
Outline Tester Hangman

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 15
October 25, 2011

CPSC 427a, Lecture 15 1/26

Outline Tester Hangman

Runtime Tester

Demo: Hangman Game
Game Rules
Code Design
Storage Management

CPSC 427a, Lecture 15 2/26

Outline Tester Hangman

Runtime Tester

CPSC 427a, Lecture 15 3/26

Outline Tester Hangman

Modularizing timing tests

The 14-StopWatch demo presented last time illustrated the use of
the StopWatch class to obtain the running time of some simple
test programs.

All of the test code was thrown together in a monolithic main()
function.

The code PS2-timing, which will be the basis of problem set 4,
puts some structure on the test code.

It also illustrates some C++ features that we have not used much
up to this point.

CPSC 427a, Lecture 15 4/26

Outline Tester Hangman

Structure of class Tester

Some design goals for class Tester:

1. Put the subject code to be timed into a separate function.

2. Separate the measurement code from the code block being
tested.

3. Create a test manager runAllTests() that can be called by
main() to carry out all tests, and delegate printing to it.

4. Provide a means for main() to control the parameters
governing the test – in this case, the number of iterations and
the seed for the random number generator.

CPSC 427a, Lecture 15 5/26

Outline Tester Hangman

Objective 1

Tester has two subject member functions:

I test1() exercises an array list.

I test2() exercises a linked list.

CPSC 427a, Lecture 15 6/26

Outline Tester Hangman

Objective 2

Tester has a function measureRuntime() that takes a member
function as its argument and returns a HirezTime result.

This requires the use of member function pointers, which will be
explained shortly.

CPSC 427a, Lecture 15 7/26

Outline Tester Hangman

Objective 3

Tests are managed by runAllTests() and runOneTest().

Printing is handled by those two functions.

CPSC 427a, Lecture 15 8/26

Outline Tester Hangman

Objective 4

Optional parameters are passed to Tester through its constructor
rather than being frozen in the Tester class.

CPSC 427a, Lecture 15 9/26

Outline Tester Hangman

Member function pointers

C++ supports pointers to class member functions through some
new constructs:

1. The type declaration syntax is extended with the ::* syntax.

2. The & operator is extended to apply to qualified member
function names and return member function pointers.

3. Two new operators .* and ->* are introduced to follow
member function pointers and permit the referenced functions
to be called.

CPSC 427a, Lecture 15 10/26

Outline Tester Hangman

Declaring member function pointers

The type of a member function must include the type of the
implicit argument as well as the explicit argument types and return
type. This is done by placing ::* between the type of the explicit
argument and the member function name.

Example:
double (MyClass::*myPtr)(int)

declares myPtr to be a pointer to a member function of class
MyClass that takes an explicit int argument and returns a double

If the implicit argument is const, the declaration becomes
double (MyClass::*myPtr) const (int)

CPSC 427a, Lecture 15 11/26

Outline Tester Hangman

Using typedef with member function pointers

Many people find the member function pointer declaration syntax
to be cumbersome and confusing.

I (and many others) highly recommend using typedef to give a
simple descriptive name to the function pointer type.

This new type name is then used to declare function pointer
parameters and function pointer variables.

Example:

typedef double (MyClass::*FunctionPtr)(int);
double someFunction(FunctionPtr f, int n) {...}
FunctionPtr myPtr;

CPSC 427a, Lecture 15 12/26

Outline Tester Hangman

Creating member function pointers

Function pointers are created using the & operator.

Example:

class MyClass {
public:

double myFun(int n) {
return (double)n/3.0;

}
};
...
myPtr = &MyClass::myFun;

CPSC 427a, Lecture 15 13/26

Outline Tester Hangman

Using member function pointers

Member function pointers are followed using one of the two C++
binary operators .* or ->*.
Example:

1. (obj.*myPtr)(17);

2. (objp->*myPtr)(17);

Assuming myPtr currently points to member function myFun, these
calls are equivalent to:

1. obj.myFun(17);

2. (objp->myFun)(17);

CPSC 427a, Lecture 15 14/26

Outline Tester Hangman

Demo: Hangman Game

CPSC 427a, Lecture 15 15/26

Outline Tester Hangman

Game Rules

Game Rules

CPSC 427a, Lecture 15 16/26

Outline Tester Hangman

Game Rules

Hangman game

Well-known letter-guessing game.

