else next = classify( ch );
178 switch( next ){
179 case number:
180 in.putback(ch);
181 in >> inNum;
182 if ( Ands.depth() != Ators.depth() ) return expError();
183 Ands.push( inNum );
184 break;
185
186 case op:
187 inOp = Operator(ch);
188 if ( Ands.depth() != Ators.depth()+1 ) return expError();
189 force( inOp.precedence() );
190 Ators.push( inOp );
191 break;
192
193 case end:
194 if ( Ands.depth() != Ators.depth()+1 ) return expError();
195 force( 0 );
196 return Ands.pop();
197 break;
198
199 case bad:
200 default: return expError();
201 }
202 }
203 }
204
205 // -------------------------------- Evaluate all higher precedence operators on stack.
206 void
207 Eval::force( int rprec ) {
208 while( Ators.depth()>0 && Ators.top().precedence() >= rprec ) dispatch();
209 }
210
211 //---------- Decide whether next input char is an operator, a semicolon, the beginning
212 Eval::Intype // of an operand, or garbage.
213 Eval::classify( char ch ){
214 if (isdigit( ch )) return number;
215 switch(ch){
216 case ’+’:
217 case ’-’:
218 case ’*’:
219 case ’/’:
220 case ’%’:
221 case ’^’: return op;
222 case ’;’: return end;
223 default : return bad;
224 }
225 }
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226
227 // ------------------------------------------------------------ Evaluate one operator.
228 void
229 Eval::dispatch() {
230 double result;
231 double right = Ands.pop();
232 double left = Ands.pop();
233 Operator op = Ators.pop();
234 switch (op.symbol()) {
235 case ’+’: result = left + right; break;
236 case ’-’: result = left - right; break;
237 case ’*’: result = left * right; break;
238 case ’/’: result = left / right; break;
239 case ’%’: result = fmod(left, right); break;
240 case ’^’: result = pow (left, right); break;
241 }
242 Ands.push( result );
243 }
244
245 // ------------------------------------------------------------------- Error comments.
246 double
247 Eval::expError(){
248 cerr << "\tIllegal expression.\n";
249 print(cerr);
250 return HUGE_VAL;
251 }
252
253 // ----------------------------------------------------------------- Print the stacks.
254 ostream&
255 Eval::print( ostream& out ){
256 out << "\tRemaining contents of operator stack: ";
257 out << "\tRemaining contents of operand stack: " <<Ands;
258 return out;
259 }

Evaluation using precedence. Precedence and associativity are used to define the meaning of operators in
most modern languages. The evaluate function implements both. Basically, operators are kept on one stack
and operands on another.

• When each operator is read, a decision must be made whether to evaluate the previous operator or stack
the new one.

• If the precedence of the incoming operator is greater than the precedence of the stack-top operator, it is
not yet time to evaluate either one, and the incoming operator is added to the stack.

• If the precedence of the two operators is equal, the rule for associativity comes into play. Arithmetic
operators need left-to-right associativity, so we evaluate the leftmost, which is the one on the top of the
stack. So we pop the stacked operator and evaluate it. Then we compare the incoming operator to the
next one on the stack.

• Lower incoming precedence also means that the stacked operator should be popped and evaluated imme-
diately (its operands are at the top of the Ands stack). Once that is done, the incoming operator must
be compared to the new top-of-stack, and so on.

• Lines 193–197 handle the end of the expression. In this situation, all operands have been read and stacked,
and all operators that are still on the stack must be evaluated, so we force everything with precedence
greater than 0 to be dispatched. If there are no errors in the expression, the value that remains on the
operand stack is the answer.

• The force function is the heart of a precedence parser. It is responsible for comparing the precedence of
the incoming operator with the precedence of the operator on the top of the stack and evaluating as many
operators as are appropriate, according to precedence. To evaluate an operator, it calls the dispatch
function.
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• The dispatch function (lines 228–243) pops two operands from the Ands stack and one operator from the
Ators stack, interprets the operator, calls the appropriate C operator or library function, and puts the
result back on the Ands stack.

Other notable things.

• HUGE_VAL is defined in math.h. It is the largest representable floating-point value, and is used here to
signify an error.

• Error checking is done in the classify function (line 223) and throughout the evaluate function (lines
182, 188, 194, and 200) so that unsupported operators and ill-formed expressions are caught as soon as
possible.

13.4.1 The Operator Class

260 #ifndef OPERATOR_H
261 #define OPERATOR_H
262 // =========================================================================
263 // A. Fischer, June 9, 2002 file: operator.hpp
264 //
265 #include "tools.hpp"
266 class Operator {
267 private: // --------------------------------------------------------------
268 char symb;
269 int prec;
270
271 public: // ---------------------------------------------------------------
272 Operator( char op = ’!’) : symb(op) {
273 switch (op){
274 case ’+’: case ’-’: prec = 1; break;
275 case ’*’: case ’/’: case ’%’: prec = 2; break;
276 case ’^’: prec = 3; break;
277 default: prec = -1; break;
278 }
279 }
280 ~Operator() {}
281 int precedence() const { return prec; }
282 char symbol() const { return symb; }
283 ostream& print(ostream& out)
284 { return out <<"Symbol: " <<symb <<" Precedence: " <<prec <<endl; }
285 };
286 inline ostream& operator<<( ostream & out, Operator& op) {return op.print(out); }
287 #endif

• We represent an operator as a two-member object: the symbol used to denote the operator, and the
precedence of the operator with respect to other operators that are supported. The switch statement in
the Operator constructor defines the precedence.

• The precedence is used on line 189, where we move down the stack, popping and evaluating all operators
that are higher precedence than the new input.

• The symbol is used on line 234 to select the C++ operator to use to evaluate the current subexpression.

• We use simple “get” functions (lines 281–282) to make these private members of Operator available to the
application in a read-only form.

13.4.2 The Main Program

I have written this algorithm in C and Pascal, also. The C++ version is considerably cleaner, simpler, easier
to write, and easier to understand. The improvement is amazing to me, and is made possible by having classes
with their own constructors, print functions, error handling, etc.
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288 // ==========================================================================
289 // Template example -- Using a stack template.
290 // Alice E. Fischer June 9, 200file: Evaluate/main.cpp
291 //
292 #include "eval.hpp"
293 // ==========================================================================
294 int main( void )
295 {
296 char buf[256] = "Hello";
297 double answer = 0;
298
299 banner();
300 Eval::instructions();
301 for(;;){
302 cout <<"\n\nEnter an expression: ";
303 cin >> ws;
304 cin.get( buf, 256 );
305 if ( buf[0] == ;) break;
306 istringstream inst( buf);
307 Eval E;
308 answer = E.evaluate( inst );
309 cout <<\n << answer <<" = " <<buf <<endl;
310 }
311 bye();
312 return 0;
313 }

Overall operation.

• We start by calling the instructions function. The instructions could be written as part of main, but since
they are very closely tied to the capabilities of the Eval class, it is better to define an instructions function
there and call it from main.

• Main contains the loop that interacts directly with the user. It reads a line of input, quits if it finds the
end-of-job sentinel. Otherwise, it creates and uses a new expression evaluator and prints the result.

• We declare the evaluator as a local object (line 307) for each new expression. Using local declarations for
the stringstream and the evaluator makes initialization very simple and avoids any possibility of having
the remains of one expression affect the evaluation of the next one.

String-streams.

• Line 306 declares an input string-stream; this class uses a string as its source of data instead of an input
file. Here, we initialize the string-stream to an array of characters that was read on line 304. The buf
array is passed into the stringstream constructor and its contents become the contents of the stream. This
stream is used as the argument to evaulate (line 308), which expects the data in the stream to be an
infix expression.

• When a string-stream is used, all the standard input functions are available. Here, we use ws (line 175)
to skip leading whitespace, eof() (line 176) to test for the end of the input, putback (line 180) to put the
most recent character back into the stream, and operator >> (lines 175 and 181) to read the data into
the appropriate type of variable and convert ASCII strings to floating-point numbers. We could do all
this without a string-stream, but it would be a lot more work and much less clear.

• The putback function may be unfamiliar to some. Basically, it “backs up” the stream pointer by one
keystroke (line 180) so that the input character may be read again in a different format. Here, we first
read the input into a char variable, then, when we discover that it is numeric, put it back and reread it
(line 181) using numeric input conversion. This is much simpler and nicer than using strtol or atoi.
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The output.

This is an infix expression evaluator.
* Operands start with a digit and may or may not have a decimal point.
* Operands must not exceed 31 keystrokes.
* All operators are binary operators. Parentheses are not supported.
* Operators are: +, -, *, /, % (a mod b) and ^ (a to the power b).
* Whitespace must be used to delimit both operators and operands.
* End each expression with a semicolon.

To quit, type semicolon instead of an expression.

Enter an expression: 2 + 3
Create Ands Create Ators

5 = 2 + 3
Delete Ators Delete Ands

Enter an expression: 3 ^ 2 * 94 % 7 + 2
Create Ands Create Ators

8 = 3 ^ 2 * 94 % 7 + 2
Delete Ators Delete Ands

Enter an expression: 26 ^ 0.5
Create Ands Create Ators

5.09902 = 26 ^ 0.5
Delete Ators Delete Ands

Enter an expression: ;

Normal termination.

13.4.3 UML for Templates
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Figure 13.1: UML notation for a template, a derived template, and two instantiations.

We represent a template class in UML by drawing an ordinary class rectangle with a small dotted rectangle
covering its upper-right corner. The names of the template parameters are written in the dotted rectangle.
Figure 13.4.3 shows two template classes, FlexArray and Stack.

A derived template class is diagrammed like any other derived class. In Figure 13.4.3, the Stack class is
joined to the FlexArray class with an ordinary derivation symbol.
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In UML, an instantiation of a parameterized class is called a bound element. A bound element is diagrammed
as a class box with a name like Stack<char>. with a dotted arrow joining it to the box for the template class.
For example, our program that evaluates infix expressions uses two stacks: one for operators, the other for
values, so we instantiate the Stack template twice, once as Stack<Operator> and once as Stack<double>. The
instantiations create two new classes that are fully bound and can be compiled. These classes are composed by
the Eval class.
It is quite common to derive and instantiate in one step. Suppose class GoodStuff were derived from the
instantiation of the stack template with type char:

class GoodStuff : Stack<char> { ... }

The diagram would look like this:

Stack<char>Stack
   <T>

GoodStuff

<<bind>>

+

Figure 13.2: UML notation for simultaneous derivation and instantiation.

13.5 The Standard Template Library

STL was designed with extreme care so that it is complete and portable and as safe as possible within the
context of standard C++. Among the design goals were:

• To provide standardized and efficient implementations of common data structures as templates, and of
algorithms that operate on these structures.

• To produce efficient code. Instantiation of the generic container class is done at compile-time, producing
code that is both correct and efficient at run time. This contrasts with derivation and polymorphism
which can be used to achieve the same ends but are much less efficient at run time.

• To unify array and linked list concepts, terminology, and interface syntax. Code can be written and
partially debugged before making a commitment to one kind of implementation or to another. This
permits code to be designed and built in a truly top-down manner,

There are three major kinds of components in the STL:

• Containers manage a set of storage objects (list, tree, hashtable, etc). Twelve basic kinds are defined, and
each kind has a corresponding allocator that manages storage for it.

• Iterators are pointer-like objects that provide a way to traverse through a container.

• Algorithms are computational procedures (sort, set_union, make_heap, etc.) that use iterators to act on
containers and are needed in a broad range of applications.

In addition to these components, STL has several kinds of objects that support containers. These include pairs
(key–value pairs, for the associative containers), allocators (to support dynamic allocation and deallocation)
and function-objects (to “wrap” a function in an object). Function objects can be used in algorithms instead
of function pointers.

13.6 Containers

The definition of each container class consists of template code, of course, but that code is not part of the
standard. Instead, the standard gives a complete definition of the functional properties and time/space re-
quirements that characterize the container. Two groups of containers are supported: sequence containers (lists,
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vectors, queues, etc.) and sorted associative containers (maps, sets, etc). The intention is that a programmer
will select a class based on the functions it supports and its performance characteristics. Although natural im-
plementations of each container are suggested, the actual implementations are not standardized: any semantics
that is operationally equivalent to the model code is permitted. Big-O notation is used to describe performance
characteristics. In the following descriptions, an algorithm that is defined as time O(n), is never worse than
O(n) but may often be better.

The basic building blocks are precisely organized and, within a group, interchangeable.

Member operations. Some member functions are defined for all containers. These include:

• Constructors: A null constructor, a constructor with one parameter of the container type, and a copy
constructor. The latter two constructors operate in linear time.

• Destructor: It will be applied to every element of the container and all memory will be returned. Takes
linear time.

• Traversal initialization: begin(), end(), rbegin(), rend(). These mark beginning and ending points for a
traversal or reverse-traversal.

• The object’s state: size() – current fill level, max_size() – allocation size, empty() – true or false.

• Assignment: = Assign one container to another. Linear time.

• Equality: a == b, a != b – Returns true or false. Two containers are equal when the sequenes of elements
in both are elementwise equal (using the definition of operator== on the element type. Otherwise they
are not equal Both take linear time.

• Order: <, <=, >, >= Lexicographic comparisons; linear time.

• Misc: a.swap(b) – swaps two conainers of the same type. Constant time.

Sequence Containers

These classes all have the following requirements:

• Constructor with two parameters, int n and base-type element t; Construct a sequence with n copies of t.

• Constructor with two forward-iterator parameters, j and k. Construct a sequence equal to the contents of
the range [j, k).

• Traversal initialization: begin(), end(), rbegin(), rend(). These mark beginning and ending points for a
traversal or reverse-traversal.

• The object’s state: size() – current fill level, max_size() – allocation size, empty() – true or false.

• Assignment: = Assign one container to another. Linear time.

• Equality: a == b, a != b – Returns true or false. Two containers are equal when the sequenes of elements
in a and b are elementwise equal (using the definition of operator== on the element type. Otherwise they
are not equal Both take linear time.

• Order: <, <=, >, >= Lexicographic comparisons; linear time.

• Misc: a.swap(b) – swaps two conainers of the same type. Constant time.

Sorted Associative Containers

All associatiative containers have two parameters: a type Key and an ordering function comp, called the “com-
parison object” of the container, that implements the idea of <=. Two keys, k1, k2 are equivalent if comp(k1,
k2 and comp(k2, k2 both return false. These classes all define the following functions:

• Constructors that include a comparison-object as a parameter.

• Selectors that return the key_type, comparison object-type, and comparison objects.

• Insertion and deletion: four insertion functions with different parameters named insert() and
uniq_insert(). Three erase() functions.
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• Three iterator functions: lower_bound(), upper_bound(), and equal_range()

• Searching: find(k), which returns a pointer to the element whose key is k, (or end() if such an element
does not exist), and count(k) which returns the number of elements whose keys equal k.

13.7 Iterators

An iterator provides a general way to access the objects in a container, unifying and replacing both subscripts
and pointers. It allows the traversal of all elements in an container in a uniform syntax that does not depend
on the implementation of the container or on its content-type.

The underlying value (the value stored in the container) can be either mutable or constant. Exceptional
values are also defined:

• Past-the-end values (not dereferenceable)

• Singular values (garbage).

There are five types of iterators, related as shown in figure 13.7. The different types of iterators allow
a programmer to select the kind of traversal that is needed and the restrictions (read-only or write-only) to
be placed on access. The last two types are called “reverse iterators”: they are able to traverse a container
backwards, from end to beginning. The examples in Section 13.8 will make all this clearer.

Input 
Iterator

Output 
Iterator

Iterator
Forward 
Iterator

Random Access
      Iterator

Bidirectional
     Iterator

Figure 13.3: Iterator classes form a type hierarchy:

• Input iterators A input iterator class must have a constructor and support the operators ->, ++, *, ==,
and !=, and the * operator cannot be used as an l-value in an assignment.

• Output iterators support writing values to a container (using = but not reading from it. Restriction:
assignment through the same iterator happens only once.

• Forward iterators can traverse the container from beginning to end (using ++)

• Bidirectional iterators can go back and forth in the container; they support the operator -- in addition
to the basic list.

• Random-access iterators must support these operators in addition to the basic list: [], --, <. >, <=,
>=, -=, and +=. Further, the * operator must support assignment..

13.8 Using Simple STL Classes

The three STL classes introduced here are string, vector, and map. Vector is a sequence container and Map
is a sorted associative container. String is derived from Vector, but is presented separately here because of its
great usefulness. Please thank Joe Parker for producing the examples in this section.

13.8.1 String

1 // STL string example. Joseph Parker, modified by A. Fischer, March 26, 2003
2 #include <string> // Header file for STL strings
3 #include <iostream>
4 using namespace std;
5
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6 int main( void )
7 {
8 string str1 = "This is string number one."; // Allocate and initialize.
9 // string size

10 cout << "String str1 is: \"" << str1.c_str() <<"\". "
11 <<" Its length is: " << str1.size() << "\n\n";
12
13 cout << "Get a substring of six letters starting at subscript 8: ";
14 string str2 = str1.substr(8,6);
15 cout << str2.c_str() << endl;
16
17 // search first string for last instance of the letter ’e’
18 unsigned idx = str1.find_last_of("e");
19 if (idx != std::string::npos)
20 cout << "The last instance of the char ’e’ in string str1 is at pos "
21 << idx <<endl;
22 else cout << "No char ’e’ found in string str1" <<endl;
23
24 // search second string for first instance of the letter ’x’.
25 idx = str1.find_first_of("x");
26 if (idx != std::string::npos)
27 cout << "The first instance of the char ’s’ in string str2 is at pos "
28 << idx <<"\n\n";
29 else cout << "No char ’x’ found in string str2\n\n";
30
31 cout << "Now replace \"string\" with \"xxxyyyxxx\".\n";
32 idx = str1.find("string");
33 if (idx != std::string::npos)
34 str1.replace(idx, string("string").length(), "xxxyyyxxx");
35 cout << "str1 with replacement is \"> " << str1.c_str() << "\"\n";
36 return 0;
37 }

The output:

String str1 is: "This is string number one.". Its length is: 26

Get a substring of six letters starting at subscript 8: string
The last instance of the char ’e’ in string str1 is at pos 24
No char ’x’ found in string str2

Now replace "string" with "xxxyyyxxx".
str1 with replacement is "> This is xxxyyyxxx number one."

StringDemo has exited with status 0.

Please note these things:

• Line 2: the header function needed for this class.

• Line 10: how to get a C-style string out of a C++ string, and print it.

• Line 11: how to get the length of the string.

• Line 14: creating a new string from a substring of another.

• Lines 18 and 25: searching a string for a letter (first and last occurrenctss).

• Line 34: replace a substring with another string. Note that the old and new substrings do not need to be
the same length.

