
Outline Hangman Templates

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 16
October 27, 2011

CPSC 427a, Lecture 16 1/17



Outline Hangman Templates

Demo: Hangman Game (continued)
Refactored Game

Templates

CPSC 427a, Lecture 16 2/17



Outline Hangman Templates

Demo: Hangman Game (continued)

CPSC 427a, Lecture 16 3/17



Outline Hangman Templates

Refactored Game

Refactored Game

CPSC 427a, Lecture 16 4/17



Outline Hangman Templates

Refactored Game

Refactored hangman game

Demo 15-Hangman-full extends 15-Hangman in three respects:

1. It removes the fixed limitation on the vocabulary size.

2. It removes the fixed limitation on the string store size.

3. It more clearly separates the model of Board from the
viewer/controller.

We’ll examine each of these in detail.

CPSC 427a, Lecture 16 5/17



Outline Hangman Templates

Refactored Game

Flex arrays

A FlexArray is a growable array of elements of type T.

Whenever the array is full, private method grow() is called to
increase the storage allocation.

grow() allocates a new array of double the size of the original and
copies the data from the original into it (using memcpy()).

Note: After grow(), array is 1/2 full.

By doubling the size, the amortized time is O(n) for n items.

CPSC 427a, Lecture 16 6/17



Outline Hangman Templates

Refactored Game

Flex array implementation issues

Element type: A general-purpose FlexArray should allow arrays
of arbitrary element type T.

If only one type is needed, we can instantiate T using typedef.
Example: typedef int T; defines T as synonym for int.

C++ templates allow for multiple instantiations.

Class types: If T is a class type, then its default constructor and
destructor are called whenever the array grows.

They must both be designed so that this does not violate the
intended semantics.

This problem does not occur with numeric or pointer flexarrays.

CPSC 427a, Lecture 16 7/17



Outline Hangman Templates

Refactored Game

String store limitation

Can’t use FlexArray to implement StringStore since pointers
to strings would change after grow().

Instead, when one StringStore fills up, start another.

Only really want another storage pool, not another StringStore
object.

Eacn new Pool is linked to the previous one, enabling all pools to
be deleted by ~StringStore().

CPSC 427a, Lecture 16 8/17



Outline Hangman Templates

Refactored Game

Refactoring Board class

Old design for Board contained the board model, the board display
functions, and the user-interaction code.

New design puts all user interaction into a derived class Player.

This makes a clean separation between the model (Board) and the
controller (Player).

The viewer functionality is still distributed between the two.

What are the pros and cons of this distribution?

CPSC 427a, Lecture 16 9/17



Outline Hangman Templates

Templates

CPSC 427a, Lecture 16 10/17



Outline Hangman Templates

Template overview

Templates are instructions for generating code.

Are type-safe replacement for C macros.

Can be applied to functions or classes.

Allow for type variability.

Example:
template <class T>
class FlexArray { ... };
Later, can instantiate
class RandString : FlexArray<const char*> { ... };
and use
FlexArray<const char*>::put(store.put(s, len));

CPSC 427a, Lecture 16 11/17



Outline Hangman Templates

Template functions
Definition:
template <class X> void swapargs(X& a, X& b) {
X temp;
temp = a;
a = b;
b = temp;

}

Use:
int i,j;
double x,y;
char a, b;
swapargs(i,j);
swapargs(x,y);
swapargs(a,b);

CPSC 427a, Lecture 16 12/17



Outline Hangman Templates

Specialization

Definition:

template <> void swapargs(int& a, int& b) {
// different code

}

This overrides the template body for int arguments.

CPSC 427a, Lecture 16 13/17



Outline Hangman Templates

Template classes

Like functions, classes can be made into templates.

template <class T>
class FlexArray { ... };

makes FlexArray into a template class.

When instantiated, it can be used just like any other class.

For a flex array of ints, the name is FlexArray<int>.

No implicit instantiation, unlike functions.

CPSC 427a, Lecture 16 14/17



Outline Hangman Templates

Compilation issues

Remote (non-inline) template functions must be compiled and
linked for each instantiation.

Two possible solutions:

1. Put all template function definitions in the .hpp file along
with the class definition.

2. Put template function definitions in a .cpp file as usual but
explicitly instantiate.
E.g., template class FlexArray(int); forces compilation
of the int instantiation of FlexArray.

CPSC 427a, Lecture 16 15/17



Outline Hangman Templates

Template parameters

Templates can have multiple parameters.

Example:
template<class T, int size> declares a template with two
parameters, a type parameter T and an int parameter size.

Template parameters can also have default values.
Used when parameter is omitted.

Example:
template<class T=int, int size=100> class A { ... }.

A<double> instantiates A to type A<double, 100>.
A<50> instantiates A to type A<int, 50>.

CPSC 427a, Lecture 16 16/17



Outline Hangman Templates

Using template classes

Demo 16-Evaluate implements a simple expression evaluator
based on a precedence parser.

It derives a template class Stack<T> from the template class
FlexArray<T> introduced in 15-Hangman-full.

The precedence parser makes uses of two instantiations of
Stack<T>:

1. Stack<double> Ands;

2. Stack<Operator> Ators;

CPSC 427a, Lecture 16 17/17


	Outline
	Demo: Hangman Game (continued)
	Refactored Game

	Templates

