
Outline Lab Work Review PS1 Survival C++ I/O

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 4
September 13, 2011

CPSC 427a 1/26

Outline Lab Work Review PS1 Survival C++ I/O

Remarks on Laboratory Work

Review and Readings

A Survival Guide for PS1

More on C++ I/O

CPSC 427a 2/26

Outline Lab Work Review PS1 Survival C++ I/O

Remarks on Laboratory Work

CPSC 427a 3/26

Outline Lab Work Review PS1 Survival C++ I/O

Toolset to use for course work

This course uses a collection of software tools running under Linux,
including g++, valgrind, eclipse, make, a command shell such
as bash or tcsh, and Linux libraries and header files.

These and other tools you will need are installed and maintained
on the Zoo machines.

You are all entitled to Zoo accounts for use in this course, and you
will all be granted 24-hour access to the Zoo (in Arthur K. Watson
Hall). I expect you to use the Zoo for all course work.

CPSC 427a 4/26

Outline Lab Work Review PS1 Survival C++ I/O

Working remotely

For those of you who find it difficult to get to the Zoo and want to
work remotely, I offer three suggestions, all of which have some
drawbacks.

CPSC 427a 5/26

Outline Lab Work Review PS1 Survival C++ I/O

1. Replicate the Zoo environment on your own machine

This means installing Linux, either in place of your native
operating system, beside it in a dual-boot arrangement, or on top
of it using virtualization software.

Drawbacks: It takes time and expertise to install and configure all
of the software you will need, and there is still the danger of
incompatibilities with the Zoo if you don’t end up with exactly the
same versions of everything.

CPSC 427a 6/26

Outline Lab Work Review PS1 Survival C++ I/O

2. Remote login to the Zoo

Log into the Zoo remotely via ssh (which you must install on your
machine), and use command-line tools such as emacs and make to
develop your code.

Drawbacks: People used to program using command-line tools, but
it is cumbersome compared with using a modern graphical
windowing system and an IDE such as eclipse.

CPSC 427a 7/26

Outline Lab Work Review PS1 Survival C++ I/O

3. Set up a virtual Zoo desktop on your machine
To use VNC (Virtual Network Computing), you must:

1. install SSH and VNC clients on your machine;

2. log onto a Zoo machine using ssh;

3. start a VNC server on the Zoo;

4. connect to the VNC server using your VNC client.

See handout 3 (pdf) for detailed instructions.
VNC gives you a virtual Zoo desktop that, in principle,will look
and feel just as if you were sitting at a Zoo console.

Drawbacks: It won’t really feel the same. You will notice delayed
response to your mouse actions. It’s a bit of a nuisance getting the
connection set up each time you want to work. Moving files back
and forth between your local machine and the Zoo requires other
tools such as rsync or scp.

CPSC 427a 8/26

http://zoo.cs.yale.edu/classes/cs427/2011a/attach/ho03.html
http://zoo.cs.yale.edu/classes/cs427/2011a/handouts/ho03.pdf

Outline Lab Work Review PS1 Survival C++ I/O

Homework submission

Completed homework is to be submitted on the Zoo using the
command /c/cs427/bin/submit.

In order to submit, you must have a course account.

Put the files you want to submit into a subdirectory, go to that
directory, and run submit.

The first argument to submit is the problem set number.
The remaining arguments are the files to be submitted.

Example: submit 1 * submits everything in the current directory
for problem set #1.

CPSC 427a 9/26

Outline Lab Work Review PS1 Survival C++ I/O

Review and Readings

CPSC 427a 10/26

Outline Lab Work Review PS1 Survival C++ I/O

A brief course review to date

Lecture 1 describes the course goals of how to construct
software that is efficient, robust, scalable,
maintainable, reusable, and understandable, as well
as giving correct outputs on correct inputs.

Lecture 2 looks at how object-oriented design principles can be
applied even to C programs, pointing out also
inherent limitations of C that motivated the
development of C++.

Lecture 3 gives a whirlwind tour of an object-oriented C++
program for insertion sort, looking in particular at
how the various pieces of code are split into interface
or header files (.hpp) and implementation or code
files (.cpp).

CPSC 427a 11/26

Outline Lab Work Review PS1 Survival C++ I/O

How to use the textbook

The lectures do not exactly follow the textbook, but they are
roughly parallel.

For example, lectures 1–3 generally correspond to chapters 1 and
2, although several concepts from chapters 3 and 4 were also
covered briefly.

You should read the corresponding chapters carefully, because
there is information in the book that will not be covered explicitly
in class but that you should nevertheless know.

CPSC 427a 12/26

Outline Lab Work Review PS1 Survival C++ I/O

A Survival Guide for PS1

CPSC 427a 13/26

Outline Lab Work Review PS1 Survival C++ I/O

Operator extensions

For PS1, you need to extend three operators <=, <<, and >> to
work with type Player.
The corresponding function names are:

Operator Function name

<= operator<=
<< operator<<
>> operator>>

Operators extensions are simply new methods for the
corresponding functions.

CPSC 427a 14/26

Outline Lab Work Review PS1 Survival C++ I/O

Adding new methods

Every function in C++ may have many methods.

Which method is selected in a function call depends on the
number and types of its arguments, which we call its signature.