13.8.2 Vector

40 // STL_Vector_Example.cpp by Joseph Parker, modified by A. Fischer, March 2003
41 #include <iostream>
42 #include <vector>
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43 #include <algorithm>
44
45 using namespace std;
46
47 //---------------------------------------------------------------------
48 void print(vector<int>& v) // print out the elements of the vector
49 {
50 int idx = 0;
51 int count = v.size();
52 for ( ; idx < count; idx++)
53 cout << "Element " << idx << " = " << v.at(idx) << endl;
54 }
55
56 //---------------------------------------------------------------------
57 int main( void )
58 {
59 vector<int> int_vector; // create a vector of int’s
60
61 // insert some numbers in random order
62 int_vector.push_back(11);
63 int_vector.push_back(82);
64 int_vector.push_back(24);
65 int_vector.push_back(56);
66 int_vector.push_back(6);
67
68 cout << "Before sorting: " <<endl;
69 print(int_vector); // print vector elements
70 sort(int_vector.begin(), int_vector.end()); // sort vector elements
71 cout << "\nAfter sorting: " <<endl;
72 print(int_vector); // print elements again
73
74 // search the vector for the number 3
75 int val = 3;
76 vector<int>::iterator pos;
77 pos = find(int_vector.begin(), int_vector.end(), val);
78 if (pos == int_vector.end())
79 cout << "\nThe value " << val << " was not found" << endl;
80
81 // print the first element
82 cout << "First element in vector is " << int_vector.front() << endl;
83
84 // remove last element
85 cout << "\nNow remove last element and element=24 "<< endl;
86 int_vector.pop_back();
87
88 // remove an element from the middle
89 val = 24;
90 pos = find(int_vector.begin(), int_vector.end(), val);
91 if (pos != int_vector.end())
92 int_vector.erase(pos);
93
94 // print vector elements
95 print(int_vector);
96 return 0;
97 }

The output:
Element 0 = 11
Element 1 = 82
Element 2 = 24
Element 3 = 56
Element 4 = 6

Element 0 = 6
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Element 1 = 11
Element 2 = 24
Element 3 = 56
Element 4 = 82

The value 3 was not found
First element in vector is 6
Now remove last element and element=24
Element 0 = 6
Element 1 = 11
Element 2 = 56

Please note: A STL vector is a generalization of a FlexArray. You might want to use it because It is not as
restricted and presents the same interface as the other STL sequence container classes. The FlexArray, however,
is simpler and easier to use for those things it does implement.

• Line 42: the header function needed for this class.

• Line 59: we construct a vector, given the type of element to store within it. Initially this vector is empty.

• Lines 62–66: se put five elements into the vector (at the end).

• Line 69 and 72: we print the vector before and after sorting.

• Line 70: begin() and end() are functions that are defined on all containers. They return iterators
associated with the first and last elements in the container. (It appears that end() is actually a pointer
to the first array slot past the end of the vector.)

• Line 70: sort is one of the algorithms supported by vector. The arguments to sort are two iterators: one
for the beginning and the other for the end of the portion of the vector to be sorted.

• Line 76: we declare an iterator variable of the right kind for vector and use it on the next line to store
the position at which a specific element is found.

• Lines 77 and 90: the find() function searches part of the vector (specified by two iterators) for a key
value (the third argument).

• Line 78 tests for the value end(), which is a unique value returned by the find function to signal failure
to find the key value.

• Line 82: get the first element in the vector but do not erase it from the vector.

• Line 86: remove the last element from the vector: very efficient.

• Line 92: remove an element from the middle of a vector, using an iterator: not as efficient as pop().

13.8.3 Map

A map is a collection of key/value pairs. When a value is stored into a map, it is stored using one of its fields,
called the key field. To retrieve that value, you use the key field to locate it. As STL map can hold only unique
keys; if more than one item with the same key can exist, you must use a multimap instead.

This class could be implemented as a hash table or a balanced search tree. Either one would make sense
and serve the purpose. We do not actually know which is used, since that is not dictated by the standard.
The standard guarantees performance properties, but not implementation. (One might be able to deduce the
implementation from the performance properties, though.)

100 // STL_Map_Example.cpp by Joseph Parker, modified by A. Fischer, March 2003
101 #include <map>
102 #include <iostream>
103 #include <string>
104 using namespace std;
105
106 int main( void )
107 {
108 // create a map
109 map<int, string> myMap;
110 map<int, string>::iterator it;
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111
112 // insert several elements into the map
113 myMap[1] = "Andrea";
114 myMap.insert(pair<int, string>(2, "Barbara"));
115
116 // print all elements
117 for (it = myMap.begin(); it != myMap.end(); ++it)
118 cout << "Key = " << it->first
119 << ", Value = " << it->second
120 << endl;
121
122 // try some operations
123 it = myMap.find(2);
124 if (it == myMap.end()) cout << "\nKey value 2 not found" << endl;
125 else cout <<"\nValue for key 2 = " << it->second << endl;
126
127 it = myMap.find(3);
128 if (it == myMap.end()) cout << "Value for key 3 not found\n";
129
130 // get # of elements in map
131 cout << "\nThe number of elements in myMap is " << myMap.size() << endl;
132 cout << "Now erase one element from map.\n";
133 myMap.erase(2);
134 cout << "The number of elements in myMap is " << myMap.size() << endl;
135 return 0;
136 }

The output:

Key = 1, Value = Andrea
Key = 2, Value = Barbara

Value for key 2 = Barbara
Value for key 3 not found

The number of elements in myMap is 2
Now erase one element from map.
The number of elements in myMap is 1

MapDemo has exited with status 0.

Please note:

• Line 101: the header function needed for this class.

• Lines 109 and 110 create a map object and an appropriate iterator. Note that both require two parameters:
the type of the key field and the type items stored in the container.

• Lines 113 and 114 insert two pairs into the map. Note that the second pair is constructed within the
argument list of the insert function.

• Lines 116–120 iterate through the container and print each element. Note that each pair has two members,
named first and second, and that these members are used to access both the key value and the data.

• Lines123 and 127 call map::find(), supplying the key. Compare this to to the call on vector::find()
in line 77: the required parameters are different but both return an iterator that points to the found item.

• Lines 124 and 128 test for success of the find operation by comparing the result to myMap.end(). This is
exactly like the test on line 78 in the vector example.

• Lines 131 and 134 get the number of pairs stored in the map.

• Line 133 removes a specific pair from the map, given its key value.
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Conclusion The three STL classes introduced here are among the simplest and most useful. But these
examples are “only the tip of the iceberg”; the capabilities of these and other STL classes and algorithms go far
beyond what is shown here. The three examples are only a starting point from which the student can continue
to learn and master this important aspect of modern programming practice.1 2

1The Schildt textbook contains detailed and up-to-date material covering all of the standard templates.
2I am also using the first STL book – Musser and Saini, STL Tutorial and Reference Guide, and I find it quite readable.
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Chapter 14: Derivation and Inheritance

In life and in understanding a complex program. . .

A picture is worth a thousand words.

This chapter consists of one interactive game program that uses templates, derivation, a makefile, a stringstore,
a flexarray, and some C coding “tricks” that are worth knowing. The game output is presented first to familiarize
you with how the game works. Following that are the makefile, main program, and pairs of .hpp and .cpp files,
with notes on each. These are documented by several kinds of “pictures”, each of which illustrates a different
aspect of the application: a module dependency chart, a data structure diagram, UML class diagrams, and a
function call chart.

14.1 Playing

This program plays an interactive word-guessing game called hangman. In this game, the leader (the computer)
selects a secret word and displays a line of dashes with one dash for each letter. The player must guess letters,
one at a time, and try to figure out what the hidden word is. A sample game is included here, for those who
are unfamiliar with it. Suppose the computer chose “hippopotamus” as the secret word. The player would see:

---------Constructing Hangman ----------
Please enter name of vocabulary file (or ENTER to quit): vocab2.in

---------- Welcome to Hangman ----------
You win if you can guess the hidden word.
You lose if you guess 7 wrong letters.

Puzzle is: <[ _ _ _ _ _ _ _ _ _ _ _ _ ]>

Letters left--> a b c d e f g h i j k l m n o p q r s t u v w x y z
Bad guesses---> _ _ _ _ _ _ _

Guess a letter:

After one wrong guess (e) and one correct guess (a), the board would look like this:
You guessed ’a’. You scored!

Puzzle is: <[ _ _ _ _ _ _ _ _ a _ _ _ ]>

Letters left--> b c d f g h i j k l m n o p q r s t u v w x y z
Bad guesses---> e _ _ _ _ _ _

After several more guesses (i,o,y,u,t,p,m, and finally s), the game is won and you see:

Puzzle is: <[ h i p p o p o t a m u s ]>

Letters left--> b c d f g j k l n q r v w x z
Bad guesses---> e y _ _ _ _ _

Congratulations -- you win!

You won 1 time out of 1 try.

Type p to play another round, q to quit: q

----------- Have a good day! -----------

14.1.1 The Hangman Application

A makefile defines its application: it lists the required parts and describes the relationships among them. The
information in the makefile is presented graphically in Figure 14.1.

165
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The makefile.

1 # Rule for building a .o file from a .cpp source file -------
2 .SUFFIXES: .cpp
3 .cpp.o:
4 c++ -c $(CXXFLAGS) $<
5
6 # Compile with debug option and all warnings on. ------------
7 CXXFLAGS = -g -Wall
8
9 # Object modules comprising this application ----------------

10 OBJ = main.o game.o board.o sstore.o rstrings.o words_d.o tools.o
11
12 game: $(OBJ)
13 c++ -o game $(CXXFLAGS) $(OBJ)
14
15 # Delete .o and exe files and force recompilation. ----------
16 clean:
17 rm -f $(OBJ) game
18
19 # Use tools source file from grandparent directory ----------
20 tools.o: tools.cpp tools.hpp
21 c++ -c $(CXXFLAGS) tools.cpp -o tools.o
22
23 # Dependencies ----------------------------------------------
24 main.o: main.cpp game.hpp board.hpp flexT.hpp
25 game.o: game.cpp game.hpp board.hpp rstrings.hpp sstore.hpp flexT.hpp
26 board.o: board.cpp board.hpp words_d.hpp
27 words_d.o: words_d.cpp words_d.hpp words.hpp tools.hpp
28 rstrings.o: rstrings.cpp rstrings.hpp sstore.hpp flexT.hpp
29 sstore.o: sstore.cpp sstore.hpp tools.hpp

main.cpp

g++ -o game  -Wall  main.o  game.o  board.o  words.o rstrings.o sstore.o tools.o

game

game.hpp

game.cpp board.cppSources

Objects

Executable

Linking

Compilation

#inclusion

#inclusion

tools.o

tools.hpp

tools.cpp

board.hpp baseWord.hppwords.hpp

words.cpp

main.o game.o board.o words.o

standard C and 
C++ library .o 

files

C & C++ .h files

rstrings.hpp sstore.hpp flexT.hpp

rstrings.cpp sstore.cpp

rstrings.o sstore.o

Figure 14.1: Makefile graph for Hangman: The files and their dependencies.

14.1.2 Hangman: The Main Program

The vocabulary file. This program is designed to construct a hangman game then play one or more rounds
of it. Line 46 asks whether the user has given the name of a vocabulary file as a command-line argument. If so,
that file name is sent to the Game constructor. If not, the NULL pointer signals the Game constructor to use
a default file.

A conditional operator is used appropriately in the argument list for the Game constructor. It tests a
condition and returns something (a pointer) in either case. C syntax requires that the same type of object must
be returned by both clauses of a conditional operator. In this program, the ? asks whether the user typed more
than one thing (the program name) on the command line. If so, the additional command field is returned (it
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should be a file name). If not, a NULL is returned. The overall code is simplified considerably by using the
conditional operator instead of an if-else statement.

30 // ======================================================================
31 // Hangman program: Let the user guess words from the vocabulary file.
32 // A. Fischer, May 13, 2001 file: main.cpp
33 #include "tools.hpp"
34 #include "game.hpp"
35 //-----------------------------------------------------------------------
36 int main( int argc, char* argv[] )
37 {
38 char response; // For query, "Play again?"
39 int wins = 0, rounds = 0; // For keeping score.
40 const char* timeword; // For grammatical output: time, times.
41 const char* tryword; // For grammatical output: try, tries.
42
43 cout << "\n--------- Constructing Hangman ----------\n";
44 Game g( argc>1 ? argv[1] : NULL ); // Get optional file name.
45
46 cout << "\n---------- Welcome to Hangman ----------\n"
47 "You win if you can guess the hidden word.\n"
48 "You lose if you guess " << HANG_MAX << " wrong letters.\n";
49 do {
50 wins += g.play(); // Play one round of game.
51 rounds++;
52 timeword = (wins == 1) ? "time" : "times";
53 tryword = (rounds == 1) ? "try" : "tries";
54 cout << "\nYou won " << wins << " " << timeword
55 << " out of " << rounds << " " << tryword
56 << ".\n\nType p to play another round, q to quit: ";
57 cin >> response;
58 } while (tolower(response) == ’p’);
59 cout << "\n----------- Have a good day! -----------\n\n";
60 }

Instructions. The instructions given on lines 46 through 48 will not be repeated before each round. The loop
on lines 49 through 58 plays one round and queries the user about whether to continue.

One round of the game. Line 50 plays one round of the game and returns the result: 1 for a win, 0 for a
loss. The wins and losses are tallied and displayed when user asks to quit. Lines 52 and 53 use string variables
and conditional operators to select singular or plural wording so that the final score message will be displayed
in correct English. This kind of care is not necessary in student projects but makes a difference in the perceived
quality of a commercial job.

14.1.3 Call Graphs

Different kinds of documentation lead to different insights into the structure of an application. An object
diagram shows us the way our actual storage is organized and used at run time. A class diagram tells us
what properties each kind of object has, and which ones can be used in other classes. A flow chart shows us
possible execution paths. An event trace (also called a sequence diagram is like a flow chart but also shows
how control passes back and forth between classes during execution. A fifth kind of graphical documentation
is the call graph—a static chart showing which functions can call which other functions at some point in the
program. Call graphs can be useful during debugging for tracking down all possible ways for control to get to
any particular function.

Figure 14.1.3 is a call graph for Hangman. To minimize the complexity of the diagram and focus on the
class functions, calls on fatal, new, delete, and iostream functions have been omitted from the chart. From this
chart, you can see that execution is divided into two major phases. First, a game is constructed, then played.
When one round is played, a random string is selected, a board is constructed, and finally, the board is played.
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Figure 14.2: A call graph for the Hangman game: How control can reach each function.

14.1.4 UML Diagrams: A View of the Class Relationships

A UML diagram gives another static view of the application; it illustrates the data types being used, the
protection level of each part of each class, and the possible ways that one class can access or use another.

The classes used in this application fall into two nearly separate subsystems: Game and Board, together
with the three Word classes implement the form and function of the game itself, while RandString, StringStore,
and FlexArray implement the database from which the game selects puzzle words. These two subsystems are
diagrammed separately – the association between Game and RandString is the only connection.

In Figure 14.1.4 we see that two classes are derived from BaseWord. BaseWord defines a data structure and
a set of functions that implement one basic behavior. From it, we derive two sub-classes that define variations
on the basic theme and have different initialization, search, and display rules.

From the UML, you can see that the BaseWord class is not associated with or aggregated by any other
classes and, in fact, is not instantiated by the program. It is used only as a basis for deriving Alphabet and
Hangword, which form the basis for the gameboard display. This follows a basic OO-design guideline:

Don’t instantiate a class that you also derive from.

The goal of this rule is to minimize the conflict between the requirements of a base class, which must be clean
and general, and a class that must serve the specific needs of an an application.

In Figure 14.1.4 we see an application-specific class, RandString, that is built out of two utility data-structure
classes: it is derived from FlexArray and it aggregates StringStore. The RandString class is a container for
words that randomly selects and returns one word at a time. The word is then removed from the container so it
cannot be reused. In one sense, the new class, RandString “wraps” the two familiar classes in a new behavior,
with only a fraction of the work that would be required to program the new class from scratch. It is a typical
demonstration of the potential power of class libraries.

The FlexArray class has been rewritten, finally, in its proper form: as a class template. In going from
FlexArray to RandString, we simultaneously bind the template parameter to char* and derive from the resulting
class. This combination of template instantiation and derivation is very common because you normally want to
write application-specific functions to handle the general data structures for which templates are used.
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Figure 14.3: The game classes in Hangman: UML describes class relationships.
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14.1.5 The Hangman Data Structures

A data diagram illustrates the allocations, connections and contents that have been created by the program at
one specific moment at run time, given a specified sequence of inputs. This kind of picture is particularly helpful
when pointers are used to build a complex structure. It does not help us know how the program reached the
particular state that is illustrated, but it gives us an appreciation for the overall complexity of the application.
A data diagram can be a great help to a reader who is trying to understand how and why a program works (or
fails to work).
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Figure 14.5: Data structures for the Hangman program: A snapshot during execution.
Program notes throughout this section will refer to the data diagram in Figure 14.1.5. It illustrates the data

structures constructed for a representative game using a vocabulary file with 99 words, when the puzzle word
is “egypt”. The data structure, above, are shown after the fourth guess. (Two guesses were correct, two were
wrong). Here is the current gameboard:

Puzzle is: <[ e _ _ _ t ]>

Letters left--> a b c d f g h j k l m n o p q r u v w x y z
Bad guesses---> i s _ _ _ _ _

Guess a letter:

14.2 Hangman: The Game and Board Classes

The main program creates a Game (s 44) which, in turn, creates a Board. Game::play() calls Rand-
String::randword() to select a random string from the vocabulary, builds a gameboard around it and plays
one round of hangman. The Board class implements the gameboard with the help of Alphabet and HangWord,
both derived from BaseWord.

A new gameboard is created by Game::play() (lines 50, 108) for each round. Since the array members of
Board are built around the hidden word, each new word requires a new construction job. We could have done
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the same thing by declaring a Board* as a member of Game, but there would be no advantage in doing it that
way because there is no need to use a board after returning from Game::play().

14.2.1 The Game Class

61 // ==========================================================================
62 // Build a board, play it, and return the score to main.
63 // A. Fischer, June 4, 2000 file: game.hpp
64 #ifndef GAME
65 #define GAME
66
67 #include "rstrings.hpp"
68 #include "board.hpp"
69 // ==========================================================================
70 class Game {
71 private:
72 char Alphabet[80]; // Normally the English Alphabet.
73 RandString* Vocab; // The randomized vocabulary list.
74
75 public:
76 Game( cstring wordfile = NULL );
77 ~Game(){ delete Vocab; }
78 int play(); // Play hangman.
79 };
80 #endif

81 // ==========================================================================
82 // Implementation of the Hangman game.
83 // A. Fischer, June 4, 2000 file: game.cpp
84
85 #include "game.hpp"
86 // ==========================================================================
87 Game::Game( char* wordfile ){
88 char file_name[80];
89 //cerr << "Constructing Game. "; // For debugging.
90 if (wordfile) strcpy( file_name, wordfile );
91 else strcpy( file_name, "vocab.in" );
92
93 ifstream source( file_name );
94 if (!source) fatal( "Could not open %s.\nEnding Hangman.\n", file_name );
95 //cerr << "File " <<file_name <<" is open for reading." <<endl;
96
97 source.getline( Alphabet, 80 );
98 Vocab = new RandString( source ); // Create vocabulary database.
99 source.close();

100 //Vocab->print( cerr ); // For debugging.
101 }
102
103 //---------------------------------------------------------------------------
104 int Game::play() {
105 const char* puzzle_word = Vocab->randword(); // pick puzzle word.
106 //cerr << puzzle_word;
107
108 Board b( Alphabet, puzzle_word ); // construct game board
109 return b.play(); // play the round
110 }

Notes on the Game code. The Game constructor’s first task is to find and open the vocabulary file. If no
name was typed on the command line, wordfile will be NULL, otherwise it will point to the selected filename.
A filename must be supplied, one way or another. If it was not given on the command line, the program uses a
default file, vocab.in. In either case, a copy of the file name is copied into the local array and used to open an
input stream.
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Once the stream is open, the first line of the file is read (line 97) and used to initialize the class member
named Alphabet. This permits the program to be used with vocabulary from any language. The remainder of
the file is used (line 98) to build the vocabulary array (a new RandString structure). the result is shown at the
top of Figure 14.1.5: g.Vocab points to a RandString object consisting of a FlexArray and a StringStore with
two Pools.

The Game::play() function is the heart of the program: it selects a mystery word (line 105), uses it to
construct a board (line 108), plays the board (line 109), and returns the score (1 win or 0 wins) to main().
Details of how to play the board and how to calculate the score are delegated to the Board class.

