
CPSC 427/527
Donya Quick

September 17, 2011

Notes on PS1 and IO

Outline

• Assignment & e-mail mechanics

• General feedback on PS1

• IO example

Turning in Assignments

• For PS1: DO NOT RESUBMIT. The information
below does not apply to PS1.

• For all future assignments, PS2 and onward:
1. All electronic material should be submitted via

the zoo “submit” script.
• Do NOT use the classes*v2 drop boxes or my e-mail to

submit assignments.

2. If you submit any physical papers with only a
paperclip, please write your name on all pages.

Nicknames & NetIDs

From: phillcollins@gmail.com
Subject: compiling foo.cpp

How does foo.cpp relate to problem set #243? Also, did you get my last
homework submission?

----Rob

/*
* Bar.cpp
* Created by jrs527049
*/

public int main() {
…
}

I often get e-mails and files that look similar to the fictitious examples below.

A NetID is much better than no
identification at all, but it is still time-
consuming to match to a name.

If “Rob” is a nickname, it will not appear on the
classes*v2 roster.

Nicknames & NetIDs

From: phillcollins@gmail.com
Subject: compiling foo.cpp

How does foo.cpp relate to problem set #243? Also, did you get my last
homework submission?

----Rob (John Smith)

/*
* Bar.cpp
* Created by John Smith (jrs527049)
*/

public int main() {
…
}

I need more information to easily know who you are!

Common Feedback on PS1 Code (1)

• Put your name in all documents you create!!!
Your name = your name as it appears on the roster

From now on, no name = points deducted

• Put your name in all documents you edit.
– Always keep the original author’s name.

– Ex: “Created by John Smith” should become
“Created by John Smith, modified by [YOU]” if you
change anything in the file.

Common Feedback on PS1 Code (2)

• Comment your code appropriately.
– This is not optional, even on small assignments.

• It helps demonstrate to me that you understand your code.
– Make sure final comments are consistent with your

code.
• Especially important when modifying existing code.

– Do not leave commented-out blocks of code in your
final version.

• This includes heavy usage of cout statements used for
debugging. It is better to use a debugging class.

• Exceptions for turning in partial work if you want to show
what you did but need to disable it for compiling purposes.

Well-Documented Code(1)
/*
* File name
* Created by [AUTHOR]
* Last modified [DATE]
* [Description of what this class is meant to do]
*/

...

/*
* Function’s purpose
* Description of arguments
* Preconditions, if any
* Postconditions, if any
*/
public void myMethod(...) {
 ...
}

Well-Documented Code (2)
/* function description */
public void myMethod(...) {
 ...
 // description of what loop does
 while (...) {
 [lengthy loop]
 }

 ...
 // description of lengthy test series
 if (...) {
 ...
 } else if (...) {
 ...
 } else { ... }
}

Common Feedback on PS1 (3)

• Pay attention to details. For example, there were three
written components:
1. Highlighting/annotating existing code.
2. Discussing two specific OO topics.
3. A brief report on the coding portion.

• Follow the submission instructions. You will lose points

if you do not submit required files. For example:

“You should submit the following items: […]
3. One or more test files and corresponding output
files […].”

Common feedback on PS1 (4)

• Make sure your code compiles with the makefile
you provide.
– Submissions that don’t compile easily will get

automatic zeros on relevant criteria.*
• How to check that your code compiles:

– Please call your file “makefile” for simplicity.
– Go to the directory containing the file called
makefile and run the command make

• You MUST tell me how to compile your code if it
involves something other than running make!
– Should be described in your report.txt

* This can be turned into partial credit later (next slide)

Common feedback on PS1 (5)

• What to do if you lost points on compilation:
– Come to my office hours.

• Tuesday: 4-5pm

• Wednesday: 1:30-3:30pm

• If you have a class or other regular mandatory meeting
during those times, e-mail me to set up another time.

– If you can make your submitted files compile, I will
re-grade applicable test cases.

PS1 Solution

(Viewed in Eclipse)

IO Examples

IO Example 1

• How eof gets set.

ifstream infile(filename);
int x;
string y;
char ch;
…
infile >> x;
ch = infile.peek();
infile >> y;
ch = infile.peek();

1 2 3 ‘a’ ‘b’ ‘c’

End of file

eofbit = 0
failbit = 0
badbit = 0

good() => true
fail() => false
eof() => false

ifstream infile(filename);
int x;
string y;
char ch;
…
infile >> x;
ch = infile.peek();
infile >> y;
ch = infile.peek();

1 2 3 ‘a’ ‘b’ ‘c’

End of file

eofbit = 0
failbit = 0
badbit = 0

good() => true
fail() => false
eof() => false

read: “123”

ifstream infile(filename);
int x;
string y;
char ch;
…
infile >> x;
ch = infile.peek();
infile >> y;
ch = infile.peek();

1 2 3 ‘a’ ‘b’ ‘c’

