
Outline Goals Stopwatch Hangman

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

(with thanks to Ewa Syta for help with the slides)

Lecture 14
October 20, 2011

CPSC 427a, Lecture 14 1/22



Outline Goals Stopwatch Hangman

More on Course Goals

Demo: Stopwatch

Demo: Hangman Game
Game Rules

CPSC 427a, Lecture 14 2/22



Outline Goals Stopwatch Hangman

More on Course Goals

CPSC 427a, Lecture 14 3/22



Outline Goals Stopwatch Hangman

Low-level details

I C++ is a large and complicated language with many quirks
and detailed rules.

I One goal of this course is for you to learn how to deal
effectively with a complex system where it is not feasible to
know everything about it before beginning to use it.

I Low-level details tend to be easy to find in the documentation
once you know what to look for.

I What’s important to learn is the overall roadmap of the
language and where to look to find out more.

CPSC 427a, Lecture 14 4/22



Outline Goals Stopwatch Hangman

Example picky detail

I If you do not supply a constructor for a class, C++
automatically generates a null default constructor for you,
that is, one that takes no parameters and does nothing.

I If you do define a constructor, the default constructor is not
generated. If you want it, you then need to explicitly define it,
e.g.,

MyClass() {}

I What if you didn’t know this and assumed the default
constructor was pre-defined? The compiler would give you an
error comment about it not being defined, and you would be
started on the track of trying to figure out why.

CPSC 427a, Lecture 14 5/22



Outline Goals Stopwatch Hangman

Efficient use of resources

Efficiency is concerned with making good use of available
resources:

I Time (how fast a program works)

I Memory (how much memory the program requires)
I Other resources that are scarce and relatively costly to create:

I Network connections (TCP sockets)
I Database connections

Strategy for improving efficiency: Reuse and recycle. Maintain a
pool of currently unused objects and reuse rather than recreate
when possible.

In the case of memory blocks, this pool is often called a free list.

CPSC 427a, Lecture 14 6/22



Outline Goals Stopwatch Hangman

Efficiency measurement

A first step to improving efficiency is to know how the resources
are being used.

Measuring resource usage is not always easy.

The next demo is concerned with measuring execution time.

CPSC 427a, Lecture 14 7/22



Outline Goals Stopwatch Hangman

Demo: Stopwatch

CPSC 427a, Lecture 14 8/22



Outline Goals Stopwatch Hangman

How to measure run time of a program

I There is no standard procedure in C++ for accurately
measuring time.

I Time measurement depends on the software clocks provided
by your computer and operating system.

I Clocks advance in discrete clicks called jiffies. A jiffy on the
Zoo linux machines is one millisecond (0.001 seconds) long.

I Even if the clock is 100% accurate, the measured time can be
off by as much as one jiffy.

I Hence, times shorter than tens of milliseconds cannot be
directly measured with much accuracy using the standard
software clock.

CPSC 427a, Lecture 14 9/22



Outline Goals Stopwatch Hangman

High resolution clocks

I Linux also provides high resolution clocks based on CPU
timers.

I High resolution clocks are useful to the operating system for
task scheduling and timeouts.

I They are also available to the user for higher-precision time
measurements.

I Be aware that reading the clock involves a kernel call that
takes a certain amount of time. This itself may limit the
accuracy of timing measurements, even when the clock
resolution is sufficiently high for the desired accuracy.

I See man 7 time for more information about linux clocks.

CPSC 427a, Lecture 14 10/22



Outline Goals Stopwatch Hangman

Measuring time in real systems

I Measuring code efficiency in real systems is challenging. Many
factors can influence the results that are hard to control.

I Other process running on the same machine.
I Time spent in the OS moving data on and off disks.
I Memory caching behavior.

I Lacking a controlled laboratory environment, one can still take
measures to improve accuracy of the tests:

I Do some tests to determine what factors seem to have a
sizable effect on the run time, e.g., the first run of a program
is likely to be slower than subsequent runs because of caching.

I Run the same test several times to get a feeling for the
variance of results.

I Make sure the optimizer isn’t optimizing away code that you
think is being executed.

CPSC 427a, Lecture 14 11/22



Outline Goals Stopwatch Hangman

Realtime measurements

StopWatch is a class I wrote for measuring realtime performance
of code.