14.2.2 The Board Class

111 // ==========================================================================
112 // Choose a word, use it to create a playing board.
113 // A. Fischer, June 4, 2000 file: board.hpp
114 #ifndef BOARD
115 #define BOARD
116
117 #include "words_d.hpp"
118 #define HANG_MAX 7
119 // ==========================================================================
120 class Board {
121 enum status {GOOD_GUESS, BAD_GUESS, NOT_IN_ALPHA, USED_ALREADY};
122 int Errcnt; // Wrong guesses so far,
123 int Found; // Number of Letters correctly filled in.
124 Alphabet Alpha; // Masked alphabet.
125 Alphabet Errors; // Masked alphabet for error list.
126 HangWord Puzzle; // Masked mystery word.
127
128 public:
129 Board(const char* a, const char* puz); // Alphabet and puzzle word.
130 ~Board(){}
131 int play(); // play a board
132 void move(); // user interaction for one move
133 status guess(char c); // process a guess
134 ostream& print(ostream&); // print a board
135 };
136 #endif

137 // ==========================================================================
138 // board.cpp: Implementation for hangman board
139 // A. Fischer, June 4, 2000 file: board.cpp
140
141 #include "board.hpp"
142 // ==========================================================================
143 Board::Board(const char* a, const char* puz) :
144 Errcnt(0), Found(0), Alpha(a, true), Errors(a, false), Puzzle(puz){
145 //cerr << "\nConstructing Board. ";
146 }
147
148 //--------------------------------------------------------- display the board
149 ostream&
150 Board::print( ostream& out ) {
151 out << "\n\nPuzzle is: " << Puzzle << "\n\n";
152 out << " Letters left-->" << Alpha << "\n";
153 out << " Bad guesses--->" << Errors;
154
155 for (int k = Errcnt; k < HANG_MAX; k++) out << " _";
156 return out << endl;
157 }
158
159 //----------------------------------------------------------- process a guess
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160 Board::status
161 Board::guess(char c) {
162 int where = Alpha.find(c);
163 if (where == -1) return NOT_IN_ALPHA;
164 if ( !Alpha.mask_slot(where) ) return USED_ALREADY;
165 Alpha.mask_slot(where) = false;
166
167 int matches = Puzzle.try_letter(c);
168 if (matches <= 0) {
169 Errors.mask_slot(where) = true;
170 Errcnt++;
171 return BAD_GUESS;
172 }
173 Found += matches;
174 return GOOD_GUESS;
175 }
176
177 //--------------------------------------------- user interaction for one move
178 void
179 Board::move() {
180 char ch;
181 cout << "Guess a letter: ";
182 cin >> ch;
183 cout << "You guessed ’" << ch << "’";
184 switch (guess( ch )) {
185 case NOT_IN_ALPHA:
186 cout << " -- but it’s not in the alphabet." << endl; break;
187 case USED_ALREADY:
188 cout << " -- but you guessed it once before." << endl; break;
189 case BAD_GUESS:
190 cout << " -- too bad." << endl; break;
191 case GOOD_GUESS:
192 cout << ". You scored!" << endl; break;
193 }
194 print(cout);
195 }
196
197 //-------------------------------------------------------------- play a board
198 int
199 Board::play() {
200 print(cout);
201 while (Errcnt < HANG_MAX && Found < Puzzle.length()) move();
202 if (Found == Puzzle.length()) {
203 cout << "Congratulations -- you win!" << endl;
204 return 1;
205 }
206 cout << "Sorry, you lose!" << "\nThe answer is: "
207 << Puzzle.word() << endl;
208 return 0;
209 }

To play a round of hangman, we need a hidden word and an alphabet. To make a good interface, we also
need a list of wrong guesses. These three arrays of characters (Puzzle, Alpha, and Errors) are updated and
displayed after every guess to help the player make skillful guesses. Thus, our gameboard displays three arrays
of letters:

• Puzzle, the mystery-word consisting of underscores and correctly guessed letters.
• Errors, a list of incorrect guesses.
• Alpha, the list of letters that have not yet been guessed.

In addition, the Board object must keep score and end the round when the number of correct guesses
(Found) equals the length of the puzzle word, or when the number of bad guesses (Errcnt) reaches the limit,
HANG_MAX. In Figure 14.1.5, you see the Board, b, and its five components in the lower part of the diagram.
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It is much easier to believe in the correctness of a function when its return values have meaningful names
than when integer codes are used. For this reason, we define a private enumerated type to describe the possible
outcomes of a guess. A value of this type is returned by guess() and used by move() to select a response message
for the player. We use this device to clarify, simplify, and modularize the code. The resulting two functions are
much clearer that the alternatives: one very long function and/or cryptic integer codes for the outcomes.

Constructing a playing board. The parameters to the constructor are an alphabet and a word that was
randomly selected from the vocabulary. This code uses ctors (line 144) to initialize all of the data members,
although they are only necessary for the last three. The body of the constructor contains only a debugging
message, currently commented out. To return to a debugging phase, one would remove the // marks.

The last three ctors convey arguments from the parameter list of the Board constructor to the constructors
of the aggregated class objects. The mystery word is sent to the Puzzle constructor where it becomes the basis
for a new playing board. Class members Alpha and Errors are both constructed from the alphabet. Initially,
all letters of the Alpha alphabet are set to “true”, meaning that they are available, and all letters in the Errors
alphabet are set to false, meaning that no errors have yet been made. These initializations will be discussed
more fully in the relevant classes.

One round of play. Board::play() is called by Game::play() to play one round of hangman on a newly
constructed Board. This function calls Board::move() in a loop (line 201), until the round has been won (all
letters have been guessed, lines 202–204) or lost (seven errors have been made, lines 206–207). In both cases,
the function announces the result to the player and returns the score to Game::play(). The details of how a
move is made are handled by the move() function.

One move. Board::move() prompts for and reads a guess from the user, (line 181–183) calls Board::guess()
to analyze the guess (line 184), and displays a message about the result and the new board position. The
switch statement illustrates how well-chosen enumeration constants can make code much clearer. A reasonable
question is, “why don’t we combine the code from Board::move() and Board::guess() into one function and get
rid of both the switch and the enumeration. There are two answers. First, the combined function would be very
long. Second, it is very helpful to keep high-level logic separate from low-level logic. The switch implements the
high-level logic and provides a road map for the other function. In contrast, Board::guess() is filled with many
detailed comparisons and counters. The enumeration constants guide the reader and help clarify the purpose
of the operations.

Is the guess correct? Given a puzzle, an alphabet, and a guess, there are four possible outcomes. We do a
case analysis and use four return statements to simplify the logic by keeping the cases maximally separate from
each other.

If the guess is not in the game-alphabet or it has been guessed previously, the player will not be “charged”
for the bad guess. To find out, we call Alphabet::find() (line 162) to search for the guess among the legal letters.
The return value is the subscript of the guess in the alphabet, if it is a legal letter, otherwise -1. For example,
when ‘e’ is guessed, the subscript 4 will be returned because ‘e’ is the fifth letter in the alphabet.

If the letter is valid, we then check (line 164) whether it was previously guessed. To do this, we use the
subscript returned by Alphabet::find() to index the mask array that parallels the alphabet array. (A result of
false means the letter has been used, true means it is still available.)

If the letter is legal and still possible, we set the appropriate position in the mask array (line 165) to “false”
to indicate that the letter is now used. Since ‘e’ has been guessed, we see that Alpha.Mask[4] is false and ‘e’
has disappeared from the display.

Next, on line 167, we determine whether the guess is correct or wrong by calling Hangword::try_letter() .
The result will be the number of letters in the puzzle that match the guess (zero or more). If the answer is
zero, we set the corresponding position of the error array to “true”, increment the error-counter, and return
with an error code (lines 168–171). This will cause the letter to “appear” (in alphabetical order) in the error
array the next time it is displayed. In Figure 14.1.5, the letter ‘s’ has been guessed and it is wrong. In response,
Alpha.Mask[18] was set to false and Errors.Mask[18] to true. If the guess is correct, we reach line 173, where we
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add the number of new matches to the match-counter (Found) and return a success code. Play for this board
will end when the Found total equals the length of the mystery word.

The return type must be given here as “Board::status”, even though it is written simply as “status” on line
121. This is necessary because the status type is defined inside the Board class and this function definition is
outside the class declaration.

14.3 The Word Classes

A mask marks a subset. A masked data structure is the simplest way to denote a subset of the data that
is to be used (or not used) for a particular purpose. One or several masks might be used to mark one or several
different subsets. The mask field or fields might be members of the structure or might exist in a parallel data
structure. The mask fields might be type bool (to denote a simple yes/no choice) or any other enumerated type.
Masks are most useful if the condition that they represent is not simple to test for, and if the status of an object
changes over time or is checked frequently.

A masked structure lets us sort or process data efficiently and easily. For example, suppose a club mem-
bership database has one record for each member. At least two sets of masks might be helpful: one for age
(juvenile, teenager, adult, senior) and another for dues status (guest, lifetime, paid-up, due, lapsed). Masks can
be useful here because age is messy to categorize and dues status is based on the member’s history.

14.3.1 The BaseWord Declaration

The class BaseWord creates a basic masked string, that is, a string with a corresponding array of bools to indicate
whether each letter in the string is currently valid or not. If a letter is valid, it is searched and displayed. If
not, it is hidden both from sight and from the computations. You could say that the mask controls access to
the individual letters in the array. This is an easy and fast way to select a subset of the data stored in an array.
To add an element or remove it, simply change the bit from true to false, or vice versa.

210 // ==========================================================================
211 // Maskable word base class.
212 // A. Fischer, June 4, 2000 file: words.hpp
213 #ifndef WORDS
214 #define WORDS
215 #include "tools.hpp"
216 // ==========================================================================
217 class BaseWord {
218 protected:
219 const int Len; // length of word, excluding terminator.
220 const char* const W; // partially concealed word
221 bool* const Mask; // concealment mask
222
223 public:
224 BaseWord(const char* st) : Len(strlen(st)), W(st), Mask(new bool[Len+1]){
225 //cerr << "\nConstructing BaseWord. ";
226 }
227 ~BaseWord() { delete [] Mask; }
228 int length() const { return Len; }
229 bool& mask_slot(int k) const { return Mask[k]; }
230 const char* const word() const { return W; }
231
232 void set_all(bool on_off){ // set false to hide letter, true to expose.
233 for (int k=0; k<Len; k++) Mask[k] = on_off;
234 }
235 };
236 #endif

The BaseWord class. In this class, everything is based on a particular string (the argument to the BaseWord
constructor) and its length. The members named Len and Mask are constants, so they must be initialized using
ctors, after the length of the argument string is known. The first ctor that must be executed is the one that
measures the string and stores its length in Len; the mask cannot be constructed until that is done. For this
reason, we declare Len first in the class.
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The class member named W is a constant pointer to a constant string, either the alphabet or a word that
was selected randomly from the vocabulary and is still stored there. No copy is made of this string because we
do not need to modify it. The word, itself, is constant. The mask array is modified during the play, and those
modifications determine which letters are displayed.

14.3.2 The Derived Word Classes

237 // ==========================================================================
238 // Derived Word classes.
239 // A. Fischer, June 4, 2000 file: words_d.hpp
240 #ifndef WORDSDERIVED
241 #define WORDSDERIVED
242
243 #include "words.hpp"
244 // ==========================================================================
245 class Alphabet : public BaseWord {
246 public:
247 Alphabet(const char* st, bool on_off) : BaseWord(st) {
248 set_all(on_off);
249 //cerr << "Constructing Alphabet.";
250 }
251 int find(char c) const; // return index of first c in word
252 ostream& print (ostream&); // print an alphabet
253 };
254
255 inline ostream& operator<<(ostream& out, Alphabet& x){ return x.print(out); }
256
257 // ==========================================================================
258 class HangWord : public BaseWord {
259 public:
260 HangWord(const char* st) : BaseWord(st) {
261 set_all(false);
262 //cerr << "Constructing HangWord. " <<st;
263 }
264 int try_letter(char);
265 ostream& print (ostream&); // print a hang word
266 };
267
268 inline ostream& operator<<(ostream& out, HangWord& x){ return x.print(out); }
269 #endif

270 // ==========================================================================
271 // Implementation for maskable words.
272 // A. Fischer, June 4, 2000 file: words_d.cpp
273
274 #include "tools.hpp"
275 #include "words_d.hpp"
276 // ================================================= Alphabet class functions
277 int // Return index of first occurrence of c in W
278 Alphabet::find(char c) const {
279 int k;
280 for (k=0; k<Len && c != W[k]; k++); // Loop body is empty.
281 return (k==Len) ? -1 : k;
282 }
283 //---------------------------------------------------------------------------
284 ostream&
285 Alphabet::print (ostream& out) {
286 for (int k=0; k < Len; k++) if ( Mask[k] ) out << " " << W[k];
287 return out;
288 }
289
290 // ================================================= Hangword class functions
291 int // Count the number of times letter c occurs in puzzle; unmask each
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292 HangWord::try_letter(char c) {
293 int count = 0;
294 for (int k=0; k<Len; k++) {
295 if (c == W[k]) {
296 count++;
297 Mask[k] = true;
298 }
299 }
300 return count;
301 }
302 //---------------------------------------------------------------------------
303 ostream&
304 HangWord::print (ostream& out) {
305 out << "<[" ;
306 for (int k=0; k < Len; k++) out << ’ ’ << (Mask[k] ? W[k] : ’_’) ;
307 out << " ]>";
308 return out;
309 }

The Alphabet and HangWord classes. Baseword is a polymorphic class that defines a basic data structure
and some of its functions. Alphabet and HangWord are variations of BaseWord. They are derived from
BaseWord, so they inherit functions and data from BaseWord. In addition, each has its own set of functions
for initialization, use, and display. The first line of a class declaration declares the derivation relationships, if
any. In Hangman, Alphabet and HangWord are both derived from BaseWord by public derivation:

class Alphabet : public BaseWord { ... };
class HangWord : public BaseWord { ... };

From this relationship we know that:

1. The two new classes are derived from BaseWord so that we can have the same structure but different print
functions.

2. The first part of an Alphabet or HangWord object is a BaseWord object.

3. The constructors for Alphabet and HangWord use ctor initializers to provide arguments for the BaseWord
constructor.

4. The public/protected/private status of all the inherited members in Alphabet and HangWord is the same
as in class BaseWord.

5. The functions of the two derived classes can freely use the protected members of the base class: Len, W,
and Mask.

Initializing the masks. A gameboard contains three Words (Puzzle, Alpha, and Errors); each consisting of
a char array with a parallel mask array. When a word is displayed, its mask array is checked; a letter in the
word is displayed if its mask bit is on (true), and ignored if the bit is off.

During Board construction, the function BaseWord::set_all() is called to initialize the three Word members
of the Board. It will set all of the bits of a mask to either true or false, depending on how the instance will
be used: bits for the game alphabet are set to true, for the errors to false, and for the mystery word to false.
The bool parameter for set_all() comes from a call in the HangWord constructor (line 261) or from the ctor for
Alphabet in the Board constructor (line 144). As the game progresses, two mask bits are changed each time
a legal guess (correct or incorrect) is made. The alphabet that is displayed grows shorter (as letters are used)
and the error list grows longer (as letters are added to it). The mystery word stays the same length, but dashes
in the display are replaced by letters each time a correct guess is made.

Printing through a mask. The polymorphic class lets us create different means of displaying the same data
structure.When a word is displayed, its mask array is checked, and each letter in the word is displayed if its mask
bit is on (true). For Alphabet objects, nothing is displayed if the bit is false, but for the puzzle (a HangWord),
dashes are shown.
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Searching and updating the masks. When the player guesses a letter, Board::guess() searches the alphabet
(line 162) to find out whether the letter is legal and saves the index of the letter for later use. If the letter is
not in the alphabet or if it has already been used, the function returns immediately with an error code (lines
163–164). Otherwise, it turns off the mask bit (line 165) corresponding to the letter to indicate that the letter
has been used. (This removes the letter from the display.)

Then try_letter() is called (line 167) to compare the guessed letter to the letters in the puzzle word (lines
294–299). This function turns on the mask bit corresponding to each matching letter in Puzzle (line 297) and
returns the number of matches (0 or more) that were found. If no matches were found, 0 is returned and the
mask field in Error that corresponds to the bad guess is turned on (line 169). This causes the letter to appear
on the error list. Finally, lines 173–174 add the number of matches to the score and return a success code. In
Figure 14.1.5, Puzzle.Mask[0] and Puzzle.Mask[4] have been set to true in response to the two correct guesses,
‘e’ and ‘t’. The same two letters have been marked as false in Alpha.Mask[4] and Alpha.Mask[19].The board
will display “e _ _ _ t” and show the alphabet with these two letters missing.

Coding techniques. Two code segments are worth mentioning here. First, note the Alphabet::find() function
on lines 277–282. Line 280 is a complete sequential search written in one line, as a for loop with no body. It
positions k, the index for both Alpha and Errors, on the letter that was guessed. The conditional operator in
line 281 returns this position or -1, an error code. This is very compact code, but is well within the bounds of
readability.

HangWord::print() also uses a one-line loop and a conditional operator to check the mask and print either
a puzzle letter or a dash. In contrast, an if statement is used to test the mask in Alphabet::print() and
HangWord::try_letter(). The difference is that the last two functions are using a one-sided conditional; they do
something if the condition is true, nothing otherwise. The conditional operator can only be used in symmetric
situations where some value is returned whether the condition is true or false.

14.4 RandString Adapts a Reusable Data Structure

The RandString class is an adapter. It is derived from a general-purpose container class template, FlexArray,
and changes the interface provided by the reusable class to one that is appropriate for this application. One new
public function, randword(), is added and one existing function is removed from the interface by an override.
This is a typical pattern that is repeated over and over when you use class libraries. The library seldom provides
exactly the classes you want, but if you can find something close to your needs, you can add to, modify, or
restrict its interface to meet you needs. In this application, the interface must be changed to prevent ordinary
sequential access and to provide random word selection.

The class RandString is a vocabulary list from which strings may be randomly selected and removed. The
letters that form the words are stored in a StringStore. The StringStore class that was presented in Chapter 8 is
reused here with a few corrections. StringStore will “take care of itself” and construct as many Pools as needed
to hold the characters in the vocabulary words. To store the string pointers, we use a flexible array (vector)
because we need both random access and flexibility. Random access is not available with linked lists, so we
must use some sort of an array. We don’t use a simple array because the number of words in the vocabulary
file is not known at compile time.

14.4.1 The RandString Declaration

We create the RandString class by deriving it from an instantiation of the FlexArray template:

class RandString : public FlexArray<char*> {...}

We aggregate the StringStore in the resulting derived class, and complete the package by adding functions to
do random selection and removal of the puzzle words. By this means, we achieve a flexible, sophisticated data
structure with very little new code.

The RandString constructor. A few small things deserve notice here:

• Because this is a derived class, we need a ctor to construct the base class (line 338).
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• By default, the RandString constructor creates an initial FlexArray that can hold 100 words. This
constructor is called from the Game constructor without an integer argument, so the default size is
actually used.

• The default FlexArray size is specified in the .hpp file (line 326) but not in the function definition (line
338). This is correct usage.

• There is one restriction on vocabulary words: they must be shorter than 80 characters, since that is the
length of the input buffer in the RandStrings constructor (lines 340, 345).

• On line 347, StringStore::put() is called to store the letters; it returns a pointer to the first letter in the
new word. This pointer is sent to FlexArray::put(), to be stored in the word array. Very concise, very
efficient. Perhaps difficult to understand.

• This is a typical eof-controlled input loop. The break on line 346 will happen if either a read error or and
end-of-file occurs. In a game program like this, it is good enough to end input if a read error occurs. They
are rare and we can play the game even of some of the words in the file remain unread.

