
Outline Casts Op Ext Virtue Linear

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 18
November 3, 2011

CPSC 427a, Lecture 18 1/25

Outline Casts Op Ext Virtue Linear

Casts and Conversions

Operator Extensions

Virtue Demo

Linear Data Structure Demo

CPSC 427a, Lecture 18 2/25

Outline Casts Op Ext Virtue Linear

Casts and Conversions

CPSC 427a, Lecture 18 3/25

Outline Casts Op Ext Virtue Linear

Casts in C

A C cast changes an expression of one type into another.

Examples:
int x;
unsigned u;
double d;
int* p;

(double)x; // type double; preserves semantics
(int)u; // type unsigned; possible loss of information
(unsigned)d; // type unsigned; big loss of information
(long int)p; // type long int; violates semantics
(double*)p; // preserves pointerness but violates semantics

CPSC 427a, Lecture 18 4/25

Outline Casts Op Ext Virtue Linear

Different kinds of casts

C uses the same syntax for different kinds of casts.

Value casts convert from one representation to another, partially
preserving semantics. Often called conversions.

I (double)x converts integer x to equivalent
double floating point representation.

I (short int)x converts integer x to equivalent
short int, if the integer falls within the range
of a short int.

Pointer casts leave representation alone but change interpretation
of pointer.

I (double*)p treats bits at destination of p as
the representation of a double.

CPSC 427a, Lecture 18 5/25

Outline Casts Op Ext Virtue Linear

C++ casts

C++ has four kinds of casts.

1. Static cast includes value casts of C. Tries to preserve
semantics, but not always safe. Applied at compile time.

2. Dynamic cast Applies only to pointers and references to
objects. Preserves semantics. Applied at run time. [See demo
18a-Dynamic cast.]

3. Reinterpret cast is like the C pointer cast. Ignores semantics.
Applied at compile time.

4. Const cast Allows const restriction to be overridden. Applied
at compile time.

CPSC 427a, Lecture 18 6/25

Outline Casts Op Ext Virtue Linear

Explicit cast syntax

C++ supports three syntax patterns for explicit casts.

1. C-style: (double)p.

2. Functional notation: double(x); myObject(10);.
(Note the similarity to a constructor call.)

3. Cast notation:
int x; myBase* b; const int c;

I static cast<double>(x);
I dynamic cast<myDerived*>(b);
I reinterpret cast<int*>(p);
I const cast<int>(c);

CPSC 427a, Lecture 18 7/25

Outline Casts Op Ext Virtue Linear

Implicit casts
General rule for implicit casts: If a type A expression appears in a
context where a type B expression is needed, use a semantically
safe cast to convert from A to B.

Examples:

I Assignment: int x; double d; x=d; d=x;

I Pointer assignment:
class A { ... };
class B : public A { ... };
A* ap; B* bp; ap = bp;

I Initialization:
A a=x; converts x to an A, then copies.

I Construction:
A a(x); calls A constructor, possibly casting x.

CPSC 427a, Lecture 18 8/25

Outline Casts Op Ext Virtue Linear

Ambiguity

Can be more than one way to cast from B to A.
class B;
class A { public:
A(){}
A(B& b) { cout<< "constructed A from B\n"; }

};
class B { public:
A a;
operator A() { cout<<"casting B to A\n"; return a; }

};
int main() {
A a; B b;
a=b;

}
error: conversion from ’B’ to ’const A’ is ambiguous

CPSC 427a, Lecture 18 9/25

Outline Casts Op Ext Virtue Linear

explicit keyword

Not always desirable for constructor to be called implicitly.

Use explicit keyword to inhibit implicit calls.

Previous example compiles fine with use of explicit:
class B;
class A {
public
A(){}
explicit A(B& b) { cout<< "constructed A from B\n"; }

};
...

Question: Why was an explicit definition of the default constructor
not needed?

CPSC 427a, Lecture 18 10/25

Outline Casts Op Ext Virtue Linear

Operator Extensions

CPSC 427a, Lecture 18 11/25

Outline Casts Op Ext Virtue Linear

How to define operator extensions

Unary operator op is shorthand for operator op ().

Binary operator op is shorthand for operator op (T arg2).

Some exceptions: Pre-increment and post-increment.

To define meaning of ++x on type T, define operator ++().

To define meaning of x++ on type T, define operator ++(int) (a
function of one argument). The argument is ignored.

CPSC 427a, Lecture 18 12/25

Outline Casts Op Ext Virtue Linear

Other special cases

Some special cases.

I Subscript: T& operator [](S index).

I Arrow: X* operator ->() returns pointer to a class X to
which the selector is then applied.

I Function call; T2 operator ()(arg list).

I Cast: operator T() defines a cast to type T.

Can also extend the new, delete, and , (comma) operators.

