
Outline Derivation Construction/Destruction Polymorphic Derivation

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 9
September 29, 2011

CPSC 427a, Lecture 9 1/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Derivation

Construction, Initialization, and Destruction

Polymorphic Derivation

CPSC 427a, Lecture 9 2/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Derivation

CPSC 427a, Lecture 9 3/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Class relationships

Classes relate to and collaborate with other classes.

Many ways in which one class relates to other.

We first explore derivation, where one class modifies and extends
another.

CPSC 427a, Lecture 9 4/29



Outline Derivation Construction/Destruction Polymorphic Derivation

What is derivation?

One class can be derived from another.

Syntax:
class A {
public:

int x;
...

};
class B : public A {

int y;
...

};

A is the base class; B is the derived class.
B inherits the members from A.

CPSC 427a, Lecture 9 5/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Instances

A base class instance is contained in each derived class instance.

Similar to composition, except for inheritance.

Function members are also inherited.

Data and function members can be overridden in the derived class.

Derivation is a powerful tool for allowing variations to a design.

CPSC 427a, Lecture 9 6/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Some uses of derivation

Derivation has several uses.

I To allow a family of related classes to share common parts.

I To describe abstract interfaces à la Java.

I To allow generic methods with run-time dispatching.

I To provide a clean interface between existing, non-modifiable
code and added user code.

CPSC 427a, Lecture 9 7/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Example: Parallelogram

class Parallelogram {
protected: // allows access by children

double base; // length of base
double side; // length of side
double angle; // angle between base and side

public:
Parallelogram() {} // null default constructor
Parallelogram(double b, double s, double a);
double area() const; // computes area
double perimeter() const; // computes perimeter
ostream& print( ostream& out ) const;

};

CPSC 427a, Lecture 9 8/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Example: Rectangle

class Rectangle : public Parallelogram {
public:

Rectangle( double b, double s ) {
base = b;
side = s;
angle = pi/2.0; // assumes pi is defined elsewhere

}
};

New class Rectangle inherits area(), perimeter(), and
print() functions from Parallelogram.

CPSC 427a, Lecture 9 9/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Example: Square

class Square : public Rectangle {
public:

Square( double b ) : Rectangle(b, b) {} // uses ctor
bool inscribable( Square& s ) const {

double diag = sqrt( 2.0 )*side; // this diagonal
return side <= s.side && diag >= s.side;

}
double area() const { return side*side; }

};

New class Square inherits the perimeter(), and print()
functions from Parallelogram (via Rectangle).

It overrides the function area().

CPSC 427a, Lecture 9 10/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Notes on Square

Features of Square.

I The ctor allows parameters to be supplied to the Rectangle
constructor.

I The function inscribable() extends Rectangle, adding
new functionality.
It returns true if this square can be inscribed in square s.

I The function area overrides the less-efficient definition in
Parallelogram.

CPSC 427a, Lecture 9 11/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Construction, Initialization, and Destruction

CPSC 427a, Lecture 9 12/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Structure of an object

A simple object is like a struct in C.
It consists of a block of storage large enough to contain all of its
data members.

An object of a derived class contains an instance of the base class
followed by the data members of the derived class.

Example:
class B : A { ...};
B bObj;

Then “inside” of bObj is an A-instance!

CPSC 427a, Lecture 9 13/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Example of object of a derived class

The declaration A aObj creates a variable of type A and storage
size large enough to contain all of A’s data members (plus perhaps
some padding).

aObj: int x;

The declaration B bObj creates a variable of type B and storage
size large enough to contain all of A’s data members plus all of B’s
data members.

bObj: int x; int y;

The inner box denotes an A-instance.

CPSC 427a, Lecture 9 14/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Referencing a composed object

Contrast the previous example to
class B { A aObj; ...};
B bObj;

Here B composes A.

The embedded A object can be referenced using data member
name aObj, e.g., bObj.aObj.

CPSC 427a, Lecture 9 15/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Referencing a base object

How do we reference the base object embedded in a derived class?

Example:
class A { public: int x; int y; ...};
class B : A { int y; ...};
B bObj;

I The data members of A can be referenced directly by name.
x refers to data member x in class A.
y refers to data member y in class B.
A::y refers to data member y in class A.

I this points to the whole object.
Its type is B*.
It can be coerced to type A*.

CPSC 427a, Lecture 9 16/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Initializing an object

Whenever a class object is created, one of its constructors is called.

If not specified otherwise, the default constructor is called.
This is the one that takes no arguments.

If you do not define the default constructor, then the null
constructor (which does nothing) is used.

This applies not only to the “outer” object but also to all of its
embedded objects.