310 // ==========================================================================
311 // Declaration for a string array with random selection
312 // A. Fischer, May 13, 2001 file: rstrings.hpp
313
314 #include "flexT.hpp"
315 #include "sstore.hpp"
316 // ==========================================================================
317 class RandString : public FlexArray<char*> {
318 protected:
319 StringStore Store; // Storage behind string array.
320
321 private:
322 inline cstring remove( int r );
323 void print( ostream& outs ) const; // For debugging, make this public.
324
325 public:
326 RandString( istream& vocin, int sz = 100 );
327 ~RandString(){}
328 const char* randword();
329 const char* operator[] ( int index );
330 };

The functions randword() and remove(). Random selection and removal of a string is implemented by
the randword() function, as follows:

• The RandString constructor, primes the standard C random number generator by calling
srand(time(NULL)). This uses the current time of day as an initial value for the randomizing compu-
tation, ensuring that different games will start with different puzzle words.

• Game::play() calls RandString::randword() before constructing a new playing board (line 105).

• To select a random word from the N unused words in the vocabulary, randword() generates a random
number R in the range 0 . . . N − 1, then calls remove() to remove the selected word from the vocabulary.

• Inside remove(), the string pointer in the Rth position is copied into a local temporary and later returned.
Then it is replaced in the FlexArray by a copy of the last string pointer in the array. Finally, N , the
number of words in the vocabulary is decreased by 1. No actual words change position; only pointers are
copied. This is a standard algorithm for “shuffling” a deck of cards or randomizing the order of the objects
in any array. The strategy is simple, fast, and theoretically sound. It does leave a meaningless copy of
a string pointer at the end of the vocabulary array each time a word is used and the array is shortened.
Thus, the number of items remaining in the vocabulary, not its original size, must be used to select the
next random word.

331 // ==========================================================================
332 // Implementation for a string array with random selection
333 // A. Fischer, June 4, Nov 14, 2000 file: rstrings.cpp
334
335 #include "tools.hpp"
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336 #include "rstrings.hpp"
337 // ==========================================================================
338 RandString::RandString( istream& vocin, int sz ) : FlexArray<char*>(sz) {
339 //cerr << "\nConstructing RandString ";
340 char line[80]; // input buffer
341 srand( time( NULL ) ); // start up random number generator.
342
343 for(;;) {
344 vocin >> ws;
345 vocin.getline( line, 80 );
346 if (!vocin.good()) break;
347 put( Store.put(line, vocin.gcount())); // Add to SStore & FlexArray.
348 }
349 //cerr << "\nRead " <<Many <<" Data from vocabulary file " << endl;
350 if ( !vocin.eof() ) fatal( "Read error on vocabulary file" );
351 }
352 // -------------------------------------------------------------------------
353 void
354 RandString::print( ostream& outs ) const {
355 outs << "The vocabulary: \n";
356 for (int k=0; k<N; k++) outs << Data[k] << endl;
357 }
358
359 // -------------------------------------------------------------------------
360 const char*
361 RandString::randword() {
362 if (N < 1) fatal( "Sorry, out of Data!");
363 int r = rand();
364 return remove( r % N );
365 }
366
367 //---------------------------------------------------------------------------
368 inline cstring
369 RandString::remove( int r ) {
370 cstring ret = Data[r]; // Grab the word that was selected.
371 Data[r] = Data[--N]; // Replace by last word in array.
372 return ret; // Return word and decrease word count.
373 }
374
375 // -------------------------------------------------------------------------
376 const char* // Override; block access to function in base class.
377 RandString::operator[] ( int index )
378 {
379 cerr <<"No random access to vocabulary list";
380 return "";
381 }

Overriding FlexArray::operator[]. When using class derivation, all properties of the base class are inher-
ited by the derived class. Sometimes this is undesirable or destructive in the new context. For example, the
FlexArray class provides a general subscript operator. However, the RandString class has a very special access
and removal rule, and random-access subscripting would defeat its purpose of restrincting access. This problem
is handled by overriding the inherited definition by a new definition with exactly the same parameters as the
inherited method. We cannot eliminate the subscript operator altogether, but we can write it as a trap. In this
class, we use a nonfatal trap: it prints an error message but does not abort the run. Clearly, this will never
happen in a fully debugged program. However, during construction and debugging, traps like this can be very
useful.



Chapter 15: Polymorphism and Virtual Functions

From Lewis Carrol, Through the Looking Glass:

“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means just what I choose
it to mean – neither more nor less.”

“The question is,” said Alice, “whether you can make words mean so many different things.”

“The question is,” said Humpty Dumpty, “which is to be master– that’s all.”

15.1 Basic Concepts

15.1.1 Definitions

Simple derivation. The Hangman program uses the simple form of derivation: two application classes are
derived from the same base class. This kind of derivation serves two important purposes:

• To factor out the common parts of related classes so that the common code does not need to be written
twice. An example of this is the BaseWord class with its derivatives, Alphabet, and Hangword.

• To facilitate reuse of library classes and templates. The base class will contain a generally-useful data
structure and its functions. The derived class will contain functions that are specific to the application. An
example of this is the RandString class, which is derived from an instantiation of the FlexArray template.

Polymorphic derivation. In this chapter, we introduce virtual functions and two complex and powerful uses
for derived classes that virtual functions support: abstraction and polymorphism.

• A virtual function is a function in a base class that forms part of the interface for a set of derived classes.
It is declared virtual in the base class and may or may not have a definition in that class. It will have
definitions in one or more of the derived classes. The purpose of a virtual function is to have one name,
one prototype, and more than one definition so that the function’s behavior can be appropriate for each
of the derived classes.

• A pure virtual function is a function that has no definition in the base class.

• An abstract class is a class with one or more pure vitual functions.

• A polymorphic class is a base class that supports a declared set of public virtual functions, together with
two or more derived classes that define methods for those functions. Data members and non-virtual
functions may be defined both in the base class and the derived classes, as appropriate. We say that the
derived classes implement the polymorphic interface class.

15.1.2 Virtual functions.

A virtual function is shared by the classes in a derivation hierarchy such as the Employee classes in Figure
15.1.2. (Note: In this sketch, three shapes have been drawn on top of the ordinary rectangular class boxes. This
is not proper UML; the shapes will be used later to explain polymorphism.)

We create a virtual function when the same task must be done for all objects of all types in the hierarchy,
but the method for doing this task depends on the particular representation of an object. For example, suppose
the function calculatePay() must be defined for all employees, but the formula for the calculation is different
for union members and professional staff. We want a function with one name that is implemented by three or
more defining methods. For any given function call, we want the appropriate function to be called. For example,
suppose we have declared four objects:

181
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Manager  Accountant Clerk

Employee

Figure 15.1: A polymorphic class hierarchy.

Manager M;
Accountant A;
Clerk C, D;

Then if we call A.calculatePay() or M.calculatePay() we want the calculation to be made using the formula for
professional staff. If we call C.calculatePay() or D.calculatePay(), we want the union formula used.

We implement this arrangement by declaring (and defining) calculatePay() as a virtual function in the
Employee class, with or without a general method in that class. We also define calculatePay() in each of the
derived classes, to make the appropriate calculations for the specific type of employee. The general method
might do the parts of the calculation that are common to all classes. When calculatePay() is called, the system
must select one of the methods to use. It does this by looking at the specific type of the object in the function
call. This issue is explored more fully in the section on polymorphic classes.

Syntax. For examples, look at print() in Container, Linear and Queue, later in this chapter.

• The prototype for a virtual function starts with the keyword virtual. The rest of the prototype is just
like any other function.

• The prototype for a pure virtual function ends in =0 instead of a semicolon. This means that it has no
definition within the class.

• You must not write the keyword virtual before the definition of a virtual function that is outside the
class.

• Any class with one or more virtual functions must have a virtual destructor.

How it works. Every object that could require dynamic dispatch must carry a type tag (one byte) at run
time that identifies its relationship to the base class of the class hierarchy. (1st subclass, 2nd subclass, etc.)
This is necessary if even one function is declared virtual, either in the class itself or in a parent class.

The run-time system will select the correct method to use for each call on a virtual function. To do so, it
uses the type tag of the implied parameter to subscript the function’s dispatch table. This table has one slot
for each class derived from the class that contains the original virtual declaration. The value stored in slot k is
the entry address for the method that should be used for the kth subclass derived from the base class. This is
slightly slower than static binding because there is one extra memory reference for every call on every virtual
function.

15.2 Polymorphic Classes

The purposes of polymorphism.

• To define an extensible set of representations for a class. One or two may be defined at first, more added
later. It is a simple way to make an application extensible; you can build part of it now, part later, and
be confident that the parts will work together smoothly.

• To allow a data structure to contain a mixture of items of different but related subtypes, such as the
linked list of employees illustrated in Figure 15.2. The data objects in this list are the Employees defined
in section 15.1.2; the shape of each object indicates which subtype of Employee it belongs to.

• To support run-time variability of types within a restricted set of related types, and the accompanying
run-time dispatch (binding) of methods. The most specific appropriate method is dispatched. This lets
us create different varieties of objects depending on input that is entered at run time.
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Staff

4
 DC AM

Empls
Count

Data Data Data DataNext Next Next Next

Figure 15.2: A list of polymorphic Employees.

Dispatching. Dispatching a function call is simple when the implied argument belongs to a derived class and
a method for the virtual function is defined in that class. However, this is not always the case. For example,
Figure 15.2 is a list of pointers to polymorphic Employees. Suppose a virtual print() function is defined in
Employee and given a method there. Also, methods are defined in Accountant and Manager; these print the
special data then call the Employee::print() to print the rest. However, no method is defined in Clerk because
the general Employee method is appropriate. Now suppose we want to print the four Employees on the list and
write this:

Employee* p;

for (p=Staff.Empls; p!=NULL; p=p->Next) p->Data->print(cout);

When we execute this loop, the Employee::print() function will be called four times. If it were an ordinary func-
tion, Employee::print() would be executed four times. However, that does not happen because Employee::print()
is virtual, which means that the most appropriate function in the class hierarchy will be executed when Em-
ployee::print() is called:

1. The system will dispatch Manager::print() to print M because M is a Manager.

2. To print C and D, Employee::print() will be used because the Clerk class does not have a print function
of its own.

3. To print the Accountant, A, the system will dispatch Accountant::print().

In all cases, the most specific applicable method is selected at run time and dispatched. It cannot be done at
compile time because three different methods must be used for the four Employees.

Two limitations. Virtual functions cannot be expanded inline because the correct method to apply is not
known until run time, when the actual type of the implied parameter can be checked. For this reason, using a
large number of virtual functions can increase execution time.

If you have a function that you want a derived class to inherit from its parent, do not define another function
with the same name in the derived class, even if its parameter list is different.

Two design guidelines. If you have a polymorphic base class:

1. . . . and you allocate memory in a derived class, you must make the base-class destructor virtual.

2. You can use the C++ dynamic_cast operator for safe run-time polymorphic casting.

15.3 Creating a Polymorphic Container

Overview of the demo program. The major example in this chapter is a polymorphic implementation
of linear containers. The class Container is an abstract class from which linear containers (lists, queues) and
non-linear containers (trees, hash tables) could be derived. Container supplies a minimal generic interface for
container clases (those that can be used to store collections of data items).

In this chapter and the next, we focus on linear containers. The class Linear is the base class for a
polymorphic family of list-based containers. From it we derive several data structures: Stack and Queue in
this chapter, List and Priority Queue in the next. All of these conform to the Container interface and Linear
implementation strategy but present different insertion and/or deletion rules. We use the containers in this
chapter to store objects of class Exam, consisting of a 3-letter name and an integer.

The classes Linear and Cell should be defined as templates so that they do not depend on the type of the
data in the list. Templates were not used here because they would complicate the structure of the program and
the important issue here is the structure of a polymorphic class. In a real application, both would be used.
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What to look for.

• A virtual function can be initially declared with or without a definition. For example, pop() is declared
without a definition in Container, but insert() is declared with a definition in Linear.

• A virtual function can be redefined (directly or indirectly) in a derived class, as Queue::insert() redefines
Linear::insert(). When redefinition is used, the derived-class method is often defined in terms of the
inherited method, as Stack::print() is defined in terms of Linear::print().

• If a function is declared virtual, then it is virtual in all derived classes.

• When a virtual function is executed on a member of the base class, the method defined for that function
in the appropriate derived class is dispatched, if it exists. Thus, when insert() is called from Linear::put()
to insert a new Cell into a Queue, Queue::insert() is dispatched, not Linear::insert(). If Linear::insert()
were not virtual, Linear::insert() would be executed.

15.3.1 Container: An Abstract Class

1 // ------------------------------------------------------------------------
2 // Abstract Containers
3 // A. Fischer June 10, 2001 file: contain.hpp
4 // ------------------------------------------------------------------------
5 #ifndef CONTAIN_H
6 #define CONTAIN_H
7 #include "exam.hpp"
8 #include "cell.hpp"
9

10 class Container {
11 public: // -----------------------------------------------------
12 virtual void put(Item*) =0; // Put Item into the Container.
13 virtual Item* pop() =0; // Remove next Item from Container.
14 virtual Item* peek() =0; // Look but don’t remove next Item.
15 virtual ostream& print(ostream&) =0; // Print all Items in Container.
16 };
17 #endif

A container is a place to store and retrieve data items of any sort which have been attached to cells. Each
container has its own discipline for organizing the data that is stored in it. In this section we develop a generic
linear container class from which special containers such as stacks or queues can be derived. We use the program
to illustrate the concepts, syntax, and interactions among a polymorphic base class and its implementation
classes.

The Container class presented here supplies implementation-independent functions that are appropriate for
any container and any contents type. Every container must allow a client program to put data items into the
container and get them back out. A print() function is often useful and is necessary for debugging.

15.3.2 Linear: A Polymorphic Class

A linear container is one that has a beginning and an end, and the data inside it is arranged in a one-dimensional
manner. It might be sorted or unsorted. The class Linear defines a simple, unsorted, linear container that is
implemented by a linked list, using a helper class named Cell. It defines a set of list-handling function that
can be written in a generic way so that they will apply to most or all linked-list linear containers. All of these
functions are protected except the public interface functions that were inherited from Container. The other
functions are not public because they allow a caller to decide how and where to put things into or take things
out of the list. This kind of control is necessary for defining Stack and Queue but not safe for public use.

Since Linear is derived from Container, it inherits all of the function prototypes of Container. Since these
functions are equally appropriate for use with an array or a linked list, Linear could be implemented either
way. We commit to a linked list implementation when we define the Linear constructor in line 37. The code for
reset() (line 39), end() (line 40), and all the functions in the .cpp file also rely on a linked list representation for
the data.
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18 // --------------------------------------------------------------------------
19 // Linear Containers
20 // A. Fischer June 12, 2001 file: linear.hpp
21 // --------------------------------------------------------------------------
22 #ifndef LINEAR_H
23 #define LINEAR_H
24 #include "contain.hpp"
25 #include "cell.hpp"
26 #include "tools.hpp"
27
28 class Linear: public Container {
29 protected: // -------------------------------------------------------------
30 Cell* head; // This is a dummy header for the list.
31
32 private: // -------------------------------------------------------------
33 Cell* here; // Cursor for traversing the container.
34 Cell* prior; // Trailing pointer for traversing the container.
35
36 protected: // -------------------------------------------------------------
37 Linear(): head(new Cell), here( NULL ), prior( head ) {}
38 virtual ~Linear ();
39 void reset() { prior = head; here = head->next; }
40 bool end() const { return here == NULL; }
41 void operator ++();
42
43 virtual void insert( Cell* cp );
44 virtual void focus() = 0;
45 Cell* remove();
46 void setPrior(Cell* cp){ prior = cp; here = prior->next; }
47
48 public: // --------------------------------------------------------------
49 void put(Item * ep) { if (ep) insert( new Cell(ep) ); }
50 Item* pop();
51 Item* peek() { focus(); return *here; }
52 virtual ostream& print( ostream& out );
53 };
54 inline ostream& operator<<(ostream& out, Linear& s) {return s.print(out); }
55 #endif

The two private data members in this class, together with the functions reset(), end(), and ++ permit us
to start at the beginning of the container and visit each member sequentially until we get to the end. The
reset() function sets the pointer named here to the first item in the container and sets prior to NULL. The
++ operator sets prior = here and moves here to the next item. At all times, these two pointers will point to
adjacent items in the container (or to NULL). The end() function returns true if here has passed the last item
in the container.

Three of the functions inherited from Container are no longer virtual, so the run-time dispatcher will not
look in the Stack or Queue class for an overriding definition when put(), pop() or peek() is called from within
Linear. One would expect put() to be virtual, since stacks and queues need different methods for putting an
item into the container. However, put() simply wraps the item in a Cell, then delegates the actual insertion
operation to insert(), which is virtual so that the specific and appropriate version of insert() in the derived
class (Stack, Queue, etc.) will always be dispatched. We say that the Linear class collaborates with Stack or
with Queue to handle the insertion task.

In a similar way, remove(), which is not virtual collaborates with focus(), which is virtual to focus the
deletion on the proper element of the list. Since this is a pure virtual function, Linear is an abstract class
that cannot be instantiated. The print() function is virtual for the same reason: to pass the responsibility to
a derived class that is the experts on how printing should be done. The destructor is virtual because C++
requires a virtual destructor in classes that have virtual functions.

The Container class refers to Cells but does not define Cell. From that class, all we know is that Cell is
a helper class that must be used when information is placed into the Container. At that stage, a Cell could
be the traditional linked-list cell or it could be just a typedef-synonym for Item*, appropriate for use with an
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array-based container. In the Linear class, we must commit to one representation or another, and we do commit
to using a linked list. The definition given here for Cell is the usual two-part structure containing an Exam*
and a Cell*. Nothing in Cell is virtual and everything is inline.

56 // ------------------------------------------------------------------------
57 // Linear Containers
58 // A. Fischer June 12, 2001 file: linear.cpp
59 // ------------------------------------------------------------------------
60 #include "linear.hpp"
61 // ------------------------------------------------------------------------
62 Linear::~Linear () {
63 for (reset(); !end(); ++*this) {
64 delete prior->data;
65 delete prior;
66 }
67 delete prior->data;
68 delete prior;
69 }
70 // ------------------------------ Move index to next Item in the container.
71 void
72 Linear::operator ++() {
73 if (!end() ){
74 prior = here;
75 here = here->next;
76 }
77 }
78 // ---------------- Put an Item into the container between prior and here.
79 // ------------- Assumes that here and prior have been positioned already.
80 void
81 Linear::insert(Cell* cp) {
82 cp->next = here;
83 here = prior->next = cp;
84 }
85 // ---------------- Take an Item out of the container. Like pop or dequeue.
86 // -- Assumes that here and prior have been positioned to the desired Item.
87 Cell*
88 Linear::remove() {
89 if (! here ) return NULL;
90 Cell* temp = here; // Grab cell to remove.
91 here = prior->next = temp->next; // Link around it.
92 return temp;
93 }
94 // ------------------------------------ Remove a Cell and return its Item.
95 Item*
96 Linear::pop(){
97 focus(); // Set here and prior for deletion point.
98 Cell* temp = remove(); // Remove first real cell on list.
99 if (!temp) return NULL; // Check for empty condition.

100 Item* answer = *temp; // Using cast coercion from Cell to Item.
101 delete temp; // Take contents out of cell, delete Cell.
102 return answer; // Return data Item.
103 }
104 // ---------------------------------------- Print the container’s contents.
105 ostream&
106 Linear::print (ostream& out ) {
107 out << " <[\n";
108 for (reset(); !end(); ++*this) out << "\t" <<*here;
109 return out << " ]>\n";
110 };
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As in previous linked list definitions, this Cell class gives friendship to Linear. One slight difference is the
friendship declaration on line 122, which is needed for the operator extension on line 139. We need to choose
one of three alternatives:

a. Using the friend function declaration,

b. Making the print function public, and

c. Not having an operator extension for class Cell.

