
Outline Visibility UML

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 11
October 6, 2011

CPSC 427a, Lecture 11 1/21

Outline Visibility UML

Name Visibility Revisited

Interacting Classes and UML

CPSC 427a, Lecture 11 2/21

Outline Visibility UML

Name Visibility Revisited

CPSC 427a, Lecture 11 3/21

Outline Visibility UML

Names, Members, and Contexts

Data and function names can be declared in many different
contexts in C++: in a class, globally, in function parameter lists,
and in code blocks (viz. local variables).

Often the same identifier will be declared multiple times in
different contexts.

Two steps to determining the meaning of an occurrence of an
identifier:

1. Determine which declaration it refers to.

2. Determine its accessibility according to the privacy rules.

CPSC 427a, Lecture 11 4/21

Outline Visibility UML

Declaration and reference contexts

Every reference x to a class data or function member has two
contexts associated with it:

I The declaration context is the context in which the referent
of x appears.

I The reference context is the context in which the reference
x appears.

Accessibility rules apply to class data and function members
depend on both the declaration context and the reference context
of a reference x.

CPSC 427a, Lecture 11 5/21

Outline Visibility UML

Declaration context example

Example:

int x = 3; // declaration context: global
class A {
int x; // declaration context: A
void f(int x) {...} // declaration context: parameter
void g() {int x; ... } // declaration context: block local

};

CPSC 427a, Lecture 11 6/21

Outline Visibility UML

Reference context example

class A {
int x;
int f() {return x;} // reference context A
int g(A* p) {return p->x;} // reference context A

};
int main() {
A obj;
obj.x; // reference context global

}

All three commented occurrences of x have declaration context A
because all three refer to A::x, the data member declared in
class A.

CPSC 427a, Lecture 11 7/21

Outline Visibility UML

Inside and outside class references

A reference x to a data/function member of class A is

I inside class A if the reference context of x is A;

I outside class A otherwise.

For simple classes:

I an inside reference x is always valid.

I an outside reference x is valid iff the referent is public.

CPSC 427a, Lecture 11 8/21

Outline Visibility UML

Examples
References to A::x

class A {
int x;
int f() { return x; } // inside
int g(A* p) { return p->x; } // inside
int h();

};

int A::h () { return x; } // inside

#include <iostream>
int main() {
A aObject;
std::cout << aObject.x; // outside

};

CPSC 427a, Lecture 11 9/21

Outline Visibility UML

Inherited names

In a derived class, names from the base class are inherited by the
derived class, but their privacy settings are altered as described in
the last lecture.

The result is that the same member exists in both classes but
with possibly different privacy settings.

Question: Which privacy setting is used to determine visibility?

Answer: The one of the declaration context of the referent.

CPSC 427a, Lecture 11 10/21

Outline Visibility UML

Inheritance example

class A { protected: int x; };
class B : private A {
int f() { return x; } // ok, x is inside B
int g(A* p) { return p->x; } // not okay, x is outside A

};

Let bb be an instance of class B. Then bb contains a field x,
inherited from class A. This field has two names A::x and B::x.

The names are distinct and may have different privacy attributes.
In this example, A::x is protected and B::x is private.

First reference is okay since the declaration context of x is B.
Second reference is not since the declaration context of x is A.
Both occurrences have reference context B.

CPSC 427a, Lecture 11 11/21

Outline Visibility UML

Inaccessible base class

A base class pointer can only reference an object of a derived class
if doing so would not violate the derived class’s privacy. Recall
surprising example 2 (bottom):

1 class A { };
2 class B : private A {}; // <-- private derivation
3 int main() { A* ap; B* bp;
4 ap = bp; }

The idea is that with private derivation, the fact that B is derived
from A should be completely invisible from the outside.

With protected derivation, it should be completely invisible except
to its descendants.

CPSC 427a, Lecture 11 12/21

Outline Visibility UML

Interacting Classes and UML

CPSC 427a, Lecture 11 13/21

Outline Visibility UML

What is a Class: Syntax

Mine

data members
name1: type1
name2: type2
name5: type5

Mine (param list)
~Mine()
funA(param list): type3
funB(param list): type4
funC(param list): type6
funD(param list): type7

-
-
+

function members

+
+
-

constructors
destructor

other relevant information

-
+
+

Can include global operators in such a diagram, adding a 4th row.

CPSC 427a, Lecture 11 14/21

Outline Visibility UML

Class Relationships

I Class relationship studies the connectivity of a set of classes in
an OO system.

I A large-scale OO system can have a large number of classes
I .Net 8000 classes (.Net CF: 1400 classes)

I There are empirical studies on the relationship between class
relationship metric and software quality, e.g., A Validation of
Object-Oriented Design Metrics as Quality Indicators, 1996.

CPSC 427a, Lecture 11 15/21

http://www.cs.umd.edu/~basili/publications/journals/J62.pdf
http://www.cs.umd.edu/~basili/publications/journals/J62.pdf

Outline Visibility UML

Class Relationship Between Two Classes

Scenarios in which class B appears in definition of class A?

CPSC 427a, Lecture 11 16/21

Outline Visibility UML

Class B appears in Definition of Class A
Class B is related with class A

I A derives from B
I B is a friend of A
I definition of class B is nested in class A

UML diagram for derivation:

A
B

C

UML diagram for friend:

*
1

A
 mp: B*

B
next: B*

CPSC 427a, Lecture 11 17/21

Outline Visibility UML

B as Data Members in A
Class B objects as data members in class A, e.g.,

I B b;

I B b[2];

I B* bp01; // one object

I B* bpm; // multiple B objects

These reflect different class relationships:

I composition: the first two cases. It is also referred to as
has-a-value relation.

I association: the next two cases. It is also referred to as
has-a-reference relation.

The association relationship is weaker. A special type of
association is called aggregation: when a B object is a “part” of
an A object.

CPSC 427a, Lecture 11 18/21

Outline Visibility UML

B as Data Members in A
UML diagram for composition:

A B
1

m: B

UML diagram for aggregation:

A B1

m: B*

UML diagrams for simple association (left) and one-many
association (right):

0..1
1

A
 mp: B*

B

*
1

A
 mp: B*

B
next: B*

CPSC 427a, Lecture 11 19/21

Outline Visibility UML

Creation and Deletion

Identifying composition, association and aggregation helps with
object creation and deletion:

I composition: creation/deletion of B objects is part of the
creation/deletion of A. Compiler will automatically create
(invoking default constructor) B objects when creating A
object.

I aggregation: generally, if a B object is aggregated into a
single A object, then the A object is responsible to create and
delete the B object.

CPSC 427a, Lecture 11 20/21

Outline Visibility UML

Example: BarGraph Class Interaction

What is the class diagram of the BarGraph program?

What types of relationships do we identify? Why?

CPSC 427a, Lecture 11 21/21

	Outline
	Name Visibility Revisited
	Interacting Classes and UML

