
Outline The C++ Standard Library

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 17
November 1, 2011

CPSC 427a, Lecture 17 1/21

Outline The C++ Standard Library

The C++ Standard Library

CPSC 427a, Lecture 17 2/21

Outline The C++ Standard Library

The C++ Standard Library

CPSC 427a, Lecture 17 3/21

Outline The C++ Standard Library

A bit of history

C++ standardization.

I C++ standardization began in 1989.

I ISO and ANSI standards were issued in 1998, nearly a decade
later.

I The standard covers both the C++ language and the standard
library (everything in namespace std).

I The standardization process continues as the language evolves
and new features are added.

The standard library was derived from several different sources.

STL (Standard Template Library) portion of the C++ standard was
derived from an earlier STL produced by Silicon Graphics (SGI).

CPSC 427a, Lecture 17 4/21

Outline The C++ Standard Library

Containers

A container stores a collection of objects of arbitrary type T.

The basic containers in STL are:

I vector – a dynamic array

I deque – a double-ended queue

I list – a doubly linked list

I map – an associative array of key/value pairs with unique keys

I set – a sorted collection of unique values

I multimap – an associative array of key/value pairs with
duplicate keys allowed

I multiset – a sorted collection of values with multiplicity

CPSC 427a, Lecture 17 5/21

Outline The C++ Standard Library

Common container operations

All containers share a large number of operations.

Operations include creating an empty container, inserting, deleting,
and copying elements, scanning through the container, and so
forth.

Liberal use is made of operator definitions to make containers
behave as much like other C++ objects as possible.

Containers implement value semantics, meaning type T objects are
copied freely within the containers.

If copying is a problem, store pointers instead.

CPSC 427a, Lecture 17 6/21

Outline The C++ Standard Library

vector<T>
A vector<T> is a growable array of elements of type T.

You must #include <vector>.

Elements can be accessed using standard subscript notion.

Inserting at the beginning or middle of a vector takes time O(n).

Example:
vector<int> tbl(10); // creates length 10 vector of int
tbl[5] = 7; // stores 7 in slot #5
cout << tbl[5]; // prints 7
tbl[10] = 4; // illegal, but not checked!!!
cout << tbl.at(5); // prints 7
tbl.at(10) = 4; // illegal and throws an exception
tbl.push_back(4); // creates tbl[10] and stores 4
cout << tbl.at(10); // prints 4

CPSC 427a, Lecture 17 7/21

Outline The C++ Standard Library

Iterators

Iterators are like generalized pointers into containers.

Most pointer operations *, ->, ++, ==, !=, etc. work with iterators.

I begin() returns an iterator pointing to the first element of
the vector.

I end() returns an iterator pointing past the last element of the
vector.

CPSC 427a, Lecture 17 8/21

Outline The C++ Standard Library

Iterator example

Here’s a program to store and print the first 10 perfect squares.

#include <iostream>
#include <vector>
using namespace std;

int main() {
vector<int> tbl(10);
for (unsigned k=0; k<10; k++) tbl[k] = k*k;
vector<int>::iterator pos;
for (pos = tbl.begin(); pos != tbl.end(); pos++)
cout<< *pos<< endl;

}

CPSC 427a, Lecture 17 9/21

Outline The C++ Standard Library

Using iterator inside a class

#include <iostream>
#include <vector>
using namespace std;
class Squares : vector<int> {
public:
Squares(unsigned n) : vector<int>(n) {
for (unsigned k=0; k<n; k++) (*this)[k] = k*k; }

ostream& print(ostream& out) const {
const_iterator pos; // must be const_iterator
for (pos=begin(); pos!=end(); pos++) out<< *pos<< endl;
return out; }

};
int main() {

Squares sq(10);
sq.print(cout);

}

CPSC 427a, Lecture 17 10/21

Outline The C++ Standard Library

Using subscripts and size()

#include <iostream>
#include <vector>
using namespace std;
class Squares : vector<int> {
public:
Squares(unsigned n) {
for (unsigned k=0; k<n; k++) push_back(k*k); }

ostream& print(ostream& out) const {
for (unsigned k=0; k<size(); k++) out<< (*this)[k]<< endl;
return out; }

};
int main() {

Squares sq(10);
sq.print(cout);

}

CPSC 427a, Lecture 17 11/21

Outline The C++ Standard Library

Algorithms

STL has algorithms as well as data structures.