Every method must have a distinct signature.

For PS1, the signatures of the methods to be defined are given in
Player.hpp.

bool operator<=(const Player& p2) const;
istream& read(istream& in);
ostream& print(ostream& out) const;

CPSC 427a 15/26

Outline Lab Work Review PS1 Survival C++ I/O

Two kinds of functions

Top-level functions: These are ordinary C-style functions.

Member functions: These are functions that belong to a class.
When run, the special variable this is an implicit
parameter which points to an instance of the class.

Corresponding to the two kinds of functions are two different
calling syntaxes:

Top-level call: Like C, e.g., f(x, a).

Member call: Uses the field selector “dot” notation, e.g., x.g(a).
Here, x is an object (instance of a class) containing
a member function g().
x becomes the implicit parameter of g(); a the
explicit parameter.

CPSC 427a 16/26

Outline Lab Work Review PS1 Survival C++ I/O

An ambiguity with operator extensions

An operator like + invokes its associated function operator+().

But which kind of call does a+b correspond to?

1. operator+(a, b)?

2. a.operator+(b)?

The answer is “both”, with preference given to (2) if the
corresponding method is defined.

CPSC 427a 17/26

Outline Lab Work Review PS1 Survival C++ I/O

Operator call example: Top-level function

class Foo {
private: int a;
public: int getA() const { return a; }
};

int operator+(Foo x, int b) {
return (x.getA()+b)/(x.getA()*b);

}
...
Foo x;
int y, z;
z = x+y;

CPSC 427a 18/26

Outline Lab Work Review PS1 Survival C++ I/O

Operator call example: Member function

class Foo {
private:

int a;
public:

int operator+(int b) const { return (a+b)/(a*b); }
};
...
Foo x;
int y, z;
z = x+y;

CPSC 427a 19/26

Outline Lab Work Review PS1 Survival C++ I/O

Back to PS1

For PS1, the declaration

bool operator<=(const Player& p2) const;

appears inside of the definition of class Player, so it is a
member function.

The declarations

istream& operator>>(istream& in);
ostream& operator<<(ostream& out) const;

appear outside of any class definition, so they are top-level.

Note that the latter are already declared and defined in
player.hpp, so you don’t need to do anything more than define
the methods read() and print() on which they depend.

CPSC 427a 20/26

Outline Lab Work Review PS1 Survival C++ I/O

More on C++ I/O

CPSC 427a 21/26

Outline Lab Work Review PS1 Survival C++ I/O

Opening and closing streams

Some ways of opening a stream.

I ifstream fin ("myfile.in"); opens stream fin for
reading. This implicitly invokes the constructor ifstream(
"myfile.in").

I ifstream fin; creates an input stream not associated with
a file. fin.open("myfile.in"); attaches it to a file.

Can also specify open modes.

To close, use fin.close();.

CPSC 427a 22/26

Outline Lab Work Review PS1 Survival C++ I/O

Reading data

Simple forms. Assume fin is an open input stream.

I fin >> x >> y >> z; reads three fields from fin into x,
y, and z.

I The kind of input conversion depends on the types of the
variables.

I No need for format or &.

I Standard input is called cin.

I Can read a line into a buffer with fin.get(buf, buflen);.
This function stops before the newline is read. To continue,
one must move past the newline with a simple fin.get(ch);
or fin.ignore();.

CPSC 427a 23/26

Outline Lab Work Review PS1 Survival C++ I/O

Writing data

Simple forms. Assume fout is an open output stream.

I fout << x << y << z; writes x, y, and z into fout.

I The kind of output conversion depends on the types of the
variables or expressions..

I Standard output is called cout. Other predefined output
streams are cerr and clog. They are usually initialized to
standard output but can be redirected.

I Warning: The eclipse debug window does not obey the proper
synchronization rules when displaying cout and cerr. Rather,
the output lines are interleaved arbitrarily. In particular, a line
written to cerr after a line written to cout can appear
before in the output listing. This won’t happen with a Linux
terminal window.

CPSC 427a 24/26

Outline Lab Work Review PS1 Survival C++ I/O

Manipulators

Manipulators are objects that can be arguments of >> or << but do
not necessarily produce data.

Example: cout << hex << x << y << dec << z << endl;

I Prints x and y in hex and z in decimal.

I After printing z, a newline is printed and the output stream is
flushed.

Manipulators are used in place of C formats to control input and
output formatting and conversions.

CPSC 427a 25/26

Outline Lab Work Review PS1 Survival C++ I/O

End of file and error handling

I/O functions set status flags after each I/O operation.

bad means there was a read or write error on the file I/O.

fail means the data was not appropriate to the field, e.g.,
trying to read a non-numeric character into a
numeric variable.

eof means that the end of file has been reached.

good means that the above three bits are all off.

The whole state can be read with one call to rdstate().
Individual bits can be tested with bad(), fail(), eof(), good().

As in C, correct end of file and error checking require paying close
attention to detail of exactly when these state bits are turned on.

To continue after a bit has been set, must call clear() to clear it.

CPSC 427a 26/26

	Outline
	Remarks on Laboratory Work
	Review and Readings
	A Survival Guide for PS1
	More on C++ I/O

