
Outline Storage Managemet Bells and Whistles Classes

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 8
September 27, 2011

CPSC 427a, Lecture 8 1/18

Outline Storage Managemet Bells and Whistles Classes

Storage Managemet

Bells and Whistles

Classes

CPSC 427a, Lecture 8 2/18

Outline Storage Managemet Bells and Whistles Classes

Storage management

CPSC 427a, Lecture 8 3/18

Outline Storage Managemet Bells and Whistles Classes

Variables and storage

An ordinary variable consists of three parts:
A type, a name and a storage register.

I The type determines the size and encoding of the storage
register.

I The name is used to access the storage register.

I The storage register is a machine register long enough to hold
any of the legal values of the specified type.

CPSC 427a, Lecture 8 4/18

Outline Storage Managemet Bells and Whistles Classes

Example of a variable

Declaration: int n = 123;

This declares a variable of type int, name n, and an int-sized
storage register, which will be initialized to 123.

The sizeof operator returns the size of its operand (in bytes).

The operand can be an expression or a type name in parentheses,
e.g., sizeof n or sizeof(int).

In case of an expression, the size of the result type is returned, e.g.,
sizeof (n+2.5) returns 8, the size of a double on my machine.

CPSC 427a, Lecture 8 5/18

Outline Storage Managemet Bells and Whistles Classes

Properties of variables

Not all variables are created equal.

The name may not be visible in all contexts.

I It is not visible from outside of the block in which it is defined.

I If a data member in a class, the name’s visibility may be
restricted by the private keyword.

Each storage register has a lifetime – the interval of time between
the creation or allocation of the variable, and the deletion or
deallocation of the variable.

A variable can also be anonymous, in which case it has no name
and can only be accessed via a pointer or subscript. The notion of
lifetime still applies.

CPSC 427a, Lecture 8 6/18

Outline Storage Managemet Bells and Whistles Classes

Storage classes

C++ supports three different storage classes.

1. auto objects are created by variable and parameter
declarations. (This is the default.)
Their visibility and lifetime is restricted to the block in which
they are declared.
The are deleted when control finally exits the block (as
opposed to temporarily leaving via a function call).

2. static objects are created and initialized at load time and
exist until program termination.

3. new creates anonymous dynamic objects. They exist until
explicitly destroyed by delete or the program terminates.

CPSC 427a, Lecture 8 7/18

Outline Storage Managemet Bells and Whistles Classes

Assignment and copying

The assignment operator = is implicitly defined for all types.

I b=a does a shallow copy from a to b.

I Shallow copy on objects means to copy all data members from
one object to the other.

I Call-by-value uses the copy constructor to copy the actual
argument to the function parameter.

I If the argument object contains pointer data members, the
pointers are copied but not the objects they point to. This
results in aliasing—multiple pointers to the same object.

CPSC 427a, Lecture 8 8/18

Outline Storage Managemet Bells and Whistles Classes

Static data members

A static class variable must be declared and defined.

I A static class member is declared by preceding the member
declaration by the qualifier static.

I A static class member is defined by having it appear in global
context with an initializer but without static.

I Must be defined only once.

Example
In mypack.hpp file, inside class definition:
class MyPack {
static int instances; // count # instantiations

In mypack.cpp file:
int MyPack::instances = 0;

CPSC 427a, Lecture 8 9/18

Outline Storage Managemet Bells and Whistles Classes

Static function members

Function members can also be declared static.

I As with static variables, the are declared inside class by
prefixing static.

I They may be defined either inside the class (as inline
functions) or outside the class.

I If defined outside the class, the :: prefix must be used and
the word static omitted.

CPSC 427a, Lecture 8 10/18

Outline Storage Managemet Bells and Whistles Classes

Five common kinds of failures

1. Memory leak—Dynamic storage that is no longer accessible
but has not been deallocated.

2. Amnesia—Storage values that mysteriously disapper.

3. Bus error—Program crashes because of an attempt to access
non-existant memory.

4. Segmentation fault—Program crashes because of an
attempt to access memory not allocated to your process.

5. Waiting for eternity—Program is in a permanent wait state
or an infinite loop.

Read the textbook for examples of how these happen and what to
do about them.

CPSC 427a, Lecture 8 11/18

Outline Storage Managemet Bells and Whistles Classes

Bells and whistles

CPSC 427a, Lecture 8 12/18

Outline Storage Managemet Bells and Whistles Classes

Optional parameters

The same name can be used to name several different member
functions if the signatures (types and/or number of parameters)
are diffent. This is called overloading.

Optional parameters are a shorthand way to declare overloading.

Example
int myfun(double x, int n=1) { ... }
This in effect declares and defines two methods:
int myfun(double x) {int n=1; ...}
int myfun(double x, int n) {...}

The body of the definition of both is the same.
If called with one argument, the second parameter is set to 1.

CPSC 427a, Lecture 8 13/18

Outline Storage Managemet Bells and Whistles Classes

const

const declares a variable (L-value) to be readonly.

const int x;
int y;
const int* p;
int* q;

p = &x; // okay
p = &y; // okay
q = &x; // not okay -- discards const
q = &y; // okay

CPSC 427a, Lecture 8 14/18

Outline Storage Managemet Bells and Whistles Classes

const implicit argument

const should be used for member functions that do not change
data members.

class MyPack {
private:

int count;
public:

// a get function
int getCount() const { return count; }

...
};

CPSC 427a, Lecture 8 15/18

Outline Storage Managemet Bells and Whistles Classes

Operator extensions

Operators are shorthand for functions.

Example: <= refers to the function operator <=().

Operators can be overloaded just like functions.

class MyObj {
int count;
...
bool operator <=(MyObj& other) const {

return count <= other.count; }
};

Now can write if (a <= b) ... where a and b are of type
MyObj.

CPSC 427a, Lecture 8 16/18

Outline Storage Managemet Bells and Whistles Classes

Classes

CPSC 427a, Lecture 8 17/18

Outline Storage Managemet Bells and Whistles Classes

What is a class?

I A collection of things that belong together.

I A struct with associated functions.

I A way to encapsulate behavior: public interface, private
implementation.

I A way to protect data integrity, providing world with functions
that provide a read-only view of the data.

I A data type from which objects (instances) can be formed.
We say the instances belong to the class.

I A way to organize and automate allocation, initialization, and
deallocation of storage.

I A way to break a complex problem into manageable,
semi-independent pieces, each with a defined interface.

I A reusable module.

CPSC 427a, Lecture 8 18/18

	Outline
	Storage Managemet
	Bells and Whistles
	Classes