You must #include <algorithm>.

Commonly used: copy, fill, swap, max, min, max element,
min element, but there are many many more.

We’ll look at sort in greater detail.

CPSC 427a, Lecture 17 12/21

Outline The C++ Standard Library

STL sort algorithm

sort works only on randomly-accessible containers such as
vector. (list has its own sort method.)

sort takes two iterator arguments to designate the sort range.

It can also take an optional third “comparison” argument to define
the sort order.

CPSC 427a, Lecture 17 13/21

Outline The C++ Standard Library

Reverse sort example

class Squares : vector<int> {
public:
Squares(unsigned n) {
for (unsigned k=0; k<n; k++) push_back(k*k);}

// decreasing order; *** must be static ***
static bool cmp(const int& x1, const int& x2) {
return x1 > x2; }

void rsort() { sort(begin(), end(), cmp); }

ostream& print(ostream& out) const {
for (unsigned k=0; k<size(); k++) out<< (*this)[k]<< endl;
return out; }

};

CPSC 427a, Lecture 17 14/21

Outline The C++ Standard Library

Reverse sort example (cont.)

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

class Squares : vector<int> {
...

};

int main() {
Squares sq(10);
sq.rsort();
sq.print(cout);

}

CPSC 427a, Lecture 17 15/21

Outline The C++ Standard Library

pair<T1, T2>

A pair<T1, T2> is an ordered pair of elements of type T1 and T2,
respectively.

Class pair<T1, T2> has public data members first and second.

Example:

pair<string, double> item("book", 49.95);
// makes pair <"book", 49.95>

cout<< item.first; // prints "book"
cout<< item.second; // prints 49.95

CPSC 427a, Lecture 17 16/21

Outline The C++ Standard Library

map<Key,Val>

map<Key,Val> associates a value with each key.

More precisely, it is an ordered collection of elements of type
pair<Key,Val>.

You must #include <map>.

Can use standard subscript notation to access map contents, where
subscript is the key.

Can also use a map iterator, which returns a pointer to a pair.

CPSC 427a, Lecture 17 17/21

Outline The C++ Standard Library

Using a map<Key,Val>

Example:

typedef map<string,double> myMap; // alias for convenience
myMap::iterator pos;
myMap m; // a map from strings to doubles
m["dog"]; // puts pair <"dog",0.0> into m
m["bird"]=5.2; // puts pair <"bird",5.2> into m
pos = m.find("cat"); // returns m.end() for not found
cout<< (pos==m.end())<< endl;// prints 1 (true)
pos = m.find("bird"); // pos points to <"bird",5.2>
if (pos!=m.end()) {

cout<< pos->first<< endl; // prints "bird"
cout<< pos->second<< endl; // prints 5.2; }

}

CPSC 427a, Lecture 17 18/21

Outline The C++ Standard Library

Copying from one container to another

Two ways to copy multiple elements in one statement.

Suppose m is a map and v a vector of pairs compatible with m.

1. v.assign(m.begin(), m.end());

2. Supply m.begin() and m.end() as arguments to the v
constructor.

CPSC 427a, Lecture 17 19/21

Outline The C++ Standard Library

Copying from map to vector of pairs
#include <iostream>
#include <map>
#include <vector>
#include <string>
using namespace std;
int main() {
map<string,double> m;
m["dog"]=3; m["cat"]=2;
// construct p from m
vector<pair<string,double> > p(m.begin(),m.end());
// declare iterator
vector<pair<string,double> >::const_iterator pos;
// print p
for (pos=p.begin(); pos!=p.end(); ++pos)
cout<< pos->first<< " "<< pos->second<< endl;

}

CPSC 427a, Lecture 17 20/21

Outline The C++ Standard Library

string class
The standard string class tries to make strings behave like other
built-in data types.

Like vector<char>, strings are growable, but they are not
implemented using vector, and they support many special string
operations.

They can be assigned (=, assign()), compared (==, !=, <,
<=, >, >=, compare()), concatenated (+), read and written
(>>, <<), searched (find(), . . .), extracted ([], substr()),
modified (+=, append(), . . .), and more.

Their length can be found (size(), length()).

s.c str() returns a copy of s as a C string.

You must #include <string>.

CPSC 427a, Lecture 17 21/21

	Outline
	The C++ Standard Library