Start with a hidden puzzle word.

Player guesses a letter.

I If letter appears in puzzle word, matching letters are
uncovered.

I If letter does not appear, it is shown in list of bad guesses.

Player wins when puzzle word is uncovered.

Player loses after 7 bad guesses

CPSC 427a, Lecture 15 17/26

Outline Tester Hangman

Code Design

Code Design

CPSC 427a, Lecture 15 18/26

Outline Tester Hangman

Code Design

Overall design

Game elements:

1. Puzzle word and letters found so far.

2. Bad guesses word.

3. Alphabet and letters left.

4. Vocabulary.

5. Game board display (viewer).

6. Game play (controller).

CPSC 427a, Lecture 15 19/26

Outline Tester Hangman

Code Design

Use cases

Two levels.

1. Play one round of Hangman on a puzzle word.
I Get input letter from user.
I Classify input as good, bad, redundant, or not allowed.
I Inform user and show updated board.
I Announce termination and win/loss.

2. Repeated play
I Choose unused word from vocabulary.
I Play Hangman with that word.
I Tally and announce win/loss.
I Ask user whether to play again.

CPSC 427a, Lecture 15 20/26

Outline Tester Hangman

Code Design

Code structure: Model

Model

1. Alphabet used to represent letters left.

2. HangWord used to represent puzzle word and bad guesses.

3. Both are derived from BaseWord

4. Common elements are a word and a visibility mask.

5. Variable elements:
I How to print masked word.
I Operations needed: find and try

6. Class Board data members store model state.

CPSC 427a, Lecture 15 21/26

Outline Tester Hangman

Code Design

Code structure: Viewer and controller

Viewer Contained in class Board.

I Board::print() prints the puzzle, letters left, and bad
guesses.

I Board::move() prints guess, outcome, and next board.

I Board::play() prints the win/loss message.

Controller Contained in class Board.

I Board::play() carries out turns and determines game
termination.

I Board::move() prompts users for character and carries out
turn.

I Board::guess() updates the model.

CPSC 427a, Lecture 15 22/26

Outline Tester Hangman

Code Design

Class Game

Class Game is a top-level MVC design.

I Model contains alphabet, remaining vocabulary, and win/loss
counters.

I Viewer is embedded in Game::play().

I Controller is in Game::playRound() and Game::play().

CPSC 427a, Lecture 15 23/26

Outline Tester Hangman

Storage Management

Storage Management

CPSC 427a, Lecture 15 24/26

Outline Tester Hangman

Storage Management

Storage management

Two storage management issues in Hangman:

1. How to store the vocabulary list?

2. How to store the words in the vocabulary?

Natural solutions are to store vocabulary as an array of pointers to
strings.

Natural way to each string is to use new to allocate a character
buffer of the appropriate length.

Design issues:

I How big should the vocabulary array be?

I Who owns the strings and takes responsibility for cleanup
when they are no longer needed?

CPSC 427a, Lecture 15 25/26

Outline Tester Hangman

Storage Management

String store
A StringStore provide an alternative way to store words.

Instead of using new once for each string, allocate a big char array
and copy strings into it.

When no longer needed, ~StringStore() deletes entire array.

Advantages and disadvantages:

I Much more efficient—(each new consumes minimum of 32
bytes on modern machines).

I Simpler storage management—ownership of storage remains
with StringStore.

I Downside: Can’t reclaim storage from individual strings until
the end.

I How big should the char array be?

CPSC 427a, Lecture 15 26/26

	Outline
	Runtime Tester
	Demo: Hangman Game
	Game Rules
	Code Design
	Storage Management