CPSC 427a, Lecture 9 17/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Construction rules

The rule for an object of a simple class is:

1. Call the constructor/initializer for each data member object in
sequence.

2. Call the constructor for the class.

The rule for an object of a derived class is:

1. Call the constructor for the base class recursively.

2. Call the constructor/initializer for each data member object of
the derived class in sequence.

3. Call the constructor for the derived class.

CPSC 427a, Lecture 9 18/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Destruction rules

When an object is deleted, the destructors are called in the
opposite order.

The rule for an object of a derived class is:

1. Call the destructor for the dervied class.

2. Call the destructor for each data member object of the
derived class in reverse sequence.

3. Call the destructor for the base class.

CPSC 427a, Lecture 9 19/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Constructor ctors

Ctors (short for constructor/initializors) allow one to supply
parameters to implicitly-called constructors.

Example:

class B : A {
B( int n ) : A(n) {};

// Calls A constructor with argument n
};

CPSC 427a, Lecture 9 20/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Initialization ctors

Ctors also can be used to initialze primitive (non-class) variables.

Example:

class B {
int x;
const int y;
B( int n ) : x(n), y(n+1) {}; // Initializes x and y

};

Multiple ctors are separated by commas.

Ctors present must be in the same order as the construction takes
place – base class ctor first, then data member ctors in the same
order as their declarations in the class.

CPSC 427a, Lecture 9 21/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Initialization not same as assignment

Previous example using ctors is not the same as writing
B( int n ) { y=n+1; x=n; };

I The order of initialization differs.

I const variables can be initialized but not assgined to.

I Initialization uses the constructor (for class objects).

I Initialization from another instance of the same type uses the
copy constructor.

CPSC 427a, Lecture 9 22/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Copy constructors

I A copy constructor is automatically defined for each new class
A and has prototype A(const A&). It initializes a newly
created A object by making a shallow copy of its argument.

I Copy constructors are used for call-by-value parameters.

I Assignment uses operator=(), which by default copies the
data members but does not call the copy constructor.

I The results of the implicitly-defined assignment and copy
constructors are the same, but they can be redefined to be
different.

CPSC 427a, Lecture 9 23/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Polymorphic Derivation

CPSC 427a, Lecture 9 24/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Polymorphism and Type Hierarchies

Consider following simple type hierarchy:

class B { public: int f(); ... };
class U : B { int f(); ... };
class V : B { int f(); ... };

We have a base class B and derived classes U and V.

Declare B* bp; U* up = new U; V* vp = new V.
Can write bp = up; or bp = vp;.

Why does this make sense?
*up has an embedded instance of B.
*vp has an embedded instance of B.

Relationships: A U is a B (and more). A V is a B (and more).

CPSC 427a, Lecture 9 25/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Polymorphic pointers

Recall:

class B { public: int f(); ... };
class U : B { int f(); ... };
class V : B { int f(); ... };
B* bp;

bp can point to objects of type B, type U, or type V.
Say bp is a polymorphic pointer.

Want bp->f() to refer to U::f() if bp contains a U pointer.
Want bp->f() to refer to V::f() if bp contains a V pointer.
In this example, bp->f() always refers to B::f().

CPSC 427a, Lecture 9 26/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Virtual functions

Solution: Polymorphic derivation

class B { public: virtual int f(); ... };
class U : B { virtual int f(); ... };
class V : B { virtual int f(); ... };
B* bp;

A virtual function is dispatched at run time to the class of the
actual object.

bp->f() refers to U::f() if bp points to a U.
bp->f() refers to V::f() if bp points to a V.
bp->f() refers to B::f() if bp points to a B.

Here, the type refers to the allocation type.

CPSC 427a, Lecture 9 27/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Unions and type tags

We can regard bp as a pointer to the union of types B, U and V.

To know which of B::f(), U::f() or V::f() to use for the call
bp->f() requires runtime type tags.

If a class has virtual functions, the compiler adds a type tag field
to each object.
This takes space at run time.

The compiler also generates a vtable to use in dispatching calls on
virtual functions.

CPSC 427a, Lecture 9 28/29



Outline Derivation Construction/Destruction Polymorphic Derivation

Virtual destructors

Consider delete bp;, where bp points to a U but has type B*.

The U destructor will not be called unless destructor B::~B() is
declared to be virtual.

Note: The base class destructor is always called, whether or not it
is virtual.

In this way, destructors are different from other member methods.

Conclusion: If a derived class has a non-empty destructor, the base
class destructor should be declared virtual.

CPSC 427a, Lecture 9 29/29


	Outline
	Derivation
	Construction, Initialization, and Destruction
	Polymorphic Derivation