In previous versions of this class, we chose strategy (c); this time we choose (a) because it makes the Linear::print
function shorter.

15.3.3 Cell: The Helper Class

111 // ------------------------------------------------------------------------
112 // A cell contains an Item* and a link. Cells are used to build lists.
113 // A. Fischer June 13, 2000 file: cell.hpp
114 // ------------------------------------------------------------------------
115 #ifndef CELL_H
116 #define CELL_H
117 #include "item.hpp"
118 #include <iostream.h>
119 // ------------------------------------------------------------------------
120 class Cell {
121 friend class Linear;
122 friend ostream& operator<<( ostream& out, Cell& c);
123
124 private: // ------------------------------------------------------------
125 Item* data;
126 Cell* next;
127
128 Cell(Item* e = NULL, Cell* p = NULL ): data(e), next(p){ }
129 ~Cell(){ cerr <<"\n Deleting Cell 0x" <<this << dec <<"..."; }
130 operator Item*() { return data; } // Cast Cell to Item*. ------------
131
132 void print(ostream& out) const { // --------------------------------
133 if (data) {
134 out << "Cell 0x" << this;
135 out << " [" << *data << ", " << next << "]\n";
136 }
137 }
138 };
139 inline ostream& operator<<(ostream& out, Cell& c){c.print(out); return out;}
140 #endif

One new technique is introduced in Cell: we define a cast (line 130) from type Cell to type Exam*. This cast
can be used explicitly, just like a built-in cast function or it can be used by the compiler to coerce (automatically
convert) the type of an argument. For example, Line 100, in Linear::pop(), could be written two ways, as shown
below.

Item* answer = (Item*)(*temp); // Explicit use of a cast from Cell to Item*.

Item* answer = *temp; // Using cast coercion from Cell to Item*.

The first uses cast operation explicitly. The second supplies *temp in a context where an Item* is required. The
compiler will find the cast operator on line 130 and use it to coerce the argument on the right to the type of
the variable on the left.

15.3.4 Exam: The Actual Data Class

The linear containers defined above would be appropriate to store any kind of data. The data class used here
is very simple but could be much more complex. It is used again in the next chapter where it is extended by
adding comparison functions and a key() function so that the data can be sorted.
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141 //===========================================================================
142 // Exam: A student’s initials and one exam score.
143 // A. Fischer, October 1, 2000 file: exam.hpp
144 //===========================================================================
145 #ifndef EXAM_H
146 #define EXAM_H
147 #include <string.h>
148 #include <iostream.h>
149 typedef int KeyType;
150 //---------------------------------------------------------------------------
151 class Exam // One name-score pair
152 {
153 private: //---------------------------------------------------------------
154 char Initials [4]; // Array of char for student name
155 protected://---------------------------------------------------------------
156 int Score; // Integer to hold score
157 public: //----------------------------------------------------------------
158 Exam (const char* init, int sc){
159 strncpy( Initials, init, 3 );
160 Initials[3] = ’\0’;
161 Score = sc;
162 }
163 ~Exam (){ cerr << " Deleting Score " <<Initials <<"..."; }
164 ostream& Print ( ostream& os ){
165 return os <<Initials <<": " <<Score <<" ";
166 }
167 };
168 //---------------------------------------------------------------------------
169 inline ostream& operator << (ostream& out, Exam& T){ return T.Print( out ); }
170 #endif

174 //===========================================================================
175 // Bind abstract name ITEM to the name of a real class.
176 // A. Fischer, June 15, 2000 file: item.hpp
177 //===========================================================================
178 #ifndef ITEM_H
179 #define ITEM_H
180 typedef Exam Item;
181 #endif

15.3.5 Class diagram.

Figure 15.3.5 is a UML diagram for this program, showing the polymorphic nature of Linear and its relation to
Cell, Stack, and Queue.

15.4 Stack: Fully Specific

A Stack is a container that implements a LIFO discipline. In this program, we derive Stack from Linear and, in
so doing, we represent a stack by a linear linked list of Cells. From Linear, Stack inherits a head pointer, two
scanning pointers (here and prior) and a long list of functions.

Notes on the Stack code.

• The list head pointer is protected, not private in Linear, because some derived classes (for example
Queue), need to refer to it. The scanning pointers are private because the derived classes are supposed
to use Linear::setPrior() rather than setting the pointers directly. This guarantees that the two scanning
pointers are always in the correct relationship to each other, so that insertions and deletions will work
properly. It also saves lines of code in the long run, since they are written once in Linear instead of
multiple times in the derived classes.
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Figure 15.3: UML diagram for the Polymorphic Linear Container

• The Stack constructor and destructor are both null functions; they are supplied because it is bad style
to rely on the defaults. The program does work perfectly well without either. Five functions are defined
explicitly in Stack.

182 // -------------------------------------------------------------------------
183 // Stacks, with an inheritance hierarchy
184 // A. Fischer June 8, 2001 file: stack.hpp
185 // -------------------------------------------------------------------------
186 #ifndef STACK_H
187 #define STACK_H
188 #include "linear.hpp"
189
190 // -------------------------------------------------------------------------
191 class Stack : public Linear {
192 public:
193 Stack(){}
194 ~Stack(){}
195 void insert( Cell* cp ) { reset(); Linear::insert(cp); }
196 void focus(){ reset(); }
197
198 ostream& print( ostream& out ){
199 out << " The stack contains:\n";
200 return Linear::print( out );
201 }
202 };
203 #endif

• Stack defines focus(), which is abstract in Linear. This is called by Linear::remove() to set prior and here
so that the first Cell in the container will be returned. (Last in, first out.)

• Since focus(), was the only remaining pure virtual function in Linear. Since we define it here, Stack
becomes a fully specified class and can be used to create objects (that is, it can be instantiated.)
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• Linear::put(Exam*) calls Insert, which is defined in both Linear and Stack. Because insert() is virtual, the
version in Stack will be used to execute the call written in Linear::put(). We want to insert the new Cell
at the head of the list because this is a stack. The actual insertion will be done by Linear::insert(), after
Stack::insert() positions here and prior to the head of the list by calling reset(). The left side of figure
15.4 illustrates how control passes back and forth between the base class and the derived class during this
process.

main

: Stack 

: Linear

cout << s: Stack

2: print(s)  
        V 

3: print() 

1.  print( s)

main

: Stack 

: Linear

1.  put ( s: Stack, p:Item*)

3: insert(a)  
        V 

4: reset() 

cell

5:  insert(a)

2: a = new

Figure 15.4: How the classes collaborate during Stack::put (left) and Stack::print (right).

• The redefinition of print() is not absolutely necessary here; all it does is to print a few words (“The stack
contains:”) and call Linear::print() to print the contents. For contrast, the Queue class does not define
a print function. However, the collaboration between the two print() functions and the << operator is
instructive.

In the main program, we never call the print functions directly. All printing is done by statements like
cerr << S; But Stack and Queue do not supply definitions for operator<<, so the output task is given
(by inheritance) to the definition in Linear (line 54). It, in turn, calls Linear::print(), which is virtual,
and dispatches the job to Stack::print() because S is a stack. Stack::print() prints the output label and
calls Linear::print() to finish the job. The class name is necessary only in the last call; all other shifts of
responsibility are handled by inheritance or virtual dispatching. This activity is diagrammed on the right
in Figure 15.4

15.5 Queue: Fully Specific

204 // -------------------------------------------------------------------------
205 // Queues: derived from Container-<--Linear-<--Queue
206 // A. Fischer June 9, 2001 file: queue.hpp
207 // -------------------------------------------------------------------------
208 #ifndef QUEUE_H
209 #define QUEUE_H
210 #include "linear.hpp"
211
212 // -------------------------------------------------------------------------
213 class Queue : public Linear {
214 private:
215 Cell* tail;
216
217 public: // -----------------------------------------------------
218 Queue() { tail = head; }
219 ~Queue(){}
220
221 void insert( Cell* cp ) { setPrior(tail); Linear::insert(cp); tail=cp;}
222 void focus(){ reset(); }
223 };
224 #endif
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A queue is a container that implements a FIFO discipline. This Queue is a linear linked list of Cells with
a dummy header. This declaration of Queue follows much the same pattern as Stack. However, Queue uses
the inherited Linear::print(), instead of defining a specific version of its own. This is done for demonstration
purposes; we recognize that better and more informative formatting could be achieved by defining a specific
local version of print().

Q

here
prior

Data Next
head

tail

Q

Data Next

Ali\0 11

here
prior

head

tail

Figure 15.5: The Queue named Q, newly constructed and after one insertion.

Notes on the Queue code.

• Linear has three data members (head, prior and here), and Queue has one (tail). The constructor of
each class must initialize the data members in its own class. When a Queue is constructed, all four are
initialized to create an empty linked list with a dummy header, as in Figure 15.5. An important issue here
is that the constructor of the base class, Linear, is executed first. It creates a dummy cell and attaches
it to the head and prior pointers. When control gets to the Queue constructor, the dummy cell will exist
and it is easy to attach the tail pointer to it.

• Queue::insert(Item*) set here and prior to the tail of the list so that insertions will be made after the last
list cell. As before, Linear::insert() then finishes the job and does the actual insertion. Almost no code is
duplicated because the classes collaborate.

• Queue defines focus(), which is abstract in Linear, to set the scanning pointers to the beginning of the
Queue. The result is that the earliest insertion will be the next removal (FIFO).

• When an inherited virtual function (such as pop) is called, control passes back and forth between the base
class and the derived class, as shown in Figure 15.4.

main

: Queue 

: Linear

  pop ( q: Queue )

1: focus  V 1.1: reset() 

t : cell

2: t = remove()

3: a = (Item) t

4: return a

Figure 15.6: How the classes collaborate during Queue::pop().

• The output (following main) shows that the queue Q was printed by the inherited function, Linear::print().

• If Linear::insert() is not virtual, insertion is done incorrectly for queues. I removed the “virtual” property
and got the following output :

Putting 3 items on the Queue Q: 11, 22, 33.
]>
<[ Cell 0x0x804c498 [Cil: 33 , 0x804c478]

Cell 0x0x804c478 [Bea: 22 , 0x804c458]
Cell 0x0x804c458 [Ali: 11 , (nil)]

]>

Compare it to the correct output at the end of this chapter, where Ali comes first in the queue.
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15.6 A Main Program and its Output

226 // ------------------------------------------------------------------------
227 // Demonstration of derived classes with virtual functions.
228 // A. Fischer June 15, 1998 file: main.cpp
229 // ------------------------------------------------------------------------
230 #include "tools.hpp"
231 #include "exam.hpp" // Must precede #include for item.hpp.
232 #include "item.hpp" // Abstract base type for stacks and queues.
233 #include "stack.hpp" // Base type is Item == Exam.
234 #include "queue.hpp" // Base type is Item == Exam.
235 // ------------------------------------------------------------------------
236 int main( void ) {
237 Stack S;
238 Queue Q;
239
240 cerr << "\nPutting 3 items on the Stack S: 99, 88, 77.\n" ;
241 S.put( new Exam("Ned", 99) ); //cerr << S << endl;
242 S.put( new Exam("Max", 88) ); //cerr << S << endl;
243 cerr << " Peeking after second insertion: " <<*S.peek() <<"\n";
244 S.put( new Exam("Leo",77) ); cerr << S << endl;
245
246 cerr << "Putting 3 items on the Queue Q: 11, 22, 33.\n";
247 Q.put( new Exam("Ali",11) ); //cerr << Q << endl;
248 Q.put( new Exam("Bea",22) ); //cerr << Q << endl;
249 cerr << " Peeking after second insertion: " <<*Q.peek() <<"\n";
250 Q.put( new Exam("Cil",33) ); cerr << Q << endl;
251
252 cerr << "Pop two Exams from Q, put on S. \n";
253 S.put(Q.pop()); S.put(Q.pop()); cerr <<"\n" <<S << endl;
254
255 cerr << "Put another Exam onto Q: 44.\n";
256 Q.put( new Exam("Dan",44) ); cerr << Q << endl;
257
258 cerr << "Pop two Exams from S and discard.\n";
259 delete S.pop();
260 delete S.pop(); cerr <<"\n" << S << endl;
261 bye();
262 }

To test the linear container classes, we wrote a meaningless main program that instantiates one Stack and
one Queue and moves data onto both and from one to the other. The call graph in Figure 15.6 attempts to
show the ways that functions are actually called, after dynamic dispatching. In this chart, grey circles that say
“V” mark virtual dispatching and circles that say “I” show calls that were made through inheritance.

Enough function calls are made to demonstrate that the classes work properly; the contents of S and Q are
printed just often enough to see the data move into and out of each container. Note that several diagnostic
output commands were used during debugging and are now commented out.

• The Queue implements a first-in first-out order.

• The Stack implements a last-in first-out order.

• peek() returns the same thing that pop() would return, but does not remove it from the list.

• Stack::print() is used to print the stack but the inherited Linear::print() prints the queue.

• All dynamically allocated objects are properly deleted.

The output:

Putting 3 items on the Stack S: 99, 88, 77.
Peeking after second insertion: Max: 88
The stack contains:
<[ Cell 0x0x804c988 [Leo: 77 , 0x804c968]

Cell 0x0x804c968 [Max: 88 , 0x804c948]
Cell 0x0x804c948 [Ned: 99 , (nil)]

]>
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Putting 3 items on the Queue Q: 11, 22, 33.
Peeking after second insertion: Ali: 11
<[ Cell 0x0x804c9a8 [Ali: 11 , 0x804c9c8]

Cell 0x0x804c9c8 [Bea: 22 , 0x804c9e8]
Cell 0x0x804c9e8 [Cil: 33 , (nil)]

]>

Pop two Exams from Q, put on S.

Deleting Cell 0x0x804c9a8...
Deleting Cell 0x0x804c9c8...
The stack contains:
<[ Cell 0x0x804c9c8 [Bea: 22 , 0x804c9a8]

Cell 0x0x804c9a8 [Ali: 11 , 0x804c988]
Cell 0x0x804c988 [Leo: 77 , 0x804c968]
Cell 0x0x804c968 [Max: 88 , 0x804c948]
Cell 0x0x804c948 [Ned: 99 , (nil)]

]>

Put another Exam onto Q: 44.
<[ Cell 0x0x804c9e8 [Cil: 33 , 0x804ca08]

Cell 0x0x804ca08 [Dan: 44 , (nil)]
]>

Pop two Exams from S and discard.

Deleting Cell 0x0x804c9c8... Deleting Score Bea...
Deleting Cell 0x0x804c9a8... Deleting Score Ali...
The stack contains:
<[ Cell 0x0x804c988 [Leo: 77 , 0x804c968]

Cell 0x0x804c968 [Max: 88 , 0x804c948]
Cell 0x0x804c948 [Ned: 99 , (nil)]

]>
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Figure 15.7: A call graph for the linear container program.

Termination. After printing the termination message, the objects Q and S will go out of scope and be
deallocated. An output trace can serve as part of a proof that deallocation is done correctly and fully, without
crashing. The output trace from main is given below, with a call graph (Figure 15.6) showing how control moves
through the destructors of the various classes.

Normal termination.

Deleting Cell 0x0x804c928... Deleting Score Cil...
Deleting Cell 0x0x804c9e8... Deleting Score Dan...
Deleting Cell 0x0x804ca08...
Deleting Cell 0x0x804c918... Deleting Score Leo...
Deleting Cell 0x0x804c988... Deleting Score Max...
Deleting Cell 0x0x804c968... Deleting Score Ned...
Deleting Cell 0x0x804c948...
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Cell 
~Cell

Linear 
reset

Linear 
end

Linear 
++

Linear 
~Linear

Exam 
~Exam

Stack 
~Stack

Queue 
~Queue

main

Figure 15.8: Terminating the linear container program.



Chapter 16: Abstract Classes and Multiple Inheritance

From the Holy Bible, New King James Version, Proverbs 22:6.

Train up a child in the way he should go, and when he is old he will not depart from it.

An abstract class declares a set of behaviors (function prototypes) that all of its descendents must follow (or
implement). Documentation accompanying the abstract class must explain the purpose of each function and
how each interacts with other parts of the class. Derived classes must implement all of the functions, and should
obey the guidelines explained in the documentation.

16.1 An Abstract Class Defines Expectations

Abstract classes. When a base class includes even one prototype for a pure virtual function, it is an abstract
class which cannot be used to create objects. However, such classes do have a purpose and they are important
in the process of developing a large system. An abstract class lets us define and enforce a common interface, or
behavior, for a set of related classes. Class derivation, combined with methods defined in the derived class(es)
make the abstraction useful.

An abstract class specifies a set of virtual representation-dependent function prototypes for which definitions
will be required in future derived classes. By doing so, it enables a large system to be developed in a top-down
style.

The first development step is to define the major modules. The interface that each module provides is then
written The compiler will ensure that no necessary part of A is forgotten, and that all functions conform to the
prototypes that were promised.

Large systems developed by teams of programmers are built this way. First, each major system component
is identified. As soon as its role in the system is clear, its public interface can be defined in the form of an
abstract class declaration. The abstract class forms a contract for the programming team that will develop the
component, and different people (or teams) will work on different subsystems simultaneously.

Suppose a system designer has specified modules named A, B, and C. Since all the prototypes provided
by module A are defined, programmers working on modules B and C can begin to write code that calls the
functions of A, even before A is fully implemented. Derivation is used to connect the abstract interfaces to their
implementation modules. When modules are complete, the subsystems can be easily integrated because the
established prototypes guarantee that functions in one module will be able to call functions in another module
that were programmed by a different person.

Definitions and rules.

• The opposite of abstract is concrete. A concrete class can have virtual functions, but all of those functions
must have methods defined within the class itself or its ancestor classes.

• An abstract class cannot be instantiated, that is, used to construct any objects.

• Any class that has one or more pure virtual functions is called an abstract class.

• Abstract classes is polymorphic if more than one concrete class is derived from it.

16.2 Abstraction Example: an Ordered Type

Two abstract classes are used in this chapter’s program: Container (from the previous chapter) and Ordered.

• Container defines the interface that should be presented by any container class: a way to put data into
the container (put()), and find it when needed (get()), take it out of the container (remove()), write the
contents of the container to a stream (print()).

195
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• Ordered defines prototypes for functions that are needed when you sort data items: comparison functions,
sentinels, and a way to access the key field of the data.

1 // ------------------------------------------------------------------------
2 // Ordered base class -- An abstract class
3 // A. Fischer June 8, 1998 file: ordered.hpp
4 //
5 #ifndef ORDERED_H
6 #define ORDERED_H
7 #include <limits.h>
8 #include <iostream.h>
9 // ------------------------------------------------------------------------

10 class Ordered {
11 public:
12 virtual ~Ordered(){}
13 virtual KeyType key() const =0;
14 virtual bool operator < (const KeyType&) const =0;
15 virtual bool operator == (const KeyType&) const =0;
16 };
17 #endif

Specifying and enforcing requirements. The purpose of a container is to store a collection of items. The
data stored in an item is not important; we use the class name Item as a representative of any kind of object
that a containers might store. However, a few properties of an Item are essential for use with a sorted container:

• The Item must contains a key field and a key() function that returns the key.

• The operators < and == must be defined to compare two Items. Items will be compared using one or both
of these operators. They will be stored in the container in ascending order, as defined by the operator <.

• A programmer who creates an Ordered class must supply the appropriate typedef for KeyType and
appropriate definitions for the operators and sentinels that define the minimum and maximum possible
values for a KeyType object.

