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Casts in C

A C cast changes an expression of one type into another.

Examples:
int x;
unsigned u;
double d;
int* p;

(double)x; // type double; preserves semantics
(int)u; // type unsigned; possible loss of information
(unsigned)d; // type unsigned; big loss of information
(long int)p; // type long int; violates semantics
(double*)p; // preserves pointerness but violates semantics
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Different kinds of casts

C uses the same syntax for different kinds of casts.

Value casts convert from one representation to another, partially
preserving semantics. Often called conversions.

I (double)x converts integer x to equivalent
double floating point representation.

I (short int)x converts integer x to equivalent
short int, if the integer falls within the range
of a short int.

Pointer casts leave representation alone but change interpretation
of pointer.

I (double*)p treats bits at destination of p as
the representation of a double.
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C++ casts

C++ has four kinds of casts.

1. Static cast includes value casts of C. Tries to preserve
semantics, but not always safe. Applied at compile time.

2. Dynamic cast Applies only to pointers and references to
objects. Preserves semantics. Applied at run time. [See demo
18a-Dynamic cast.]

3. Reinterpret cast is like the C pointer cast. Ignores semantics.
Applied at compile time.

4. Const cast Allows const restriction to be overridden. Applied
at compile time.
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Explicit cast syntax

C++ supports three syntax patterns for explicit casts.

1. C-style: (double)p.

2. Functional notation: double(x); myObject(10);.
(Note the similarity to a constructor call.)

3. Cast notation:
int x; myBase* b; const int c;

I static cast<double>(x);
I dynamic cast<myDerived*>(b);
I reinterpret cast<int*>(p);
I const cast<int>(c);
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Implicit casts
General rule for implicit casts: If a type A expression appears in a
context where a type B expression is needed, use a semantically
safe cast to convert from A to B.

Examples:

I Assignment: int x; double d; x=d; d=x;

I Pointer assignment:
class A { ... };
class B : public A { ... };
A* ap; B* bp; ap = bp;

I Initialization:
A a=x; converts x to an A, then copies.

I Construction:
A a(x); calls A constructor, possibly casting x.
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Ambiguity

Can be more than one way to cast from B to A.
class B;
class A { public:
A(){}
A(B& b) { cout<< "constructed A from B\n"; }

};
class B { public:
A a;
operator A() { cout<<"casting B to A\n"; return a; }

};
int main() {
A a; B b;
a=b;

}
error: conversion from ’B’ to ’const A’ is ambiguous
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explicit keyword

Not always desirable for constructor to be called implicitly.

Use explicit keyword to inhibit implicit calls.

Previous example compiles fine with use of explicit:
class B;
class A {
public
A(){}
explicit A(B& b) { cout<< "constructed A from B\n"; }

};
...

Question: Why was an explicit definition of the default constructor
not needed?
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Operator Extensions
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How to define operator extensions

Unary operator op is shorthand for operator op ().

Binary operator op is shorthand for operator op (T arg2).

Some exceptions: Pre-increment and post-increment.

To define meaning of ++x on type T, define operator ++().

To define meaning of x++ on type T, define operator ++(int) (a
function of one argument). The argument is ignored.
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Other special cases

Some special cases.

I Subscript: T& operator [](S index).

I Arrow: X* operator ->() returns pointer to a class X to
which the selector is then applied.

I Function call; T2 operator ()(arg list).

I Cast: operator T() defines a cast to type T.

Can also extend the new, delete, and , (comma) operators.
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Virtue Demo
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Virtual virtue

class Basic {
public:

virtual void print(){cout <<"I am basic. "; }
};
class Virtue : public Basic {
public:

virtual void print(){cout <<"I have virtue. "; }
};
class Question : public Virtue {
public:

void print(){cout <<"I am questing. "; }
};
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Main virtue

What does this do?

int main (void) {
cout << "Searching for Virtue\n";
Basic* array[3];
array[0] = new Basic();
array[1] = new Virtue();
array[2] = new Question();
array[0]->print();
array[1]->print();
array[2]->print();
return 0;

}

See demo 18b-Virtue!

CPSC 427a, Lecture 18 16/25



Outline Casts Op Ext Virtue Linear

Linear Data Structure Demo
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Using polymorphism

Similar data structures:

I Linked list implementation of a stack of items.

I Linked list implementation of a queue of items.

Both support a common interface:

I void push(Item*)

I Item* pop()

I Item* peek()

I ostream& print(ostream&)

They differ only in where push() places a new item.

The demo 18c-Virtual (from Chapter 15 of textbook) shows
how to exploit this commonality.
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Interface file

We define this common interface by the abstract class.

class Container {
public:
virtual void put(Item*) =0;
virtual Item* pop() =0;
virtual Item* peek() =0;
virtual ostream& print(ostream&) =0;

};

Any class derived from it is required to implement these four
functions.

We could derive Stack and Queue directly from Container, but
we instead exploit even more commonality between these two
classes.
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Class Linear
class Linear: public Container {
protected: Cell* head;
private: Cell* here; Cell* prior;
protected: Linear();
virtual ~Linear ();

void reset();
bool end() const;
void operator ++();

virtual void insert( Cell* cp );
virtual void focus() = 0;

Cell* remove();
void setPrior(Cell* cp);

public: void put(Item * ep);
Item* pop();
Item* peek();

virtual ostream& print( ostream& out );
};
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Example: Stack

class Stack : public Linear {
public:
Stack(){}
~Stack(){}
void insert( Cell* cp ) { reset(); Linear::insert(cp); }
void focus(){ reset(); }

ostream& print( ostream& out ){
out << " The stack contains:\n";
return Linear::print( out );

}
};
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Example: Queue

class Queue : public Linear {
private:
Cell* tail;

public:
Queue() { tail = head; }
~Queue(){}

void insert( Cell* cp ) {
setPrior(tail); Linear::insert(cp); tail=cp; }

void focus(){ reset(); }
};
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Class structure

Class structure.

I Container specifies the common interface.

I Linear contains the bulk of the code. It is derived from
Container.

I Stack and Queue are both derived from Linear.

I Cell is a “helper” class that is aggregated by Linear.

I Item is the base type for the container elements. It is defined
by a typedef here but would normally be specified by a
template.

I Exam is a non-trivial item type used by main to illustrate
stacks and queues.
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C++ features

The demo illustrates several C++ features.

1. [Container] Pure abstract class.

2. [Cell] Friend functions.

3. [Cell] Printing a pointer in hex.

4. [Cell] Operator extension operator Item*().

5. [Linear] Virtual functions and polymorphism.

6. [Linear] Scanner pairs (prior, here) for traversing a linked list.

7. [Linear] Operator extension operator ++()

8. [Linear, Exam] Use of private, protected, and public
in same class.
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#include structure

Getting #include’s in the
right order.

Problem: Making sure
compiler sees symbol
definitions before they are
used.

Partial solution: Make de-
pendency graph. If not
cyclic, each .hpp file in-
cludes the .hpp files just
above it.

exam.hpp

item.hpp

container.hpp

linear.hpp

queue.hppstack.hpp

cell.hpp
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