
Outline Example Building Your Code

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 3
September 8, 2011

CPSC 427a 1/22



Outline Example Building Your Code

Example
Header file
Implementation File
Main Program

Building Your Code

CPSC 427a 2/22



Outline Example Building Your Code

Insertion Sort Example (continued)

CPSC 427a 3/22



Outline Example Building Your Code

C++ version

See code demo 02-InsertionSortCpp and following notes.

CPSC 427a 4/22

http://zoo.cs.yale.edu/classes/cs427/2011a/lectures/02-InsertionSortCpp


Outline Example Building Your Code

Header file

dataPack.hpp

#pragma once

A more efficient but non-standard replacement for include guards:

#ifndef DATAPACK_H
#define DATAPACK_H
// rest of header
#endif

CPSC 427a 5/22



Outline Example Building Your Code

Header file

class DataPack

class DataPack {
...
};

defines a new class named DataPack.

By convention, class names are capitalized.

Note the required semicolon following the closing brace.

If omitted, here’s the error comment:

../datapack.hpp:11: error: new types may not be defined in a return type

../datapack.hpp:11: note: (perhaps a semicolon is missing after the
definition of ’DataPack’)
../datapack.cpp:12: error: two or more data types in declaration of
’readData’

CPSC 427a 6/22



Outline Example Building Your Code

Header file

Class elements

I A class contains declarations for data members and function
members (or methods).

I int n; declares a data member of type int.

I int getN(){ return n; } is a complete member function
definition.

I void sortData(); declares a member function that must be
defined elsewhere.

I By convention, member names begin with lower case letters
and are written in camelCase.

CPSC 427a 7/22



Outline Example Building Your Code

Header file

Inline functions

I Methods defined inside a class are inline (e.g., getN()).

I Inline functions are recompiled for every call.

I Inline avoids function call overhead but results in larger code
size.

I inline keyword makes following function definition inline.

I Inline functions must be defined in the header (.hpp) file.
Why?

CPSC 427a 8/22



Outline Example Building Your Code

Header file

Visibility

I The visibility of declared names can be controlled.

I public: declares that following names are visible outside of
the class.

I private: restricts name visibility to this class.

I Public names define the interface to the class.

I Private names are for internal use, like local names in
functions.

CPSC 427a 9/22



Outline Example Building Your Code

Header file

Constructor

A constructor is a special kind of method.

Automatically called whenever a new class instance is allocated.

Job is to initialize the raw data storage of the instance to become
a valid representation of an initial data object.

In dataPack example, store must point to storage of max bytes,
n of which are currently in use.

CPSC 427a 10/22



Outline Example Building Your Code

Header file

Constructor

DataPack(){
n = 0;
max = LENGTH;
store = new BT[max]; cout << "Store allocated.\n";
readData();

}

new does the job of malloc() in C.

cout is name of standard output stream (like stdout in C).

<< is output operator.

readData() is private function to read data set from user.

Design question: Is this a good idea?

CPSC 427a 11/22



Outline Example Building Your Code

Header file

Destructor

A destructor is a special kind of method.

Automatically called whenever a class instance about to be
deallocated.

Job is to perform any final processing of the data object and to
return any previously-allocated storage to the system.

In dataPack example, the storage block pointed to by store must
be deallocated.

CPSC 427a 12/22



Outline Example Building Your Code

Header file

Destructor

~DataPack(){
delete[] store;
cout << "Store deallocated.\n";

}

Name of the destructor is class name prefixed with ~.

delete does the job of free() in C.

Empty square brackets [] are for deleting an array.

CPSC 427a 13/22



Outline Example Building Your Code

Implementation File

dataPack.cpp

Ordinary (non-inline) functions are defined in a separate
implementation file.

Function name must be prefixed with class name followed by :: to
identify which class’s member function is being defined.

Example: DataPack::readData() is the member function
readData() declared in class DataPack.

CPSC 427a 14/22



Outline Example Building Your Code

Implementation File

File I/O

C++ file I/O is described in Chapter 3 of textbook. Please read it.

ifstream infile( filename ); creates and opens an input
stream infile.

The Boolean expression !infile is true if the file failed to open.

This works because of a built-in coercion from type ifstream to
type bool. (More later on coercions.)

readData() has access to the private parts of class dataPack and
is responsible for maintaining their consistency.

CPSC 427a 15/22



Outline Example Building Your Code

Main Program

main.cpp

As usual, the header file is included in each file that needs it:
#include "datapack.hpp"

banner(); should be the first line of every program you write for
this course. It helps debugging and identifies your output.
(Remember to modify tools.hpp with your name as explained in
Chapter 1 of textbook.)

Similarly, bye(); should be the last line of your program before
the return statement (if any).

The real work is done by the statements DataPack theData; and
theData.sortData();. Everything else is just printout.

CPSC 427a 16/22



Outline Example Building Your Code

Building Your Code

CPSC 427a 17/22



Outline Example Building Your Code

Manual compiling and linking

One-line version
g++ -o isort main.cpp datapack.cpp tools.cpp

Separate compilation
g++ -c -o main.o main.cpp
g++ -c -o datapack.o datapack.cpp
g++ -c -o tools.o tools.cpp
g++ -o isort main.o datapack.o tools.o

CPSC 427a 18/22



Outline Example Building Your Code

Makefile

make is a tool to automate the build process.
It is controlled by a Makefile or makefile.

A minimal example:

OBJ = main.o datapack.o tools.o
isort: $(OBJ)

g++ -o isort $(OBJ)
main.o: main.cpp datapack.hpp tools.hpp
datapack.o: datapack.cpp datapack.hpp tools.hpp
tools.o: tools.cpp tools.hpp

Note: The g++ line must begin with a tab character.

CPSC 427a 19/22



Outline Example Building Your Code

Integrated Development Environment (e.g., Eclipse)

Advantages

I Supports notion of project — all files needed for an
application.

I Provides graphical interface to all aspects of code
development.

I Automatically creates makefile.

I Builds project with a mouse click or keyboard shortcut.

I Analyzes code as it is being written. Provides helpful
feedback.

I Allows easy navigation among project components.

I Error comments linked back to source code.

CPSC 427a 20/22



Outline Example Building Your Code

Integrated Development Environment (e.g., Eclipse)

Disadvantages

I Complicated to learn how to use — big learning curve.

I “Simple” things can become complicated for the non-expert
(e.g., providing compiler flags) or making the font larger.

I Metadata can become inconsistent and difficult to repair.

CPSC 427a 21/22



Outline Example Building Your Code

Integrated Development Environment (e.g., Eclipse)

If you use Eclipse, before submitting your assignment, you should:

1. Copy your source code, test data, and make files from Eclipse
to a separate submit directory on the Zoo.

2. Type make in that directory to make sure your program builds
and runs correctly.

3. Submit the contents of your submit directory. Do not
attempt to submit the entire Eclipse project. The hidden
project and metadata files are not generally portable.

CPSC 427a 22/22


	Outline
	Example
	Header file
	Implementation File
	Main Program

	Building Your Code

