Outline Goals

Stopwatch

Hangman
[e]e]

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

(with thanks to Ewa Syta for help with the slides)

Lecture 14
October 20, 2011

CPSC 427a, Lecture 14

- _
1/22




e
Outline Goals Stopwatch Hangman
00
: :
: :
More on Course Goals

Demo: Stopwatch

Demo: Hangman Game
Game Rules

= = DA
:

CPSC 427a, Lecture 14 2/22
00




e
Outline Goals Stopwatch Hangman
00
: :
: :

More on Course Goals

= = DA
:

CPSC 427a, Lecture 14 3/22
00




Outline Goals Stopwatch Hangman
00

Low-level details

» C++ is a large and complicated language with many quirks
and detailed rules.

» One goal of this course is for you to learn how to deal
effectively with a complex system where it is not feasible to
know everything about it before beginning to use it.

» Low-level details tend to be easy to find in the documentation
once you know what to look for.

» What's important to learn is the overall roadmap of the
language and where to look to find out more.

o
o)
I
i
it

CPSC 427a, Lecture 14 4/22




Outline Goals Stopwatch Hangman
00

Example picky detail

» If you do not supply a constructor for a class, C++
automatically generates a null default constructor for you,
that is, one that takes no parameters and does nothing.

» If you do define a constructor, the default constructor is not
generated. If you want it, you then need to explicitly define it,
e.g.,

MyClass() {}

» What if you didn't know this and assumed the default
constructor was pre-defined? The compiler would give you an
error comment about it not being defined, and you would be
started on the track of trying to figure out why.

:
CPSC 427a, Lecture 14 5/22




Outline Goals Stopwatch Hangman

[e]e]
:

Efficient use of resources

Efficiency is concerned with making good use of available
resources:

» Time (how fast a program works)

» Memory (how much memory the program requires)

» Other resources that are scarce and relatively costly to create:

» Network connections (TCP sockets)
» Database connections

Strategy for improving efficiency: Reuse and recycle. Maintain a
pool of currently unused objects and reuse rather than recreate
when possible.

In the case of memory blocks, this pool is often called a free list.

] = = =

CPSC 427a, Lecture 14 6/22

00




Outline Goals

Stopwatch Hangman

[e]e]

Efficiency measurement

A first step to improving efficiency is to know how the resources
are being used.

Measuring resource usage is not always easy.

The next demo is concerned with measuring execution time.

] = =
:
CPSC 427a, Lecture 14

7/22
00




e
Outline Goals Stopwatch Hangman
00
: :
: :

Demo: Stopwatch

= = DA
:

CPSC 427a, Lecture 14 8/22
00




Outline Goals Stopwatch Hangman
00

How to measure run time of a program

» There is no standard procedure in C++ for accurately
measuring time.

» Time measurement depends on the software clocks provided
by your computer and operating system.

» Clocks advance in discrete clicks called jiffies. A jiffy on the
Zoo linux machines is one millisecond (0.001 seconds) long.

» Even if the clock is 100% accurate, the measured time can be
off by as much as one jiffy.

» Hence, times shorter than tens of milliseconds cannot be
directly measured with much accuracy using the standard
software clock.

: :
CPSC 427a, Lecture 14 9/22

00




Outline Goals Stopwatch Hangman
00

High resolution clocks

» Linux also provides high resolution clocks based on CPU
timers.

» High resolution clocks are useful to the operating system for
task scheduling and timeouts.

» They are also available to the user for higher-precision time
measurements.

» Be aware that reading the clock involves a kernel call that
takes a certain amount of time. This itself may limit the
accuracy of timing measurements, even when the clock
resolution is sufficiently high for the desired accuracy.

» See man 7 time for more information about linux clocks.

: :
CPSC 427a, Lecture 14 10/22




Outline Goals Stopwatch Hangman
00

Measuring time in real systems

» Measuring code efficiency in real systems is challenging. Many
factors can influence the results that are hard to control.
» Other process running on the same machine.
» Time spent in the OS moving data on and off disks.
» Memory caching behavior.

» Lacking a controlled laboratory environment, one can still take
measures to improve accuracy of the tests:

» Do some tests to determine what factors seem to have a
sizable effect on the run time, e.g., the first run of a program
is likely to be slower than subsequent runs because of caching.

» Run the same test several times to get a feeling for the
variance of results.

» Make sure the optimizer isn't optimizing away code that you
think is being executed.

:
CPSC 427a, Lecture 14 11/22




Outline Goals Stopwatch Hangman

[e]e]
:

Realtime measurements

StopWatch is a class | wrote for measuring realtime performance
of code.

