
Outline Ordered Multiple Circularity Templete

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 20
November 10, 2011

CPSC 427a, Lecture 20 1/25

Outline Ordered Multiple Circularity Templete

Ordered Container

Multiple Inheritance

Handling Circularly Dependent Classes

Template Example

CPSC 427a, Lecture 20 2/25

Outline Ordered Multiple Circularity Templete

Ordered Container

CPSC 427a, Lecture 20 3/25

Outline Ordered Multiple Circularity Templete

Demo 20a-Multiple

The purpose of demo 20a-Multiple is to generalize the linear
containers of demo 18c-Virtual to support ordered lists of items.

It does this by adding class Ordered, creating two ordered
containers of type class List and class PQueue, and extending
the code appropriately.

CPSC 427a, Lecture 20 4/25

Outline Ordered Multiple Circularity Templete

Ordered base class

Ordered is an abstract class (interface) that promises items can be
ordered based on an associated key.

It promises functions:

I A function key() that returns the key associated with an
item.

I Comparison operators < and == that compare the derived item
*this with an argument key.

Use:
class Item : public Exam, Ordered { ... };

Note: We can use private derivation because every function in
Ordered is abstract and therefore must be overridden in Item.

CPSC 427a, Lecture 20 5/25

Outline Ordered Multiple Circularity Templete

Container base class

We saw the Container abstract class in demo 18c-Virtual. It
promises four functions:

virtual void put(Item*) =0; // Put in Item
virtual Item* pop() =0; // Remove Item
virtual Item* peek() =0; // Look at Item
virtual ostream& print(ostream&) =0; // Print all Items

Use:
class Linear : Container { ... };

CPSC 427a, Lecture 20 6/25

Outline Ordered Multiple Circularity Templete

class Item

Item is publicly derived from Exam, so it has access to Exam’s
public and protected members.

It fulfills the promises of Ordered by defining:

bool
operator==(const KeyType& k) const { return key() == k; }
bool
operator< (const KeyType& k) const { return key() < k; }
bool
operator< (const Item& s) const { return key() < s.key(); }

KeyType is defined with a typedef in exam.hpp to be int.

CPSC 427a, Lecture 20 7/25

Outline Ordered Multiple Circularity Templete

class Linear

Linear implements general lists through the use of a cursor, a pair
of private Cell pointers here and prior.

Protected insert() inserts at the cursor.
Protected focus() is virtual and must be overridden in each
derived class to set the cursor appropriately for insertion.

Cursors are accessed and manipulated through protected functions
reset(), end(), and operator ++().

Use:
List::insert(Cell* cp) {reset(); Linear::insert(cp);}
inserts at the beginning of the list.

CPSC 427a, Lecture 20 8/25

Outline Ordered Multiple Circularity Templete

class PQueue

PQueue inserts into a sorted list.

void insert(Cell* cp) {
for (reset(); !end(); ++*this) { // find insertion spot.

if (!(*this < cp))break;
}
Linear::insert(cp); // do the insertion.

}

Note the use of the comparison between a PQueue and a Cell*.

This is defined in linear.hpp using the cursor:
bool operator< (Cell* cp) {

return (*cp->data < *here->data); }

CPSC 427a, Lecture 20 9/25

Outline Ordered Multiple Circularity Templete

Multiple Inheritance

CPSC 427a, Lecture 20 10/25

Outline Ordered Multiple Circularity Templete

What is multiple inheritance

Multiple inheritance simply means deriving a class from two or
more base classes.

Recall from demo 20a-Multiple:
class Item : public Exam, Ordered { ... };

Here, Item is derived from both Exam and from Ordered.

CPSC 427a, Lecture 20 11/25

Outline Ordered Multiple Circularity Templete

Object structure

Suppose class A is multiply derived from both B and C.
We write this as class A : B, C { ... };.

Each instance of A has “embedded” within it an instance of B and
an instance of C.

All data members of both B and C are present in the instance, even
if they are not visible from within A.

Derivation from each base class can be separately controlled with
privacy keywords, e.g.:
class A : public B, protected C { ... };.

CPSC 427a, Lecture 20 12/25

Outline Ordered Multiple Circularity Templete

Diamond pattern

One interesting case is the diamond pattern.

class D { ... x ... };
class B : public D { ... };
class C : public D { ... };
class A : public B, C { ... };

Each instance of A contains two instances of D—one in B and one
in C.

These can be distinguished using qualified names.
Suppose x is a public data member of D.
Within A, can write B::D::x to refer to the first copy, and
C::D::x to refer to the second copy.

CPSC 427a, Lecture 20 13/25

Outline Ordered Multiple Circularity Templete

Handling Circularly Dependent Classes

CPSC 427a, Lecture 20 14/25

Outline Ordered Multiple Circularity Templete

Tightly coupled classes

Class B depends on class A if B refers to elements declared within
class A or to A itself.