The first two properties can be specified by defining an abstract class, Ordered, that gives prototypes (but no
definitions) for the three required functions. We can enforce these requirements in a data class by deriving the
data class from Ordered. When we do this, we instruct the compiler to guarantee that the derived data class
does implement every function listed by Ordered. If one of the functions is missing, the compiler will give an
error comment.

16.3 Multiple Inheritance

A class may be derived from more than one parent class. (We must #include the header files for each parent
class.) The purpose of such multiple inheritance is:

• Simple form: to inherit properties from one parent and constraints from another.

• General form: inherit properties from two parent classes

The syntax is a simple extension of ordinary derivation. We use it here (line 30) to combine the properties
of the Exam class from the previous chapter with the abstract Ordered class. The new class is a wrapper for
Exam that provides more functions than the original class but does not duplicate the ones that Exam supplies
(Print() and operator<<).

16.3.1 Item: The Data Class

In the previous chapter, we used a typedef to make Item a synonym for the Exam class. In this chapter, we do
more with Item: we use multiple inheritance to add constraints and functionality to the original Exam class.
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18 //--------------------------------------------------------------------------
19 // Class declaration for data items.
20 // A. Fischer, May 29, 2001 file: item.hpp
21 //
22 #ifndef ITEM_H
23 #define ITEM_H
24 #include <limits.h>
25
26 typedef int KeyType;
27 #include "exam.hpp"
28 #include "ordered.hpp"
29 //--------------------------------------------------------------------------
30 class Item : public Exam, public Ordered {
31 public:
32 static const KeyType max_sentinel = KeyType(INT_MAX);
33 static const KeyType min_sentinel = KeyType(INT_MIN);
34
35 Item(char* init, int sc): Exam(init, sc){}
36 ~Item() { cerr <<"Deleting Item " << key() <<"\n"; }
37
38 KeyType key() const { return Score; }
39 bool operator==(const KeyType& k) const { return key() == k; }
40 bool operator< (const KeyType& k) const { return key() < k; }
41 bool operator< (const Item& s) const { return key() < s.key(); }
42 };
43 #endif
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Exam( const char*, int ) 
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+
+
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~Item()
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operator< (const Ordered&)
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+
+
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+
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+
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max_sentinel : static const KeyType  
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key()                     : KeyType
operator< (const Ordered&): bool
operator==(const Ordered&): bool
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C
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=0

+
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Figure 16.1: Inheriting both functionality and constraints.

Notes on the Item class. Two comparison operators and the key() function are required for Item because
it was derived from Ordered. We define these three functions (lines 38–40) in such a way that Score (inherited
from Exam) is the key field and the exams will be sorted in ascending order by Score. A third comparison
function (line 41) is added for the convenience of client classes.

The Item class also defines two constants that are often needed for sorting algorithms: the maximum and
minimum values of type KeyType. Line 24 tells us that KeyType is a synonym for int; the int values used here
are supplied by the file <limits.h> in the standard library.

The Item constructor does nothing but pass its arguments through to the Exam constructor because it has
no variables of its own that need initialization. The virtual destructor in the Ordered class is necessary to avoid
warning comments in the Item class. For example, without that seemingly useless function, we get a warning
comment about line 42:

item.hpp:42: warning:
‘class Item’ has virtual functions but non-virtual destructor

With these definitions, Item fulfills all the inherited obligations, the class is concrete and can be used
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normally. This class will be used with Linear and Cell from the prior chapter to build two new container classes:
List and Priority Queue.

16.4 Linear Containers You Can Search

In this chapter we develop two new container classes from Linear. In a stack or a queue, all insertions and
deletions are at one of the ends of the container; we never need to locate a spot in the middle. In contrast, a
priority queue requires all insertions to be made in sorted order, and a simple list requires a search whenever
an item is removed. To develop these classes in a general way, we assume that each Cell will contain an Item
that is derived from Ordered, and we use the functions promised by Ordered to define three new functions in
the Linear class:

bool Linear:: operator < ( Cell* cp ) { return (*cp->data < *here->data); }
bool Linear:: operator < ( KeyType k ){ return *here->data < k; }
bool Linear:: operator== ( KeyType k ){ return *here->data == k; }

These functions allow us to search or sort a linear container according to the key field of the Item.

16.4.1 PQueue: a Sorted Linear Container

Notes on the PQueue code Items are deleted from a priority queue at the head of the list, just like an
ordinary queue. Preparation for a deletion is easy because Linear provides the reset() function to position its
pointers at the head of the list.

In a priority queue, items are inserted in priority order in the list and removed from the head of the list.
To do the insertion, we must scan the list to locate the correct insertion spot: the item at prior should have
higher priority (a higher key number than the new item) and the item at here the same or lower priority. The
loop on lines 60–62 performs such a scan using the < operator and list traversal functions (reset(), end(), and
++) that are provided by Linear. Each reference to *this calls an operator defined by Linear and inherited by
PQueue. When the right place is found, control is returned to Linear to do the actual insertion.

The only other functions here are a null constructor and a null destructor. Neither is necessary because
the compiler will supply them by default. (Compare this class to List, below, in which the constructor and
destructor have been omitted.) We write explicit functions because it is good style.

44 // ------------------------------------------------------------------------
45 // Priority queues: derived from Container-<--Linear-<--PQueue
46 // A. Fischer June 9, 2001 file: pqueue.hpp
47 // ------------------------------------------------------------------------
48 #ifndef PQUEUE_H
49 #define PQUEUE_H
50 #include "linear.hpp"
51
52 class PQueue : public Linear {
53 public: // -----------------------------------------------------
54 PQueue(){}
55 ~PQueue(){}
56 void focus(){ reset(); } // Priority queue deletion is at the head.
57
58 // ------------------------ Insert new Cell in ascending sorted order.
59 void PQueue::insert( Cell* cp ) {
60 for (reset(); !end(); ++*this) { // locate insertion spot.
61 if ( !(*this < cp) )break;
62 }
63 Linear::insert( cp ); // do the insertion.
64 }
65 };
66 #endif
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16.4.2 List: An Unordered Container

Notes on the List code The List class provides a container with no special rules for insertion, deletion, or
internal order. Since the order of items in the list does not matter, we use the easiest possible insertion method:
insertion at the head, as in Stack. However, removing an item creates two new problems: how can we specify
which item to remove, and how can we find it? The removal function required by Container does not have a
parameter, but to remove an item from a List, we must know the key of the desired item. We solve the problem
here by making the required focus() function interactive; it asks the operator to input a key. In a real program,
the List class would probably have another public function that could be called with a parameter.

Once we know the key to remove, we search the list sequentially for a matching key. Since the list is
unsorted, we must search the entire list before we know whether or not the key is in the list. If it is not, the
pointer here will be NULL when we return from this function to Linear::remove(); the remove() will pass on
the NULL it received to its caller, main().

67 // ------------------------------------------------------------------------
68 // Unsorted list: derived from Container-<--Linear-<--List
69 // A. Fischer June 9, 2001 file: list.hpp
70 // ------------------------------------------------------------------------
71 #ifndef LIST_H
72 #define LIST_H
73 #include "linear.hpp"
74 #include "item.hpp"
75
76 // ------------------------------------------------------------------------
77 class List : public Linear {
78 public:
79 void insert( Cell* cp ) { reset(); Linear::insert(cp); }
80
81 // --------------------------------------------------------------------
82 void focus(){
83 KeyType k;
84 cout <<"\n What key would you like to remove? ";
85 cin >> k;
86 for (reset(); !end(); ++*this) if (*this == k) break;
87 }
88 };
89 #endif
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Figure 16.2: UML for all the Linear classes.
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16.4.3 The Main Program

This main program has only one purpose: to test the two new classes. It puts meaningless data into two
containers, takes some back out, and prints the results. The test results shown on the next page prove that
insertions into the PQueue are implemented in the correct order, and that removal from the middle of the list
works correctly. Other test runs verified that removal from head and tail of list, and attempted removal of a
key that did not exist, also work properly. Trace comments after termination show that 9 cells (7 data cells and
2 dummy headers) and 7 Items were deleted by the destructors.

90 // ------------------------------------------------------------------------
91 // Demonstration of derived classes with virtual functionL.
92 // A. Fischer June 15, 1998 file: main.cpp
93 // ------------------------------------------------------------------------
94 #include "tools.hpp"
95 #include "pqueue.hpp"
96 #include "list.hpp"
97 #include "item.hpp"
98 // ------------------------------------------------------------------------
99 int main( void ) {

100 PQueue P;
101 List L;
102 cerr << " Print the empty List L.\n" <<L;
103 cerr << "\n Putting 3 items onto List L: 99, 77, 88.\n" ;
104 L.put( new Item("Ned", 29) ); //cerr << L << endl;
105 L.put( new Item("Leo", 37) ); //cerr << L << endl;
106 L.put( new Item("Max", 18) ); cerr << L << endl;
107
108 cerr << " Putting 3 items onto PQueue P: 22, 11, 44.\n" ;
109 P.put( new Item("Bea",22) ); //cerr << P << endl;
110 P.put( new Item("Ali",11) ); //cerr << P << endl;
111 P.put( new Item("Dan",44) ); cerr << P << endl;
112
113
114 cerr << " Remove one item from L and queue on P." ;
115 P.put( L.pop()) ;
116
117 cerr << "\n Dequeue one item from P and push onto L." ;
118 L.put( P.pop()) ;
119
120 cerr << "\n Pushing 33 onto P.\n" ;
121 cerr << "\n Peek at P: " << *P.peek() <<" \n";
122 cerr <<"\n The list contains: \n" << L;
123 P.put( new Item("Cil",33) );
124 cerr <<"\n The priority queue contains: \n" << P << endl;
125 bye();
126 }

The output.

Print the empty List L.
<[
]>

Putting 3 items onto List L: 99, 77, 88.
<[

Cell 0x0x33650 [Max: 18 , 0x33630]
Cell 0x0x33630 [Leo: 37 , 0x33610]
Cell 0x0x33610 [Ned: 29 , 0x0]

]>

Putting 3 items onto PQueue P: 22, 11, 44.
<[

Cell 0x0x336b0 [Dan: 44 , 0x33670]
Cell 0x0x33670 [Bea: 22 , 0x33690]
Cell 0x0x33690 [Ali: 11 , 0x0]

]>

Remove one item from L and queue on P.
What key would you like to remove? 37
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Deleting Cell 0x0x33630...
Dequeue one item from P and push onto L.
Deleting Cell 0x0x336b0...
Pushing 33 onto P.

Peek at P: Leo: 37

The list contains:
<[

Cell 0x0x336b0 [Dan: 44 , 0x33650]
Cell 0x0x33650 [Max: 18 , 0x33610]
Cell 0x0x33610 [Ned: 29 , 0x0]

]>

The priority queue contains:
<[

Cell 0x0x33630 [Leo: 37 , 0x376f0]
Cell 0x0x376f0 [Cil: 33 , 0x33670]
Cell 0x0x33670 [Bea: 22 , 0x33690]
Cell 0x0x33690 [Ali: 11 , 0x0]

]>

Normal termination.

Deleting Cell 0x0x335f0...Deleting Item 44
Deleting Score Dan...

Deleting Cell 0x0x336b0...Deleting Item 18
Deleting Score Max...

Deleting Cell 0x0x33650...Deleting Item 29
Deleting Score Ned...

Deleting Cell 0x0x33610...
Deleting Cell 0x0x335e0...Deleting Item 37

Deleting Score Leo...
Deleting Cell 0x0x33630...Deleting Item 33

Deleting Score Cil...
Deleting Cell 0x0x376f0...Deleting Item 22

Deleting Score Bea...
Deleting Cell 0x0x33670...Deleting Item 11

Deleting Score Ali...
Deleting Cell 0x0x33690...

multiple has exited with status 0.

16.5 C++ Has Four Kinds of Casts

16.5.1 Static Casts

A static cast is an ordinary type conversion. It converts a value of one type to a value with approximately the
same meaning in another type. The conversion can be a lengthening (short to long), a shortening (int to char),
or a change in representation (float to int). The C and C++ languages support the built in type conversions
shown in Figure 16.5.1 These are called “static” casts because the compiler finds out that they are needed at
compile time and generates unconditional conversion code at that time.

char
short int

int  bit field
unsigned int

int

*

float double long doubleany type integer

int  is used if it can represent 
all values of the original type.  
Otherwise unsigned int is used.

*

Figure 16.3: Built-in type conversions in C and C++.

Explicit casts. A static cast can be called explicitly using ordinary C syntax. In addition, C++ has two new
ways to call a cast:

int k, m, *ip;
float f, *fp;
f = (float)k; // traditional C syntax.
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f = float(k); // function-call syntax.
f = static_cast<float>(k); // explicit C++ syntax.

Coercion. Coercion, or automatic type conversion, happens when a function call is encountered, and the type
of an argument does not match the declared type of its parameter. In this case, the argument will be converted
to the parameter type, if the compiler has a method for doing so. Coercion is also used to make operands match
the type-requirements of operators. In C, coercion is limited to primitive types. However, in C++, it can also
apply to a class type, say Cls:

• If an object of type T is used where a Cls object is needed, and the class Cls contains a constructor with
one parameter of type T, the constructor will be used to coerce the T value to a value of type Cls.

• If an object of type Cls is used where a T object is needed, and the class Cls contains a cast operator
whose result is type T, the cast operator will be used to coerce the Cls object so that the context makes
sense.

16.5.2 Reinterpret Casts

A reinterpret cast is a type trick performed with pointers. It relabels the pointer’s base type without changing
any bits of either the pointer or its referent. This is like putting lamb’s clothing on a wolf. Using a reinterpret
cast, a program can access a value of one type using a pointer of a different type, without compiler warnings.
(See Figure 16.5.2, line 147.) This lets us perform nonsensical operations such as adding incompatible values.
For example, the reinterpret cast in the following program lets us relabel the integer 987654321 as a float, then
add 1.0 to it to produce garbage:

140 #include <iostream.h>
141 using namespace std;
142 // ------------------------------------------------------------ File: "assign.cpp"
143 int main( void )
144 {
145 int my_int = 987654321;
146 int* p_int = & my_int;
147 float* p_float = (float*) p_int;
148 float answer = *p_float + 1.0;
149 cerr <<answer <<"\n";
150 }

p_int

p_float

my_int
987654321

Figure 16.4: Relabeling the type of an object.

The answer is garbage: 1.0017, not 987654322 because The integer value and the floating point 1.0 were
added to each other without any type conversion. The primary applications for reinterpret casts are hash
functions and input conversion functions like strtod() and strtol().

Alternative syntax. Ordinary C syntax or C++ syntax with angle brackets can be used to invoke a reinter-
pret cast:

fp= (float*)p_int // ordinary C syntax.
fp= reinterpret_cast<float*>(ip); // explicit C++ syntax.

16.5.3 Const Casts

A const cast provides a way to remove the const property from a pointer variable just long enough to change
the value of its referent. This lets us use a constructor (or any class function) instead of a ctor to initialize a
const class member.
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127 #include <iostream.h>
128 int main( void )
129 {
130 int w = 99;
131 const int* cip = &w;
132
133 cout <<" &w is " <<&w <<" referent of cip is " <<cip <<endl;
134 cout <<" w= " <<w <<" *cip= " <<*cip <<endl;
135
136 * const_cast<int*>(cip) = 33;
137 //*cip = 33;
138 cout <<" w= " <<w <<" *cip= " <<*cip <<endl;
139 }

When we write *cip = 33; without a const cast, we get a const violation error:

const.cpp: In function ‘int main ()’:
const.cpp:165: assignment of read-only location

With a const cast, we are permitted to change the location and we get output:

&w is 0xbffff714 referent of cip is 0xbffff714
w= 99 *cip= 99
w= 33 *cip= 33

16.5.4 Dynamic Casts

Dynamic casts are used with polymorphic classes, and can cast either pointers or references. Dynamic casts
can move either upward or downward on the derivation tree. In Figure 16.6, a cast from B to D would be a
downward cast, a cast from B to A would be an upward cast.

Suppose class D is derived from class B, as in the figure, and suppose p is a pointer (or a reference) to
an object of class D. Then we can use a dynamic cast to relable p as a B pointer (or reference). An upward
dynamic cast (from D to B) is always meaningful because any derived-class object includes a base-class object
as part of itself.

According to my compiler, no downward casts are permitted at all. Accordiing to the Schildt text, some
downward casts are permitted, but they are more complex and require a run-time check. Here is what Schildt
says: If a pointer, p, has type A* it could be pointing at an object of any one of the four types A, B, C, or D.
A down-cast of p from A* to B* would be meaningful if p’s referent were actually type B or D, because these
classes actually have all the members required by type B. However, such a down-cast would not be meaningful if
p’s referent were actually type A or C because some of B’s members would be missing. It could cause a run-time
crash if such a cast were permitted. To prevent such problems, the legality of every down-cast is checked at run
time. A bad pointer down-cast will return a NULL result. A bad reference down-cast will throw an exception.

When do I use a dynamic-cast? You don’t need to use an explicit dynamic cast to move up a derivation
tree. The dynamic cast is done automatically whenever you use a derived-class object in a base-class context,
or set a base-class pointer to point at a derived-class object. For this reason, it is hard to find a good use for
an explicit dynamic cast in a simple program.

The rules for using dynamic casts are complicated by private parts, private derivation, and multiple inher-
itance. Some examples are given in the next section to illustrate these issues and show what kind of dynamic
casts are and are not permitted in a multiple-inheritance situation.

16.6 Virtual Inheritance and Dynamic Casts

As long as derivation is used singly—so that a derived class has only one parent with data members—inheritance
works smoothly, the storage model is easy to implement, and it is not hard to understand how it works. However,
when a class inherits data members from two parents, two serious problems can occur:
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• The this pointer points at the beginning of the entire object, consisting of the parts of the first parent,
followed by the parts of the second, and finally, the parts of the derived class. To apply a function inherited
from the second class, the compiler must compute where this should point for that part of the object.
Dynamic casts are related to this problem.

• A class could inherit the same grandparent from two parents. If the grandparent has data members, are
two copies of each inherited? Virtual inheritance exists to prevent this. When used in this way, the word
virtual has nothing to do with virtual functions.

x
aa

Object diagrams:Declarations:

A  aa;
B  bb;
C  cc;
D  dd; bb

A::x
B::a
B::x

dd
A::x
B::a
B::x
C::a
D::f

cc
A::x
C::a

-V

A
+ x: double 
+ dump(): void

B C

D

+V

+  a: int
+ x: double
+  dump(): void

+ a: int  
+ dump(): void

- f: float  
+ dump(): void

+ +

"Donut" class diagram:

Figure 16.5: Double (donut) inheritance.

16.6.1 Virtual Inheritance

The keyword virtual can be used in a derivation declaration to prevent inheriting the same members from
two parents. It is only relevant when multiple inheritance will be used, and when there is more than one path
through the UML diagram from an ancestor class that has data members to some derived class. A class may
have both virtual and nonvirtual base classes. When virtual derivation is used, an object of a derived class
will have exactly one copy of the members of each ancestor. If derivation is not virtual, each derivation path
will produce its own copy of any common ancestor, resulting in two data members with the same name in the
derived-class object.

The simplest situation that illustrates the rules for virtual derivation is a class hierarchy in the shape of a
“donut”. The following set of four classes creates the “donut” shown in Figure 16.6. Each class has either one
or two data members, a constructor, and a dump function. Data is made public to make it easier to show what
is going on.

The data diagrams on the right show how storage would be allocated for objects of each of the four classes.
The data member of A is inherited by classes B and C and becomes the first member of objects bb and cc.
class D inherits all of the data members of B and all of the data members of C. Nonetheless, dd has only one
sub-object of class A, because virtual derivation was used to derive B and C from A.