It emulates a stopwatch with 3 buttons: reset, start, and stop.

At any time, the watch displays the cumulative time that the
stopwatch has been running.

(See demo.)

] = =
;

CPSC 427a, Lecture 14 12/22

00




Outline Goals Stopwatch Hangman

[e]e]
:

HirezTime class

HirezTime is a wrapper class for the system-specific functions to
read the clock.

It hides the details of the underlying time representation and
provides a simple interface for reading, computing, and printing
times and time intervals.

HirezTime objects are intended to be copied rather than pointed
at, and to behave like other numeric types.

o = -
:
CPSC 427a, Lecture 14 13/22

00




Outline Goals Stopwatch Hangman
00

Versions of HirezTime

There are two versions:

12-StopWatch (Linux/Unix/Darwin) Function gettimeofday ()
returns the clock in a struct timeval, which
consists of two long ints representing seconds and
microseconds. The resolution of the clock is
system-dependent, typically 1 millisecond.

12-StopWatch-hirez (Linux only) Function clock_gettime ()
returns the clock in a struct timespec, which
consists of two long ints representing seconds and
nanoseconds. The resolution of the clock is
system-dependent and can be obtained with the
clock_getres() function.

o
o)
I
i
it

CPSC 427a, Lecture 14 14/22




Outline Goals Stopwatch Hangman
00

HirezTime structure

» In C++, struct T and class T are very similar. In both
cases, T becomes a new type name.

» struct members are public by default.
class members are private by default.

» HirezTime is derived from struct timeval or struct
timespec, depending on the version.

» It uses protected derivation to hide the underlying
representation.
» It presents two interfaces to the world:
1. The normal public interface treats HirezTime as an opaque
object.

2. A class derived from it can access the fields of the underlying
timespec/timeval.
] = = =

CPSC 427a, Lecture 14 15/22




Outline Goals Stopwatch

Hangman
[e]e)

Printing a HirezTime number

Something seemingly simple like printing HirezTime values is not
so simple. Naively, one might write:

cout << t.tv_sec << "." << t.tv_usec;

where tv_sec and tv_usec are the seconds and microseconds
fields of a timeval structure.

If t represents 2 seconds and 27 microseconds, then what would
print is 2.27, not the correct 2.000027.

The class contains a print function that fixes this problem.

CPSC 427a, Lecture 14 16/22




Outline Goals

Stopwatch

StopWatch class

Hangman
[e]e)

StopWatch contains five member variables to record
» Whether the watch is running or not.

» The cumulative run time to point when last stopped.
» The most recent start and stop times.

All functions are inline to minimize inaccuracies of measurement
due to the overhead withing the stopwatch code itself.

= = = DA
:

CPSC 427a, Lecture 14 17/22
00




Outline Goals

Stopwatch

Hangman
[e]e]

Casting a StopWatch to a HirezTime

An operator extension defines a cast for reading the cumulative
time from a stop watch:

operator HirezTime() const { return cumSpan; }
Thus, if sw is a StopWatch instance,
cout << sw;

will print sw.cumSpan using sw.print ().

= = = E 9Dae
:

CPSC 427a, Lecture 14 18/22
00




Outline Goals Stopwatch Hangman

[e]e]

Why it works

This works because operator<<() is not defined for righthand
operands of type StopWatch but it is defined for HirezTime.

The compiler then coerces sw to something that is acceptable to
the << operator.

Because operator HirezTime() is defined for class StopWatch,
the compiler will invoke it to obtain a HirezTime object, for which
<< is defined.

Note that a similar coercion happens when one writes

if(tin) {...}
to test if an istream object in is open for reading. Here, the
istream object is coerced to a bool because operator bool() is
defined inside the streams package.

CPSC 427a, Lecture 14 19/22

00




e
Outline Goals Stopwatch Hangman
00
: :
: :

Demo: Hangman Game

= = DA
:

CPSC 427a, Lecture 14 20/22
00




e
Outline Goals Stopwatch Hangman
o0
: :
Game Rules
: :

Game Rules

= = DA
:

CPSC 427a, Lecture 14 21/22
00




Outline Goals Stopwatch Hangman
oce
Game Rules
:
Hangman game
Well-known letter-guessing game.

Start with a hidden puzzle word.
Player guesses a letter.

» If letter appears in puzzle word, matching letters are
uncovered.

» If letter does not appear, it is shown in list of bad guesses.
Player wins when puzzle word is uncovered.

Player loses after 7 bad guesses

= = = DA
:

CPSC 427a, Lecture 14 22/22
00




	Outline
	More on Course Goals
	Demo: Stopwatch
	Demo: Hangman Game
	Game Rules