The class B definition must be read by the compiler after reading A.

This is often ensured by putting #include "A.hpp" at the top of
file B.hpp.

A pair of classes A and B are tightly coupled if each depends on the
other.

It is not possible to have both read after the other.
Whichever the compiler reads first will cause the compiler to
complain about undefined symbols from the other class.

CPSC 427a, Lecture 20 15/25

Outline Ordered Multiple Circularity Templete

Example: List and Cell
Suppose we want to extend a cell to have a pointer to a sublist.

class Cell {
int data;
List* sublist;
Cell* next;
...

};
class List {
Cell* head;
...

};

This won’t compile, because List is used (in class Cell) before
it is defined. But putting the two class definitions in the opposite
order also doesn’t work since then Cell would be used (in class
List) before it is defined.

CPSC 427a, Lecture 20 16/25

Outline Ordered Multiple Circularity Templete

Circularity with #include
Circularity is less apparent when definitions are in separate files.

File list.hpp:
#pragma once
#include "cell.hpp"
class List { ... };

File cell.hpp:
#pragma once
#include "list.hpp"
class Cell { ... };

File main.cpp:
#include "list.hpp"
#include "cell.hpp"
int main() { ... }

CPSC 427a, Lecture 20 17/25

Outline Ordered Multiple Circularity Templete

What happens?

In this example, it appears that class List will get read before
class Cell since main.cpp includes list.hpp before cell.hpp.

Actually, the opposite occurs. The compiler starts reading
list.hpp but then jumps to cell.hpp when it sees the #include
"cell.hpp" line.

It jumps again to list.hpp when it sees the #include
"list.hpp" line in cell.hpp, but this is the second attempt to
load list.hpp, so it only gets as far as #pragma once. It then
resumes reading cell.hpp and processes class Cell.

When done with cell.hpp, it resumes reading list.hpp and
processes class List.

CPSC 427a, Lecture 20 18/25

Outline Ordered Multiple Circularity Templete

Resolving circular dependencies
Several tricks can be used to allow tightly coupled classes to
compile. Assume A.hpp is to be read first.

1. Suppose the only reference to B in A is to declare a pointer.
Then it works to put a “forward” declaration of B at the top
of A.hpp, for example:

class B;
class A { B* bp; ... };

2. If a function defined in A references symbols of B, then the
definition of the function must be moved outside the class and
placed where it will be read after B has been read in, e.g., in
the A.cpp file.

3. If the function needs to be inline, this is still possible, but it’s
much trickier getting the inline function definition in the right
place.

CPSC 427a, Lecture 20 19/25

Outline Ordered Multiple Circularity Templete

Template Example

CPSC 427a, Lecture 20 20/25

Outline Ordered Multiple Circularity Templete

Using templates with polymorphic derivation

To illustrate templates, I converted 20a-Multiple to use template
classes. The result is in 20b-Multiple-template.

There is much to be learned from this example.
Today I point out only a few features.

CPSC 427a, Lecture 20 21/25

Outline Ordered Multiple Circularity Templete

Container class hierarchy

As before, we have PQueue derived from Linear derived from
Container.

Now, each of these have become template classes with parameter
class T.
T is the item type; the queue stores elements of type T*.

The main program creates a priority queue using
PQueue<Item> P;

CPSC 427a, Lecture 20 22/25

Outline Ordered Multiple Circularity Templete

Item class hierarchy

As before, we have Item derived from Exam, Ordered.

Item is an adaptor class.
It bridges the requirements of PQueue<T> to the Exam class.

CPSC 427a, Lecture 20 23/25

Outline Ordered Multiple Circularity Templete

Ordered template class

Ordered<KeyType> describes an abstract interface for a total
ordering on elements of abstract type KeyType.

Item derives from Ordered<KeyType>, where KeyType is defined
in exam.hpp using a typedef.

An Ordered<KeyType> requires the following:

virtual const KeyType& key() const =0;
virtual bool operator < (const KeyType&) const =0;
virtual bool operator == (const KeyType&) const =0;

That is, there is the notion of a sort key. key() returns the key
from an object satisfying the interface, and two keys can be
compared using < and ==.

CPSC 427a, Lecture 20 24/25

Outline Ordered Multiple Circularity Templete

Alternative Ordered interfaces

As a still more abstract alternative, one could require only
comparison operators on abstract elements (of type Ordered).
That is, the interface would have only two promises:]

virtual bool operator < (const Ordered&) const =0;
virtual bool operator == (const Ordered&) const =0;

This has the advantage of not requiring an explicit key, but it’s
also less general since keys are often used to locate elements (as is
done in the demo).

CPSC 427a, Lecture 20 25/25

	Outline
	Ordered Container
	Multiple Inheritance
	Handling Circularly Dependent Classes
	Template Example