Naming rules. Two rules govern the meaning of a name in a donut situation:

• A class can inherit two members with the same name from different parent classes. When this happens,
the name is ambiguous and you must use the :: to denote which one you want. For example, within
class D, you would write B::a to refer to the member named ‘a’ inherited from B or C::a for the member
inherited from C.

• If there are more than three levels in an inheritance hierarchy, the virtual property must be redeclared at
each level that has multiple inheritance.
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151 // ------------------------------------------------- File: "donut.hpp"
152 #ifndef DONUT_H
153 #define DONUT_H
154 #include <iostream>
155 #include <iomanip>
156 using namespace std;
157 class A { //----------------------------------------- Grandparent Class
158 public:
159 double x;
160 A(): x(11.1) {}
161 virtual ~A(){};
162 virtual void dump(){ cerr <<" A::x = " << x <<"\n"; }
163 };
164
165 class B: virtual public A { //----------------------- First Parent of D
166 public:
167 int a;
168 double x;
169 B(): a(20), x(22.2) {}
170 virtual ~B(){};
171 virtual void dump(){
172 A::dump();
173 cerr <<" B::x = " << x <<" "<<"B::a = " << a <<"\n";
174 }
175 };
176
177 class C: virtual private A { //--------------------- Second Parent of D
178 public:
179 int a;
180 C(): a(30) {}
181 virtual ~C(){};
182 virtual void dump(){ A::dump(); cerr <<" C::a = " << a <<"\n"; }
183 };
184
185 class D: public B, public C { //---------------------- Grandchild Class
186 float f;
187 public:
188 D(): f(44.4) {}
189 void dump(){
190 A::dump();
191 B::dump();
192 C::dump();
193 cerr <<" D::f = " << f <<"\n";
194 }
195 };
196 #endif

• A is a parent class of B, and both define a member named x. In classes A and C, only A::x is visible, so
writing x in these contexts will always mean A::x. For functions in classes B and D, both A::x and B::x
are visible, but B::x dominates A::x because it is “closer” to these classes. The dominant member will be
used when x is written without the double colon. To refer to the non-dominant member, the full name
A::x must be used.

The following brief program shows how the naming works and how visibility interacts with private inheri-
tance. Two lines are commented out because they caused compilation errors:

• Line 204 produced this compiler error:
double A::x is inaccessible within this context in ‘C’ due to private inheritance.

• Line 210 was ambiguous. Neither B::a nor C::a is dominant here because the two classes B and C are
equally close ancestors of D. To use either one in class D, we must qualify the member name as in lines
208 and 209.
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197 // --------------------------------------------------------- file: naming.cpp
198 #include "donut.hpp"
199 int main( void )
200 {
201 C cc; // Object has one base class.
202 D dd; // Object has three base classes.
203 cout <<" &cc.a= " <<&cc.a <<" value= " <<cc.a <<endl;
204 //cout <<" cc.A::x= " <<&cc.A::x <<" cc.x=" <<cc.x <<endl;
205
206 cout <<" &dd.x= " <<&dd.x <<" value= " <<dd.x <<endl;
207 cout <<" &dd.A::x= " <<&dd.A::x <<" value= " <<dd.A::x <<endl;
208 cout <<" &dd.B::a= " <<&dd.B::a <<" value= " <<dd.B::a <<endl;
209 cout <<" &dd.C::a= " <<&dd.C::a <<" value= " <<dd.C::a <<endl;
210 //cout <<" &dd.a= " <<&dd.a <<" value= " <<dd.a <<endl;
211 }

Here is the output:
&cc.a= 0xbffff864 value= 30
&dd.x= 0xbffff850 value= 22.2
&dd.A::x= 0xbffff840 value= 11.1
&dd.B::a= 0xbffff84c value= 20
&dd.C::a= 0xbffff834 value= 30

16.6.2 Dynamic Casts on the Donut

The final program in this chapter demonstrates dynamic casts and polymorphism in the context of our donut-
shaped derivation tree.

212 #include "donut.hpp"
213 // ------------------------------------------------------------ File: "donut.cpp"
214 int main( void )
215 {
216 A aa; // Data member: x
217 C cc; // Data members: A::x, C::a
218 D dd; // Data members: A::x, B::a, B::x, C::a, D::f
219
220 cerr <<"Dumping aa\n"; aa.dump();
221 cerr <<"Dumping cc\n"; cc.dump();
222 cerr <<"Dumping the B part of dd\n"; dynamic_cast<B*>(&dd)->dump();
223
224 // Upward casts. -------------------------------------------------------------------
225 B* bp = &dd; // Explicit Low->high pointer cast not needed.
226 B& br = dd; // Explicit Low->high reference cast not needed.
227 cerr <<"Dumping br\n"; br.dump(); // Use the reference variable to dump.
228
229 A* ap = dynamic_cast<A*>(bp); // Upward cast IS OK if derivation is public.
230 cerr <<"Dumping ap\n"; ap->dump(); // Show result of dynamic cast.
231 //dynamic_cast<A*>(&cc)->dump(); // Upward cast NOT OK if derivation is private.
232
233 // Downward casts. -----------------------------------------------------------------
234 cerr <<"Dumping dp after up and down casts, D->B->A->D .\n";
235 D* dp = dynamic_cast<D*>(bp); // Can dynamic_cast downward where type is true.
236 dp->dump(); // Start with D and return to a D.
237
238 cerr <<"Dumping cp after up and down casts, D->B->A->C .\n";
239 C* cp = dynamic_cast<C*>(ap); // Can dynamic_cast downward where type is true.
240 cp->dump(); // A D object has all the parts of a C object.
241
242 cerr <<"Dumping after down casts, A->C .\n";
243 ap = &aa;
244 //cp = dynamic_cast<C*>(&aa); // Cannot dynamic_cast down to wrong type.
245 cp = dynamic_cast<C*>(ap); // Cannot dynamic_cast down to wrong type.
246 cerr <<"No exception was thrown.\n";
247 cp->dump();
248 }
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Polymorphism. The file donut.hpp defines a base class named A with two derived classes B, and C, and a
class D derived from both B and C. We can create a donut diagram like this with or without polymorphism;
a class only becomes polymorphic when it has virtual functions. In this example, Classs A, B, and C are
polymorphic because they have virtual dump() functions. This forces us to also define virtual destructors.

Class D is the end of the derivation chain and the last class in the polymorphic family of classes. It is last
because its derivation is not virtual and its functions are not virtual. Because these properties end in class D,
it should not be used for further derivation.

A class is polymorphic if it has even one virtual function. If a class is polymorphic or is derived from a
polymorphic class, the true type of every class object must be stored as part of the object at run time. I call
this a “type tag”. Whenever a virtual function is called, this type tag is used to select the most appropriate
method for the function. If class is not part of a polymorphic family, no run-time type tag is attached to its
objects, and no run-time function dispatching happens.

Virtual derivation

• Lines 216 through 222 create and print three variables. The output is:

Dumping aa
A::x = 11.1

Dumping cc
A::x = 11.1
C::a = 30

Dumping the B part of dd
A::x = 11.1
B::x = 22.2 B::a = 20

• In this example, both B and C are derived virtually from A. If we omit the “virtual” from either one of
the lines 163 and 174, or from both, we get this error comment.

donut.hpp: In method ‘void D::dump()’:
donut.hpp:37: cannot convert a pointer of type ‘D’ to a pointer of type ‘A’
donut.hpp:37: because ‘A’ is an ambiguous base class

Upward dynamic casts.

• Lines 225 and 226 perform implicit upward dynamic pointer and reference casts from class D to class B.
Line 227 shows how to use the reference variable. The output is:

Dumping br
A::x = 11.1
B::x = 22.2 B::a = 20

• On line 222, an explicit cast was used because it was simplest. I tried an implicit cast there but it had
the wrong prececence in relation to the -> operator: (B*)(&dd)->dump()

• Line 229 shows another explicit dynamic cast, and line 230 prints the result. The output is:

Dumping ap
A::x = 11.1

• Line 231 is commented out because it caused a privacy error:

Error in function ‘int main()’ of donut.cpp:
donut.cpp:20: dynamic_cast from ‘C’ to private base class ‘A’
A* ap = dynamic_cast<A*>(&cc);

Polymorphic downward dynamic casts.

• Lines 235, 239, 244, and 245 do explicit downward dynamic casts. If Classes A, B, and C did not have
virtual functions, all of these lines would cause compile-time errors. The dynamic down-cast uses the
run-time type information stored with every polymorphic object. But when a class is not polymorphic,
the type tag is not there, and a dynamic down-cast cannot be done. Here is the error comment:

donut.cpp:24: cannot dynamic_cast ‘ap’ (of type ‘class A *’) to type ‘class C *’
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• Because donut.hpp does defines a polymorphic class, lines 235, 239, 244, and 245 compile. The first of
these lines is fine: we started with an object of type D, up-cast it, then down-cast it again. On line 235,
we finished with class D, where we started. Clearly, every step in this casting-process was meaningful.
The output is not surprising:

Dumping dp after up and down casts, D->B->A->D .
A::x = 11.1
A::x = 11.1
B::x = 22.2 B::a = 20
A::x = 11.1
C::a = 30
D::f = 44.4

• On Line 239, we downcast the same object to class C, which is also meaningful, since every D object
contains a C object as part of itself. Even though the program now thinks it has a C object, the object
itself retains its true type identity, and when we dump it, we get class D’s version of dump, just as we did
on line 236.

Dumping cp after up and down casts, D->B->A->C .
A::x = 11.1
A::x = 11.1
B::x = 22.2 B::a = 20
A::x = 11.1
C::a = 30
D::f = 44.4

• Line 244 is commented out because it gives a warning message:

donut.cpp:33: warning: dynamic_cast of ‘class A aa’ to ‘class C *’ can never succeed

This warning happens because aa is an object, not a pointer, and we know that it does not have all the
members that a C object needs. No casting magic can create the missing parts.

• On line 245, we down-cast an A* instead of an A&. There is no warning here, because the compiler
cannot predict the actual type of an object that an A* pointer might point at. The result is a run-time
malfunction:

Dumping after down casts, A->C .
No exception was thrown.
Bus error

The Schildt text says that this downcast should cause an exception to be thrown, and since this program
does not attempt to catch exceptions, the program should be terminated. (Exceptions are covered in
Chapter 17.) Clearly, since control reached line 246, this did not happen. The compiled code did not
check for an illegal downcast; it performed it. The result was a bus error (segmentation error on a second
machine) when the print function tried to access a member of the object that never existed.



Chapter 17: Exceptions

From the board game MONOPOLY, the rule to follow when your man lands on the “illegal” square:

Go to jail. Go directly to jail, do not pass GO and do not collect $200.

17.1 Handling Errors in a Program

Function calls, loops, conditionals, switches, and breaks permit the programmer to control and direct the
sequence of evaluation of a program and modify the default order of execution, which is sequential. These
statements permit controlled, local perturbations in the order of execution. Almost all situations that arise in
programming can be handled well using some combination of these statements.

The goto statement is also supported in C, but its use is discouraged because it makes uncontrolled, non-
local changes in execution sequence. Use of a goto is even worse in C++; if it is used to jump around the normal
block entry or exit code, the normal construction, initialization, and deletion of objects can be short-circuited,
potentially leaving the memory in an inconsistent state. Therefore, this statement should simply not be used.

There are some situations in which the ordinary structured control statements do not work well. These
involve unusual situations, often caused by hardware or input errors, which prevent the program from making
further fruitful progress. In C++, a failure during execution of a constructor is one situation that calls for use
of exceptions.

In the old days, these situations would be handled by a variety of strategies:

1. Do nothing. Don’t check for errors; hope they don’t happen. Let the program crash or produce garbage
answers if an error happens.

2. The program could identify the error and call an error function. However, this defers the problem instead
of solving it. The error function still must do something about the error.

3. Identify the error, print an error comment, and call exit(). (This is equivalent to using the fatal() function
in the toolspp library.) However, aborting execution is not permissible in many real-life situations. For
example, aborting execution of a program that handles bank accounts could leave those accounts in an
inconsistent or incorrect state.

4. One could use assert() to check for errors. This is similar to option (1) but worse because it gives no
opportunity to print out information about the error or its cause.

5. The function being executed could return with an error code. The function that called it would need to
check for that error code and return to its caller with an error code, and so on, until control returned to
the level at which the error could be handled.

This method usually works but distorts the logic of the program and clutters it with a large amount of
code that is irrelevant 99% of the time. Using this technique discourages use of functions and modular
code.

6. A long-distance goto could be used to return to the top level. Using this strategy, any information about
the error would have to be stored in global variables before executing the goto. This is like programming
in BASIC. Use of this control pattern destroys the modularity that C programs can otherwise achieve. It
is not recommended.

209
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17.1.1 What an Exception Handler Can Do

An exception handler provides an additional control option that is designed for dealing with unusual situations
(exceptions) in which the ordinary structured control statements do not work well. (Exceptions can be used in
non-error-conditions, but should not be used that way.) An exception handler lets control go . . .

• From the level at which an error is discovered, often deep within the code, at a stage when several functions
have been called and have not yet returned . . .

• Carrying as much information as necessary about the error . . .

• To the level at which the error can be handled, often in the main function or a high-level function that
handles the overall progress of the program or operator interaction. . .

• And back into normal execution, if that is appropriate.

An exception handler and the exceptions it can handle are defined at a high level. When an exception
condition is identified at a lower level, an exception object is created and “thrown” upward. This causes
immediate exit from the originating function, with proper clean-up of its stack frame. The function that
called it then “has the ball” and can either catch the exception or ignore it (ignoring the exception causes an
immediate return to its caller). Thus, control passes backward along the chain of function calls until some
function in the chain-of-command “catches” the exception. All stack frames in this chain are deleted and the
relevant destructors are run. The programmer should be careful, therefore, not to allow exceptions to be thrown
when some objects are half-constructed.

Implementing a compiler and run-time-system that can do this efficiently is a hard problem. Exceptions can
come in many types and each type of exception must have a matching handler. An exception is an object that
may have as many fields as necessary to contain all the important facts about where and why the exception was
thrown. This object must outlive the function that created it (it must be created in dynamic storage, not on
the stack) and it must carry an identifying type-tag, so it can be matched to the appropriate exception handler.
An uncaught exception will abort a process.

What next? After catching an exception, there are several options for handling it:

1. The catcher can clean up the data and execute return with some appropriate value.

2. The catcher can clean up the data and call the containing function recursively.

3. The catcher can clean up the data and continue from the line that follows the exception handler (not the
line that follows the function call that caused the exception).

4. The catcher can comment, get more information from the operator, and carry on in either of the two
preceding ways.

5. The catcher can abort the process or return to its caller, as in C.

6. The catcher can fix some data fields and rethrow the same exception or some other exception.

17.2 Defining Exceptions in C++

One major principle applies to the use of exceptions: they are not a substitute for proper use of else or while,
so the function that throws an exception should not be the function that catches it. Exceptions are intended
for global, not local, use. Their proper use is to enable control and information to pass, directly, across classes
and through a chain of function calls.

17.2.1 Defining an Exception Type

An exception is an object and its type is defined like any class. It can (but usually does not) have public,
protected, and private parts. The exception class definition can be global or it can be contained within the
definition of another class. Related exceptions can be created by derivation. For example, the Bad, BadSuit, and
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BadSpot classes, below, define three exception types that might be used in a program that plays an interactive
card game and reads input from the keyboard. The class Bad is a base class for the others and defines the
functionality common to all three classes. The UML diagram in Figure17.1 shows the derivation hierarchy. The
purple circle with a V marks a virtual function.

1 //===========================================================================
2 // Exception Classes for Playing Card Errors. file: bad.hpp
3 // Exception demonstration program: March 2009
4 // ----------------------------------------------- Error reading input stream.
5 #pragma once;
6 #include "tools.hpp"
7
8 class Bad {
9 public:

10 char spot;
11 char suit;
12 //---------------------------------------------- Suit and Spot both wrong.
13 Bad (char n, char s) : spot(n), suit(s) {};
14 virtual void print(){
15 cerr <<" Both spot value and suit are wrong\n"
16 <<" Legal spot values are 2..9, T, J, Q, K, A\n"
17 <<" Legal suits are H D C S\n";
18 pr();
19 }
20 void pr(){
21 cerr <<" You entered "<<spot <<" of " <<suit
22 <<". Please reenter. \n";
23 }
24 };
25
26 // --------------------------------------------------- Only the suit is wrong.
27 class BadSuit : public Bad {
28 public:
29 BadSuit (char n, char s) : Bad(n, s) {}
30 virtual void print(){
31 cerr <<" Legal suits are H D C S\n";
32 pr();
33 }
34 };
35
36 //---------------------------------------------- Only the spot value is wrong.
37 class BadSpot : public Bad {
38 public:
39 BadSpot (char n, char s) : Bad(n, s) {}
40 virtual void print(){
41 cerr <<" Legal spot values are 2..9, T, J, Q, K, A\n";
42 pr();
43 }
44 };

+

Bad
+ spot:  char
+ suit:  char

+ Bad(char, char)
+ void print()
+ void pr()

V

BadSuit

+ BadRead(char, char)
+ void print() V

BadSpot

+ BadSpot(char, char)
+ void print() V

Figure 17.1: UML diagram for the exception classes.
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17.2.2 Exception Specifications

In Java, every class must declare the exceptions that might happen within it, unless they are also caught within
it. This requirement is confusing to beginners, but it helps make Java programs more predictable and it leads
to better-informed error handling. In C++, a function may declare a list of potential exceptions, or declare
that it does not throw exceptions. However, such a declaration is not required. Since an uncaught exception
will terminate a program, this can be an important kind of documentation. Note: this is a new feature of C++
and may not be supported by all compilers.

The exception specification follows the parameter list in a prototype and precedes the semicolon. For
example, suppose a fuction named divide(int, int) could throw two kinds of exceptions. The declaration
would be:

int divide (int, int) throw (Zerodivide, MyException);

We can also declare that a fuction does not throw exceptions at all. The syntax is:

int safeFunction (int, int) throw ();

Technically, this declaration is legal even if some function called by safeFunction throws exceptions. However,
since we can’t know (let alone control) which library functions throw exceptions, this kind of declaration has
questionable value.

17.2.3 Playing card demo.

Next is a simple class that models a playing card. We will use it to demonstrate throwing and catching
exceptions. The constructor for this class takes input from the keyboard, a notoriously error-prone data source.
Each card is represented by two chars representing the face value (spot) and the suit of the card. Spaces and
capitalization are not important and can be used freely. After reading the two chars, the Card constructor
validates them and (possibly) throws an exception. The nature of the input error is encoded in the name of the
exception, enabling the program to use virtual functions to display a specific and appropriate error comment
each time.

45 //===========================================================================
46 // A playing card class and related exception classes.
47 // Alice E. Fischer, June 16, 1998 cards.hpp
48 //===========================================================================
49 #pragma once;
50 #include "tools.hpp"
51 #include "bad.hpp"
52
53 enum SuitType{ spades, hearts, diamonds, clubs, bad };
54
55 //===========================================================================
56 // This is the main data class; it represents one playing card.
57 //
58 class Card {
59 int spot_;
60 SuitType suit_;
61 public:
62 Card (istream& sin) throw (Bad, BadSpot, BadSuit);
63 int spot(){ return spot_; }
64 SuitType suit(){ return suit_; }
65 ostream& print(ostream&);
66 static void instructions(ostream&, int n);
67 };

17.2.4 Throwing an Exception

The throw statement is used to construct an exception and propagate it. One type of exception is commonly
used without definition; a function may throw a literal string (type string or char*). Throwing an exception
causes control to pass backwards through the chain of function calls to the nearest previous catch clause that
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handles that particular type of exception. The destructors will be run for all objects in the stack frames between
the throw and the catch.