It emulates a stopwatch with 3 buttons: reset, start, and stop.

At any time, the watch displays the cumulative time that the
stopwatch has been running.

(See demo.)

CPSC 427a, Lecture 14 12/22



Outline Goals Stopwatch Hangman

HirezTime class

HirezTime is a wrapper class for the system-specific functions to
read the clock.

It hides the details of the underlying time representation and
provides a simple interface for reading, computing, and printing
times and time intervals.

HirezTime objects are intended to be copied rather than pointed
at, and to behave like other numeric types.

CPSC 427a, Lecture 14 13/22



Outline Goals Stopwatch Hangman

Versions of HirezTime

There are two versions:

12-StopWatch (Linux/Unix/Darwin) Function gettimeofday()
returns the clock in a struct timeval, which
consists of two long ints representing seconds and
microseconds. The resolution of the clock is
system-dependent, typically 1 millisecond.

12-StopWatch-hirez (Linux only) Function clock gettime()
returns the clock in a struct timespec, which
consists of two long ints representing seconds and
nanoseconds. The resolution of the clock is
system-dependent and can be obtained with the
clock getres() function.

CPSC 427a, Lecture 14 14/22



Outline Goals Stopwatch Hangman

HirezTime structure

I In C++, struct T and class T are very similar. In both
cases, T becomes a new type name.

I struct members are public by default.
class members are private by default.

I HirezTime is derived from struct timeval or struct
timespec, depending on the version.

I It uses protected derivation to hide the underlying
representation.

I It presents two interfaces to the world:

1. The normal public interface treats HirezTime as an opaque
object.

2. A class derived from it can access the fields of the underlying
timespec/timeval.

CPSC 427a, Lecture 14 15/22



Outline Goals Stopwatch Hangman

Printing a HirezTime number

Something seemingly simple like printing HirezTime values is not
so simple. Naively, one might write:

cout << t.tv_sec << "." << t.tv_usec;

where tv_sec and tv_usec are the seconds and microseconds
fields of a timeval structure.

If t represents 2 seconds and 27 microseconds, then what would
print is 2.27, not the correct 2.000027.

The class contains a print function that fixes this problem.

CPSC 427a, Lecture 14 16/22



Outline Goals Stopwatch Hangman

StopWatch class

StopWatch contains five member variables to record

I Whether the watch is running or not.

I The cumulative run time to point when last stopped.

I The most recent start and stop times.

All functions are inline to minimize inaccuracies of measurement
due to the overhead withing the stopwatch code itself.

CPSC 427a, Lecture 14 17/22



Outline Goals Stopwatch Hangman

Casting a StopWatch to a HirezTime

An operator extension defines a cast for reading the cumulative
time from a stop watch:

operator HirezTime() const { return cumSpan; }

Thus, if sw is a StopWatch instance,
cout << sw;

will print sw.cumSpan using sw.print().

CPSC 427a, Lecture 14 18/22



Outline Goals Stopwatch Hangman

Why it works

This works because operator<<() is not defined for righthand
operands of type StopWatch but it is defined for HirezTime.

The compiler then coerces sw to something that is acceptable to
the << operator.

Because operator HirezTime() is defined for class StopWatch,
the compiler will invoke it to obtain a HirezTime object, for which
<< is defined.

Note that a similar coercion happens when one writes
if(!in) {...}

to test if an istream object in is open for reading. Here, the
istream object is coerced to a bool because operator bool() is
defined inside the streams package.

CPSC 427a, Lecture 14 19/22



Outline Goals Stopwatch Hangman

Demo: Hangman Game

CPSC 427a, Lecture 14 20/22



Outline Goals Stopwatch Hangman

Game Rules

Game Rules

CPSC 427a, Lecture 14 21/22



Outline Goals Stopwatch Hangman

Game Rules

Hangman game

Well-known letter-guessing game.

Start with a hidden puzzle word.

Player guesses a letter.

I If letter appears in puzzle word, matching letters are
uncovered.

I If letter does not appear, it is shown in list of bad guesses.

Player wins when puzzle word is uncovered.

Player loses after 7 bad guesses

CPSC 427a, Lecture 14 22/22


	Outline
	More on Course Goals
	Demo: Stopwatch
	Demo: Hangman Game
	Game Rules