CPSC 427a, Lecture 18 13/25

Outline Casts Op Ext Virtue Linear

Virtue Demo

CPSC 427a, Lecture 18 14/25

Outline Casts Op Ext Virtue Linear

Virtual virtue

class Basic {
public:

virtual void print(){cout <<"I am basic. "; }
};
class Virtue : public Basic {
public:

virtual void print(){cout <<"I have virtue. "; }
};
class Question : public Virtue {
public:

void print(){cout <<"I am questing. "; }
};

CPSC 427a, Lecture 18 15/25

Outline Casts Op Ext Virtue Linear

Main virtue

What does this do?

int main (void) {
cout << "Searching for Virtue\n";
Basic* array[3];
array[0] = new Basic();
array[1] = new Virtue();
array[2] = new Question();
array[0]->print();
array[1]->print();
array[2]->print();
return 0;

}

See demo 18b-Virtue!

CPSC 427a, Lecture 18 16/25

Outline Casts Op Ext Virtue Linear

Linear Data Structure Demo

CPSC 427a, Lecture 18 17/25

Outline Casts Op Ext Virtue Linear

Using polymorphism

Similar data structures:

I Linked list implementation of a stack of items.

I Linked list implementation of a queue of items.

Both support a common interface:

I void push(Item*)

I Item* pop()

I Item* peek()

I ostream& print(ostream&)

They differ only in where push() places a new item.

The demo 18c-Virtual (from Chapter 15 of textbook) shows
how to exploit this commonality.

CPSC 427a, Lecture 18 18/25

Outline Casts Op Ext Virtue Linear

Interface file

We define this common interface by the abstract class.

class Container {
public:
virtual void put(Item*) =0;
virtual Item* pop() =0;
virtual Item* peek() =0;
virtual ostream& print(ostream&) =0;

};

Any class derived from it is required to implement these four
functions.

We could derive Stack and Queue directly from Container, but
we instead exploit even more commonality between these two
classes.

CPSC 427a, Lecture 18 19/25

Outline Casts Op Ext Virtue Linear

Class Linear
class Linear: public Container {
protected: Cell* head;
private: Cell* here; Cell* prior;
protected: Linear();
virtual ~Linear ();

void reset();
bool end() const;
void operator ++();

virtual void insert(Cell* cp);
virtual void focus() = 0;

Cell* remove();
void setPrior(Cell* cp);

public: void put(Item * ep);
Item* pop();
Item* peek();

virtual ostream& print(ostream& out);
};

CPSC 427a, Lecture 18 20/25

Outline Casts Op Ext Virtue Linear

Example: Stack

class Stack : public Linear {
public:
Stack(){}
~Stack(){}
void insert(Cell* cp) { reset(); Linear::insert(cp); }
void focus(){ reset(); }

ostream& print(ostream& out){
out << " The stack contains:\n";
return Linear::print(out);

}
};

CPSC 427a, Lecture 18 21/25

Outline Casts Op Ext Virtue Linear

Example: Queue

class Queue : public Linear {
private:
Cell* tail;

public:
Queue() { tail = head; }
~Queue(){}

void insert(Cell* cp) {
setPrior(tail); Linear::insert(cp); tail=cp; }

void focus(){ reset(); }
};

CPSC 427a, Lecture 18 22/25

Outline Casts Op Ext Virtue Linear

Class structure

Class structure.

I Container specifies the common interface.

I Linear contains the bulk of the code. It is derived from
Container.

I Stack and Queue are both derived from Linear.

I Cell is a “helper” class that is aggregated by Linear.

I Item is the base type for the container elements. It is defined
by a typedef here but would normally be specified by a
template.

I Exam is a non-trivial item type used by main to illustrate
stacks and queues.

CPSC 427a, Lecture 18 23/25

Outline Casts Op Ext Virtue Linear

C++ features

The demo illustrates several C++ features.

1. [Container] Pure abstract class.

2. [Cell] Friend functions.

3. [Cell] Printing a pointer in hex.

4. [Cell] Operator extension operator Item*().

5. [Linear] Virtual functions and polymorphism.

6. [Linear] Scanner pairs (prior, here) for traversing a linked list.

7. [Linear] Operator extension operator ++()

8. [Linear, Exam] Use of private, protected, and public
in same class.

CPSC 427a, Lecture 18 24/25

Outline Casts Op Ext Virtue Linear

#include structure

Getting #include’s in the
right order.

Problem: Making sure
compiler sees symbol
definitions before they are
used.

Partial solution: Make de-
pendency graph. If not
cyclic, each .hpp file in-
cludes the .hpp files just
above it.

exam.hpp

item.hpp

container.hpp

linear.hpp

queue.hppstack.hpp

cell.hpp

CPSC 427a, Lecture 18 25/25

	Outline
	Casts and Conversions
	Operator Extensions
	Virtue Demo
	Linear Data Structure Demo