End of file

eofbit = 0
failbit = 0
badbit = 0

good() => true
fail() => false
eof() => false

ifstream infile(filename);
int x;
string y;
char ch;
…
infile >> x;
ch = infile.peek();
infile >> y;
ch = infile.peek();

1 2 3 ‘a’ ‘b’ ‘c’

End of file

eofbit = 0
failbit = 0
badbit = 0

good() => true
fail() => false
eof() => false

read: “abc”

ifstream infile(filename);
int x;
string y;
char ch;
…
infile >> x;
ch = infile.peek();
infile >> y;
ch = infile.peek();

1 2 3 ‘a’ ‘b’ ‘c’

End of file

eofbit = 1
failbit = 0
badbit = 0

good() => false
fail() => false
eof() => true

IO Example 2

• Reading bad data

ifstream infile(filename);
int x;
string y;
char ch;
…
infile >> x;
ch = infile.peek();
infile >> y;
ch = infile.peek();

‘a’ ‘b’ ‘c’ 1 2 3

End of file

eofbit = 0
failbit = 0
badbit = 0

good() => true
fail() => false
eof() => false

read: 38272840

ifstream infile(filename);
int x;
string y;
char ch;
…
infile >> x;
ch = infile.peek();
infile >> y;
ch = infile.peek();

‘a’ ‘b’ ‘c’ 1 2 3

End of file

eofbit = 0
failbit = 2
badbit = 0

good() => false
fail() => true
eof() => false

read: 38272840 (garbage)

Remarks on Problem Set 2

Problem Set 2

Random number generation and simulations

CPSC 427a 24/31

Remarks on Problem Set 2

Pseudorandom number generators

You will need to generate random numbers in this assignment.
A few remarks on random number generation are in order.

I Pseudorandom numbers are not random. They are
predictable. This is both an asset and a curse.

I Since they are predictable, a simulation run can be repeated to
obtain the same results, particularly helpful during debugging.

I Since they are not random, they may have statistical
properties that differ from true random numbers.

I “Good” pseudorandom numbers should pass common
statistical tests for randomness.

CPSC 427a 25/31

Remarks on Problem Set 2

Random numbers in C++

I rand() is standard random number generator in C and C++.

I rand() implementation on current Linux systems is good but
not on some other systems.

I Newer and better random number generators might be
preferable for real-world applications.

CPSC 427a 26/31

Remarks on Problem Set 2

rand() and srand()

Basic properties

I int rand(void) generates next number in sequence using
hidden internal state.

I Not thread safe.

I void srand(unsigned int seed) initializes the state.

I Seed defaults to 1 if srand() not called.

I rand() returns an int in the range [0...RAND MAX].

I Must #include <cstdlib>

I RAND MAX is typically the largest positive number that can be
represented by an int, e.g., 231 − 1.

I The result from rand() is rarely useful without further
processing.

CPSC 427a 27/31

Remarks on Problem Set 2

Generating uniform distribution over a discrete interval

To generate a uniformly distributed number u ∈ {0, 1, . . . , n − 1}:
I Naive way: u = rand()%n.

Problem: Result not uniformly distributed unless n |RAND MAX.

I Better way:

int RandomUniform(int n) {
int top = ((((RAND_MAX - n) + 1) / n) * n - 1) + n;
int r;
do {
r = rand();

} while (r > top);
return (r % n);

}

CPSC 427a 28/31

Remarks on Problem Set 2

Generating random doubles

To generate a double in the semi-open interval [0 . . . 1):
(double) rand() / ((double)(RAND MAX) + 1.0)

I Without + 1.0, result is in the closed interval [0 . . . 1].

I (double) rand() / (RAND MAX + 1)
might fail because of integer overflow.

CPSC 427a 29/31

Remarks on Problem Set 2

Alternate method for generating uniform distribution over
a discrete interval

To generate a uniformly distributed number u ∈ {0, 1, . . . , n − 1}:
1. #include <cmath>.

2. Generate a uniformly distributed random double u in [0 . . . 1).

3. Compute trunc(n*u).

Question: Is this truly uniform over {0, 1, . . . , n − 1}?

CPSC 427a 30/31

Remarks on Problem Set 2

Generating exponential distribution

[Not needed for PS2 but useful to know.]

To generate a double according to the exponential distribution
with parameter lambda:

1. #include <cmath>.

2. Generate a uniformly distributed random double u in [0 . . . 1).

3. Compute -log(1.0-u)/lambda.

Note: log(0.0) is undefined. Will return a special value that
prints as -inf.

CPSC 427a 31/31

	ln06a
	Slide Number 1
	Outline
	Turning in Assignments
	Nicknames & NetIDs
	Nicknames & NetIDs
	Common Feedback on PS1 Code (1)
	Common Feedback on PS1 Code (2)
	Well-Documented Code(1)
	Well-Documented Code (2)
	Common Feedback on PS1 (3)
	Common feedback on PS1 (4)
	Common feedback on PS1 (5)
	PS1 Solution
	IO Examples
	IO Example 1
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	IO Example 2
	Slide Number 22
	Slide Number 23

	ln06b
	Remarks on Problem Set 2