68 //===========================================================================
69 // Functions and constants for the Card class.
70 // Alice E. Fischer, June 16, 1998 cards.cpp
71 //===========================================================================
72 #include "cards.hpp"
73 const char* suitlabels[5] = {"spades", "hearts", "diamonds", "clubs", "bad"};
74
75 const char* spotlabels[16] = {
76 "bad","Ace","2","3","4","5","6","7","8","9",
77 "10","Jack","Queen","King","Ace"
78 };
79
80 // --------------------------------------------------------------------------
81 void Card::instructions( ostream& out, int n) {
82 out << "Please enter " << n << " cards.\n"
83 << "Spot codes are 2..9, T, J, Q, K, A \n"
84 << "Suit codes are S H D C \n";
85 }
86
87 // --------------------------------------------------------------------------
88 Card::Card (istream& sin) throw (Bad, BadSpot, BadSuit) {
89 char inspot, insuit;
90 sin >> inspot >> insuit;
91 if (!sin.good()) throw "Low level read error\n";
92 if (inspot >=’2’ && inspot<=’9’) spot_ = inspot - ’0’;
93 else switch( toupper(inspot) ){
94 case ’T’: spot_ = 10; break;
95 case ’J’: spot_ = 11; break;
96 case ’Q’: spot_ = 12; break;
97 case ’K’: spot_ = 13; break;
98 case ’A’: spot_ = 1; break;
99 default : spot_ = 0;

100 };
101 switch( toupper(insuit) ){
102 case ’S’: suit_ = spades; break;
103 case ’H’: suit_ = hearts; break;
104 case ’D’: suit_ = diamonds; break;
105 case ’C’: suit_ = clubs; break;
106 default : suit_ = bad;
107 };
108 if (spot_ == 0 && suit_ == bad) throw Bad(inspot, insuit);
109 if (spot_ == 0) throw BadSpot(inspot, insuit);
110 if (suit_ == bad) throw BadSuit(inspot, insuit);
111 }
112
113 // --------------------------------------------------------------------------
114 ostream&
115 Card::print(ostream& sout) {
116 return sout <<spotlabels[spot_] <<" of " <<suitlabels[suit_] <<endl;
117 }

In this program, line 91 throws a string exception. This will be caught by the general exception handler on line
153. Lines 108–10 throw exceptions from the Bad hierarchy. These will be caught on line 146. The names of
these exceptions are announced on line 88. (This is a worthy but optional form of program documentation. It
is not clear how much checking, if any, compiler does with these declarations.)
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17.2.5 Catching an Exception

118 //==============================================================================
119 // Exception handling demonstration.
120 // Alice E. Fischer, June 16, 1998 except.cpp
121 //==============================================================================
122 #include "tools.hpp"
123 #include "cards.hpp"
124 #include "bad.hpp"
125 #define NCARDS 3
126
127 int main( void )
128 {
129 Card* hand[NCARDS];
130 int k;
131 bool success;
132 Card::instructions( cout, NCARDS );
133 //------------------------------------------ Main loop that reads all cards.
134 for (k=0; k<NCARDS; ){
135 success = false; // Will not be changed if an exception happens.
136 //------------------------------ Here is the single line of active code.
137 try {
138 cout << "\nEnter a card (spot code, suit code): " ;
139 hand[k] = new Card(cin); //---------------------- Input one card.
140 success = true; //-- No exception - we have a good card.
141 cout << " Card successfully entered into hand: ";
142 hand[k]->print(cout);
143 ++k;
144 }
145 //----------------- Check for the three application-specific exceptions.
146 catch (Bad& bs) { bs.print(); } // Will catch all 3 Bad errors.
147
148 //------------------- Now check for general exceptions thrown by system.
149 catch (bad_alloc bs) { //-------------- Catch a malloc failure.
150 cerr << " Allocation error for card #" <<k <<".\n";
151 return 1;
152 }
153 catch (...) { //--------------- Catch everything else.
154 cerr << " Last-ditch effort to catch exceptions.\n";
155 }
156 // ----------------- Control comes here after the try/catch is finished.
157 if(!success) delete hand[k]; // ----- Delete the half-made object.
158 }
159 cout << "\nHand is complete:" << endl;
160 for (k = 0; k < NCARDS; ++k) { hand[k]->print( cout ); }
161 }

Exceptions are caught and processed by exception handlers. A handler is defined like an ordinary function; the
type of its parameter is the type of exception that it will catch.

Code that may generate exceptions (at any nesting level) and wishes to catch those exceptions must be
enclosed in a try block (lines 137..144). The try block can contain multiple statements of any and all sorts. The
exception handlers are written in catch blocks that immediately follow the try block (lines 146..155). Several
things should be noted here:

1. The fields inside an exception object may be used according to the normal rules of public and/or private
access. The data can be public because there is no need to protect it.

2. If the handler does not need to access the information in the exception, the parameter name may be
omitted.

3. The order in which the handlers are written is important; the general case must come after all related
specific cases.
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4. A base-class exception handler will catch exceptions of all derived types. When an exception of a derived
type is caught, the fields that belong to the derived type are not “visible” to the handler. If the exception
is rethrown, all fields (including the fields of the derived type) are part of the rethrown object.

5. An exception handler whose parameter is . . . will catch all exceptions.

In this example, line 139 calls the Card constructor, which can throw exceptions from the Bad class and its
derived classes. The handler for those exceptions is on line 146. This line will catch all three kinds of exceptions
and process them by calling the print function in the exception class.

Processing the exception. When an exception is caught by line 146, we call the bs.print() to process
it. Note that the print function is virtual in the Bad class hierarchy, and has three defining methods. When
bs.print() is called, the system will inspect the run-time type-tag attached to bs to find out which class or
subclass constructed this particular exception. Then the print() function of the matching class will be called.
This is how we get three different kinds of output from one catch clause. (Note the first, second, and third
blocks of error comments in the output transcript, below.) If Bad::print() were not virtual, the base-class
print() function would always be used.

Output The output that follows shows two sample runs of this program with different exception handlers
active. The first output is from the program as shown:

Please enter 3 cards.
Spot codes are 2..9, T, J, Q, K, A
Suit codes are S H D C

Enter a card (spot code, suit code): mn
Both spot value and suit are wrong
Legal spot values are 2..9, T, J, Q, K, A
Legal suits are H D C S
You entered m of n. Please reenter.

Enter a card (spot code, suit code): 2m
Legal suits are H D C S
You entered 2 of m. Please reenter.

Enter a card (spot code, suit code): 1s
Legal spot values are 2..9, T, J, Q, K, A
You entered 1 of s. Please reenter.

Enter a card (spot code, suit code): 2s
Card successfully entered into hand: 2 of spades

Enter a card (spot code, suit code): kh
Card successfully entered into hand: King of hearts

Enter a card (spot code, suit code): JC
Card successfully entered into hand: Jack of clubs

Hand is complete:
2 of spades
King of hearts
Jack of clubs

The following output was produced after commenting out the first catch clause (line 146).
Please enter 3 cards.
Spot codes are 2..9, T, J, Q, K, A
Suit codes are S H D C

Enter a card (spot code, suit code): mn
Last-ditch effort to catch exceptions.

Enter a card (spot code, suit code): 3s
Card successfully entered into hand: ... and so on.

17.2.6 Built-in Exceptions

Simple objects like iintegers and strings can also be thrown and caught. In addition, C++ has about a dozen
built-in exceptions (see Schildt, pages 922-924). One of these, bad_alloc changes the way we write programs.



216 CHAPTER 17. EXCEPTIONS

In C, it was necessary to check the result of every call on malloc(), to find out whether the system was able
to fulfill the request. In C++, such a check is not necessary or helpful. If there is an allocation failure, the
run-time system will throw a bad_alloc exception and control will not return to the failed call. If your program
does not have a handler for such exceptions, and one occurs, the program will be terminated.

The bad_cast exception is used when a program executes an invalid downward dynamic cast, and
bad_exception is thrown when a function violates its own exception specification.

One group of standard exceptions called runtime_errors are beyond the programmer’s control and are
used for mistakes in library functions or the run-time system. These include overflow_error, range_error,
and underflow_error.

A final group of exceptions called logic_errors are defined by the standard but, so far as I know, not used
by the system. They seem to be intended for use by any program when a run-time error is discovered. These
include domain_error, invalid_argument, length_error, and out_of_range.

17.2.7 Summary

In the hands of an expert, exception handlers can greatly simplify error handling in a large application. However,
they are not easy to use and using them without understanding is likely to lead to errors that are difficult to
diagnose and cure. They are also difficult for a compiler to handle and force the compiler to interact with the
host system in awkward ways. Virtual print functions are a powerful and simple tool to produce good error
comments in situations where multiple faults can occur. Be aware, though, that processing a call on a virtual
function takes more time than processing a non-virtual function in the same class.
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Design patterns are elegant, adaptable, and reusable solutions to everyday software development problems.
Each pattern includes a description of a commonly occuring type of problem, a design for a set of classes and
class relationships that solve that problem, and reasons why the given solution is wise.

18.1 Definitions and General OO Principles

18.1.1 Definitions

1. Subclass: X is a subclass of Y if X is derived from Y directly or indirectly.

2. Collaboration: two or more objects that participate in a client/server relationship in order to provide a
service.

3. Coupling: A dependency between program elements (such as classes) typically resulting from collaboration
between them to provide a service. Classes X and Y are coupled if. . .

• X has a function with parameter or local variable of class Y.
• X has a data member that points at something of class Y.
• X is a subclass of Y.
• X implements an interface for class Y (Y gives friendship to X).

[Example:] If the Key class calculates the hash-table index, it must know the length of the hash table.
But this couples two classes that would not otherwise be coupled.

4. Cohesion: This is a measure of how strongly related and focused the responsibilities of a class are. A class
with high cohesion is a “specialist” with narrow power.

5. System event: A high-level event generated by an external actor; an external input event. For each system
event, there is a corresponding operation. For example, when a word-processor user hits the “spell check”
button, he is generating a system event indication “perform spell check”.

6. Use case: The sequence of events and actions that occur when a user participates in a dialog with a system
during a meaningful process.

18.2 General OO Principles

1. Encapsulation. Data members should be private. Public accessing functions should be defined only when
absolutely necessary. [Why] This minimizes the possibility of getting inconsistent data in an object and
minimizes the ways in which one class can depend on the representation of another.

2. Narrow interface. Keep the interface (set of public functions) as simple as possible; include only those
functions that are of direct interest to client classes. Utility functions that are used only to implement the
interface should be kept private. [Why] This minimizes the chance for information to leak out of the class
or for a function to be used inappropriately.

3. Delegation: a class that is called upon to perform a task often delegates that task (or part of it) to one
of its members who is an expert. [Example:] HashTable::find selects one list and delegates the searching
task to List::find.

217
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18.3 Patterns

A pattern is a design issue or communication problem... with a solution based on class structure... and guidance
on how to apply the solution in a variety of contexts.

18.3.1 GRASP: General Responsibility Assignment Software Patterns

• High cohesion is desirable. [Why?] It makes a class easier to comprehend, easier to maintain, and easier
to reuse. The class will also be less affected by change in other classes. [Example:] Cohesion is low if
a HashTable class contains code to extract fields from a data record. Cohesion is low if the data class
computes a hash index. Cohesion is high if each class does part of the process.

• Low coupling is desirable. Which class should be given responsibility for a task? [A] Assign a responsibility
so that its placement does not increase coupling. [Why?] High coupling makes a class harder to understand,
harder to reuse, and harder to maintain because changes in related classes force local changes.

• Expert. Who should do what? [A] Each class should do for itself actions that involve its data members.
Each class should “take care of” itself and handle its own emergencies. [Why] This minimizes coupling.

• Creator. Who should create (allocate) an object? [A] The class that composes, aggregates or contains it.
[Why] This minimizes coupling.

Who should delete (deallocate) an object? [A] The class that created it. [Why] To minimize confusion,
and because, often, nothing else is possible.

• Don’t Talk to Strangers. That is, don’t “send messages” to objects that are not close to you. Non-strangers
are:

– your own data members.
– elements of a collection which is one of your own data members.
– a parameter of the current function.
– a locally-created object.
– this (but using this is rarely the right thing to do).

Delegate the operation [Why] This is a generalization of the old rule, don’t use globals. It maximizes the
locality of every reference and avoids unnecessary coupling between classes.

[Example] Don’t deal directly with a component of one of your own members. Suppose a hardware store
class composes an object of class Inventory, and the Inventory is a flex-array of Item pointers, as shown
below. The retail store would be talking to a stranger if its sell function called the sell function in the
Item class directly, like this: Inv.find(currentKey)->sell(5); The preferred design is to work through
the intermediate class. That is, Inventory should provide a function such as sell(key, int) that can
be called by RetailStore, and Inventory::sell(key, int) should call Inventory::find(key) followed
by Item::sell(int). Evaluation: In the first design, a change in the Item class might force a change in
both RetailStore and Inventory. Using the second design, only Inventory is affected.

RetailStore Inventory Item
-  Inv : Inventory -  L : Itemlist + order(int)

+ sell(int)+ find(key) : Item*
+ sell(key, int): void

*

+ sell(key, int) : void

Figure 18.1: Don’t talk to strangers.

18.4 More Complex Design Patterns

• Adapter. Sometimes a toolkit class is not reusable because its interface does not match the domain-specific
interface an application requires. [Solution:] Define an adapter class that can add, subtract, or override
functionality, where necessary. There are two ways to do this; on the left is a class adapter, on the right
an object adapter.
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Target

ClassAdaptor

request()

request()

Adaptee

rightAction_wrongName()

ClassAdaptor::request() { 
    rightAction_wrongName();
} 

Client

ObjectAdaptor::request() { 
    a->rightAction_wrongName(); 
} 

Target

ObjectAdaptor

Adaptee

rightAction_wrongName()

request()

request()

Client

Adaptee* a

Figure 18.2: Two kinds of adapters.

• Indirection. This pattern is used to decouple the application from the implementation where an imple-
mentation depends on the interface of some low-level device. [Why] To make the application stable, even
if the device changes.

AirlineSeat

if_seat()
reserve_seat()
free_seat()
...

Modem

dial();
receive();
send()
...

System API calls:
    open_port(int);
     dial(phonenumber);

Modem::dial(phonenumber)
{
    :: open_port(1);
    :: dial(2039821234);
}

calls calls

Figure 18.3: Indirect coupling to an unstable interface.

• Proxy. This pattern is like Indirection, and is used when direct access to a component is not desired or
possible. What to do? [Solution:] Provide a placeholder that represents the inaccessible component to
control access to it and interact with it. The placeholder is a local software class. Give it responsibility for
communicating with the real component. [Special cases:] Device proxy, remote proxy. In Remote Proxy,
the system must communicate with an object in another address space.

UndergradStudent

register( course ) { ... }

Student

register( course ) =0

Alumnus

register( course ) { ... }register( course ) { ... }

GradStudent

Figure 18.4: Polymorphic implementation of an abstraction.

• Polymorphism: In an application where the abstraction has more than one implementation, define an
abstract base class and one or more subclasses. Let the subclasses implement the abstract operations.
[Why] to decouple the implementation from the abstraction and allow multiple implementations to be
introduced, as needed.

• Controller: Who should be responsible for handling a system event? [A] A controller class. The controller
should coordinate the work that needs to be done and keep track of the state of the interaction. It should
delegate all other work to other classes.

Factors such as the number of events to be handled, cohesion and coupling should be used to decide
among the three kinds of controllers described below and to decide how many controllers there should be.
A controller class represents one of the following choices:

– The overall application, business, or organization (facade controller).



220 CHAPTER 18. DESIGN PATTERNS

– Something in the real world that is active that might be involved in the task (role controller).
[Example:] a menu handler.

– An artificial handler of all system events involved in a given use case (use-case controller). [Example:]
A retail system might have separate controllers for BuyItem and ReturnItem.

• Bridge: This pattern is a generalization of the Indirection pattern, used when both the application class
and the implementation class are (or might be) polymorphic. The bridge decouples the application from
the polymorphic implementation, greatly reducing the amount of code that must be written, and making
the application much easier to port to different implementation environments. In the diagram below, we
show that there might be several kinds of windows, and the application might be implemented on two
operating systems. The bridge provides a uniform pattern for doing the job.

ImageWindow

Window

DialogWindow

draw_box()

draw_text()
draw_rectangle()

draw_border()

WIP : WindowImp*

XWindowImp WindowNTImp

WindowImplementation

imp_draw_text()  
imp_draw_rectangle()

=0
=0

imp_draw_text();
imp_draw_rectangle();

imp_draw_text();
imp_draw_rectangle();

DialogWindow::draw_box() {
    draw_rectangle();    
    draw_text();
} 

ImageWindow::draw_border() { 
    draw_rectangle(); 
} 

Window::draw_text() { 
    WIP->draw_text(); 
} 

Figure 18.5: Bridging the implementation gap.

• Subject-Observer or Publish-Subscribe: Your application program has many classes and many objects of
some of those classes. You need to maintain consistency among the objects so that when the state of one
changes, its dependents are automatically notified. You do not want to maintain this consistency by using
tight coupling among the classes.

[Example:] An OO spreadsheet application contains a data object, several presentation “views” of the
data, and some graphs based on the data. These are separate objects. But when the data changes, the
other objects should automatically change.

[Solution:] In the following discussion, the SpreadsheetData class is the subject, the views and graphs
are the observers. The basic Spreadsheet class composes an observer list and provides an interface for
attaching and detaching Observer objects from its list. Observer objects may be added to this list, as
needed, and all will be notified when the subject (SpreadsheetData) changes. We derive a concrete subject
class (SpreadsheetData) from the Spreadsheet class. It will communicate with the observers through a
get_state() function, hat returns a copy of its state.

Observer::update() {
    observer_state =     
        SS->get_state();
}

Spreadsheet::notify() {
      OL.updateall()
}

ObserverList::updateall() {
    for all  x in the list, 
           x->update()
}

FullDataView

AnnualReport

BarGraph

update();

observer_state
SpreadsheetData*

# attach(observer)
# detach(observer)
# notify()
...

ObserverList

updateall()

SpreadsheetData

+ get_state()
-  subject_state

OL: Observer List 
Observer

update() =0

*Spreadsheet
SS: Spreadsheet* 

Figure 18.6: One subject with three observers

The ObserverList class defines an updating interface for objects that should be notified of changes in a
subject. The Observer class provides an abstract public function called update() which will be called by
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ObserverList whenever updateall() is called. This abstract function must be implemented in each concrete
observer class.

When the state of the SpreadsheetData subject changes, it executes its inherited notify() function, which
calls ObserverList::updateall(), which notifies all of the observers. Each one, in turn, executes its
update function, which calls the subject’s get_state function. Changes can then be made locally that
reflect the change in the subject’s state.

• Singleton: Suppose you need exactly one instance of a class, and objects in all parts of the application
need a single point of access to that instance. [Solution:] A single object may be made available to all
objects of class C by making the singleton a static member of class C. A class method can be defined that
returns a reference to the singleton if access is needed outside its defining class.

static member StringStore& StringStore::getStore(){
    if (instance==NULL) instance = new StringStore;
    return instance;
}static method

StringStore
-$  instance *
-    other members...
+$ getStore() : StringStore&

Figure 18.7: How to create a singleton.

[Example] Suppose there were several parts of a program that could use a StringStore. We might define
StringStore as a singleton class. The StringStore::put function would be made static and would become
a global access point to the class, while maintaining full protection for the class members.

More patterns? The seven patterns presented here are some of the earliest and most useful that have been
developed. But many, many more design patterns have been identified and published. A professional working
in either C++ or Java would do well to study some of the available literature.
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