
Outline Polymorphism Visibility

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 10
October 4, 2011

CPSC 427a, Lecture 10 1/19



Outline Polymorphism Visibility

Polymorphic Derivation (cont.)

Name Visibility

CPSC 427a, Lecture 10 2/19



Outline Polymorphism Visibility

Uses of polymorphism

Some uses of polymorphism:

I To define an extensible set of representations for a class.

I To allow containers to store mixtures of different but related
types of objects.

I To support run-time variability of within a restricted set of
related types.

CPSC 427a, Lecture 10 3/19



Outline Polymorphism Visibility

Multiple representations

Might want different representations for an object.

Example: A point in the plane can be represented by either
Cartesian or Polar coordinates.

A Point base class can provide abstract operations on points.
E.g., virtual int quadrant() const returns the quadrant of
*this.

For Cartesian coordinates, quadrant is determined by the signs of
the x and y coordinates of the point.
For polar coordinates, quadrant is determined by the angle θ.

Both Cartesian and Polar derived classes should contain a
method for int quadrant() const.

CPSC 427a, Lecture 10 4/19



Outline Polymorphism Visibility

Heterogeneous containers

One might wish to have a stack of Point objects.

The element type of the stack would be Point*.

The actual values would have type either Cartesian* or Polar*.

The automatically generated type tags and dynamic dispatching
obviates the need to cast the result of pop() to the correct type.

Example:

Stack st; Point* p;
p = st.pop(); // no need to cast result
p->quadrant(); // automatic dispatch

CPSC 427a, Lecture 10 5/19



Outline Polymorphism Visibility

Run-time variability

Two types are closely related; differ only slightly.

Example: Company has several different kinds of employees.

I Employee base class has a large and complicated payroll
function.

I Payroll is same for all kinds of employees except for a function
pay() that computes the actual weekly pay.

I Each employee kind has its own pay() function.

I Big payroll function is in base class.

I It calls pay() to get the actual pay for this Employee.

CPSC 427a, Lecture 10 6/19



Outline Polymorphism Visibility

Pure virtual functions

Suppose we don’t want B::f() and never create instances of B.
We make B::f() into a pure virtual function by writing =0.

class B { public: virtual int f()=0; ... };
class U : B { virtual int f(); ... };
class V : B { virtual int f(); ... };
B* bp;

A pure virtual function is sometimes called a promise.
It tells the compiler that a construct like bp->f() is legal.
The compiler requires every derived class to contain a method f().

CPSC 427a, Lecture 10 7/19



Outline Polymorphism Visibility

Abstract classes

An abstract class is a class with one or more pure virtual functions.

An abstract class cannot be instantiated.
It can only be used as the base for another class.

The destructor can never be a pure virtual function but will
generally be virtual.

A pure abstract class is one where all member functions are pure
virtual (except for the destructor) and there are no data members,

Pure abstract classes define an interface à la Java.

An interface allows user-supplied code to integrate into a large
system.

CPSC 427a, Lecture 10 8/19



Outline Polymorphism Visibility

Name visibility

CPSC 427a, Lecture 10 9/19



Outline Polymorphism Visibility

Private derivation (default)

class B : A { ... }; specifies private derivation of B from A.

A class member inherited from A become private in B.
Like other private members, it is inaccessible outside of B.

If public in A, it can be accessed from within A or B or via an
instance of A, but not via an instance of B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

CPSC 427a, Lecture 10 10/19



Outline Polymorphism Visibility

Private derivation example
Example:

class A {
private: int x;
public: int y;
};
class B : A {

... f() {... x++; ...} // privacy violation
};
//-------- outside of class definitions --------
A a; B b;
a.x // privacy violation
a.y // ok
b.x // privacy violation
b.y // privacy violation

CPSC 427a, Lecture 10 11/19



Outline Polymorphism Visibility

Public derivation

class B : public A { ... }; specifies public derivation of B
from A.

A class member inherited from A retains its privacy status from A.

If public in A, it can be accessed from within B and also via
instances of A or B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

CPSC 427a, Lecture 10 12/19



Outline Polymorphism Visibility

Public derivation example
Example:

class A {
private: int x;
public: int y;
};
class B : public A {

... f() {... x++; ...} // privacy violation
};
//-------- outside of class definitions --------
A a; B b;
a.x // privacy violation
a.y // ok
b.x // privacy violation
b.y // ok

CPSC 427a, Lecture 10 13/19



Outline Polymorphism Visibility

The protected keyword

protected is a privacy status between public and private.

Protected class members are inaccessible from outside the class
(like private) but accessible within a derived class (like public).

Example:

class A {
protected: int z;
};
class B : A {

... f() {... z++; ...} // ok
};

CPSC 427a, Lecture 10 14/19



Outline Polymorphism Visibility

Protected derivation

class B : protected A { ... }; specifies protected
derivation of B from A.

A public or protected class member inherited from A becomes
protected in B.

If public in A, it can be accessed from within B and also via
instances of A but not via instances of B.

If protected in A, it can be accessed from within A or B but not
from outside.

If private in A, it can only be accessed from within A.
It cannot be accessed from within B.

CPSC 427a, Lecture 10 15/19



Outline Polymorphism Visibility

Privacy summary

Class A



Kind of Derivation
public protected private

public public protected private
protected protected protected private
private invisible invisible invisible

Visibility in derived class B.

CPSC 427a, Lecture 10 16/19



Outline Polymorphism Visibility

Surprising example 1

1 class A {
2 protected:
3 int x;
4 };
5 class B : public A {
6 public:
7 int f() { return x; } // ok
8 int g(A* a) { return a->x; } // privacy violation
9 };

Result:

tryme1.cpp: In member function ’int B::g(A*)’:
tryme1.cpp:3: error: ’int A::x’ is protected
tryme1.cpp:9: error: within this context

CPSC 427a, Lecture 10 17/19



Outline Polymorphism Visibility

Surprising example 2: contrast the following

1 class A { };
2 class B : public A {}; // <-- public derivation
3 int main() { A* ap; B* bp;
4 ap = bp; }

Result: OK.

1 class A { };
2 class B : private A {}; // <-- private derivation
3 int main() { A* ap; B* bp;
4 ap = bp; }

Result:

tryme2.cpp: In function ’int main()’:
tryme2.cpp:4: error: ’A’ is an inaccessible base of ’B’

CPSC 427a, Lecture 10 18/19



Outline Polymorphism Visibility

Surprising example 3

1 class A { protected: int x; };
2 class B : protected A {};
3 int main() { A* ap; B* bp;
4 ap = bp; }

Result:

tryme3.cpp: In function ’int main()’:
tryme3.cpp:4: error: ’A’ is an inaccessible base of ’B’

CPSC 427a, Lecture 10 19/19


	Outline
	Polymorphic Derivation (cont.)
	Name Visibility

