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More on Course Goals
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Low-level details

I C++ is a large and complicated language with many quirks
and detailed rules.

I One goal of this course is for you to learn how to deal
effectively with a complex system where it is not feasible to
know everything about it before beginning to use it.

I Low-level details tend to be easy to find in the documentation
once you know what to look for.

I What’s important to learn is the overall roadmap of the
language and where to look to find out more.
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Example picky detail

I If you do not supply a constructor for a class, C++
automatically generates a null default constructor for you,
that is, one that takes no parameters and does nothing.

I If you do define a constructor, the default constructor is not
generated. If you want it, you then need to explicitly define it,
e.g.,

MyClass() {}

I What if you didn’t know this and assumed the default
constructor was pre-defined? The compiler would give you an
error comment about it not being defined, and you would be
started on the track of trying to figure out why.
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Efficient use of resources

Efficiency is concerned with making good use of available
resources:

I Time (how fast a program works)

I Memory (how much memory the program requires)
I Other resources that are scarce and relatively costly to create:

I Network connections (TCP sockets)
I Database connections

Strategy for improving efficiency: Reuse and recycle. Maintain a
pool of currently unused objects and reuse rather than recreate
when possible.

In the case of memory blocks, this pool is often called a free list.
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Efficiency measurement

A first step to improving efficiency is to know how the resources
are being used.

Measuring resource usage is not always easy.

The next demo is concerned with measuring execution time.
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Demo: Stopwatch
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How to measure run time of a program

I There is no standard procedure in C++ for accurately
measuring time.

I Time measurement depends on the software clocks provided
by your computer and operating system.

I Clocks advance in discrete clicks called jiffies. A jiffy on the
Zoo linux machines is one millisecond (0.001 seconds) long.

I Even if the clock is 100% accurate, the measured time can be
off by as much as one jiffy.

I Hence, times shorter than tens of milliseconds cannot be
directly measured with much accuracy using the standard
software clock.
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High resolution clocks

I Linux also provides high resolution clocks based on CPU
timers.

I High resolution clocks are useful to the operating system for
task scheduling and timeouts.

I They are also available to the user for higher-precision time
measurements.

I Be aware that reading the clock involves a kernel call that
takes a certain amount of time. This itself may limit the
accuracy of timing measurements, even when the clock
resolution is sufficiently high for the desired accuracy.

I See man 7 time for more information about linux clocks.
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Measuring time in real systems

I Measuring code efficiency in real systems is challenging. Many
factors can influence the results that are hard to control.

I Other process running on the same machine.
I Time spent in the OS moving data on and off disks.
I Memory caching behavior.

I Lacking a controlled laboratory environment, one can still take
measures to improve accuracy of the tests:

I Do some tests to determine what factors seem to have a
sizable effect on the run time, e.g., the first run of a program
is likely to be slower than subsequent runs because of caching.

I Run the same test several times to get a feeling for the
variance of results.

I Make sure the optimizer isn’t optimizing away code that you
think is being executed.
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Realtime measurements

StopWatch is a class I wrote for measuring realtime performance
of code.

It emulates a stopwatch with 3 buttons: reset, start, and stop.

At any time, the watch displays the cumulative time that the
stopwatch has been running.

(See demo.)
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HirezTime class

HirezTime is a wrapper class for the system-specific functions to
read the clock.

It hides the details of the underlying time representation and
provides a simple interface for reading, computing, and printing
times and time intervals.

HirezTime objects are intended to be copied rather than pointed
at, and to behave like other numeric types.
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Versions of HirezTime

There are two versions:

12-StopWatch (Linux/Unix/Darwin) Function gettimeofday()
returns the clock in a struct timeval, which
consists of two long ints representing seconds and
microseconds. The resolution of the clock is
system-dependent, typically 1 millisecond.

12-StopWatch-hirez (Linux only) Function clock gettime()
returns the clock in a struct timespec, which
consists of two long ints representing seconds and
nanoseconds. The resolution of the clock is
system-dependent and can be obtained with the
clock getres() function.
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HirezTime structure

I In C++, struct T and class T are very similar. In both
cases, T becomes a new type name.

I struct members are public by default.
class members are private by default.

I HirezTime is derived from struct timeval or struct
timespec, depending on the version.

I It uses protected derivation to hide the underlying
representation.

I It presents two interfaces to the world:

1. The normal public interface treats HirezTime as an opaque
object.

2. A class derived from it can access the fields of the underlying
timespec/timeval.
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Printing a HirezTime number

Something seemingly simple like printing HirezTime values is not
so simple. Naively, one might write:

cout << t.tv_sec << "." << t.tv_usec;

where tv_sec and tv_usec are the seconds and microseconds
fields of a timeval structure.

If t represents 2 seconds and 27 microseconds, then what would
print is 2.27, not the correct 2.000027.

The class contains a print function that fixes this problem.
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StopWatch class

StopWatch contains five member variables to record

I Whether the watch is running or not.

I The cumulative run time to point when last stopped.

I The most recent start and stop times.

All functions are inline to minimize inaccuracies of measurement
due to the overhead withing the stopwatch code itself.
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Casting a StopWatch to a HirezTime

An operator extension defines a cast for reading the cumulative
time from a stop watch:

operator HirezTime() const { return cumSpan; }

Thus, if sw is a StopWatch instance,
cout << sw;

will print sw.cumSpan using sw.print().
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Why it works

This works because operator<<() is not defined for righthand
operands of type StopWatch but it is defined for HirezTime.

The compiler then coerces sw to something that is acceptable to
the << operator.

Because operator HirezTime() is defined for class StopWatch,
the compiler will invoke it to obtain a HirezTime object, for which
<< is defined.

Note that a similar coercion happens when one writes
if(!in) {...}

to test if an istream object in is open for reading. Here, the
istream object is coerced to a bool because operator bool() is
defined inside the streams package.
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Demo: Hangman Game
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Game Rules

Game Rules
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Game Rules

Hangman game

Well-known letter-guessing game.

Start with a hidden puzzle word.

Player guesses a letter.

I If letter appears in puzzle word, matching letters are
uncovered.

I If letter does not appear, it is shown in list of bad guesses.

Player wins when puzzle word is uncovered.

Player loses after 7 bad guesses
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