
Outline Linear STL & Poly

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 21
November 15, 2011

CPSC 427a, Lecture 21 1/29

Outline Linear STL & Poly

Linear Container Design

STL and Polymorphism

CPSC 427a, Lecture 21 2/29

Outline Linear STL & Poly

Linear Container Design

CPSC 427a, Lecture 21 3/29

Outline Linear STL & Poly

Overview of linear container example

We’ve seen three closely related designs for linear containers:

I 18c-Virtual

I 20a-Multiple

I 20b-Multiple-template

Common to all three examples is the use of a linked list of Cell
objects to implement various kinds of containers store data objects
of type Exam.

CPSC 427a, Lecture 21 4/29

Outline Linear STL & Poly

Differences in functionality

18c-Virtual implements a FIFO class Stack and a LIFO
class Queue of unordered Exams.

20a-Multiple and 20b-Multiple add a key() method to Exam
and implement two new data structures that make use of the key:

I class List is an unordered set of elements, where push()
inserts an element at the front of the list and pop() prompts
the user for the key of the element to be removed.

I class PQueue maintains its elements in a sorted list, where
push() inserts an element into the middle of the list so as to
maintain the elements in descending order, based on an
underlying ordering on keys, and pop() removes the front
(largest) element.

CPSC 427a, Lecture 21 5/29

Outline Linear STL & Poly

Class structure

The class structure of the three implementations are similar as are
the main programs. All have have the following classes:

I class Item are the objects that live in the containers.

I class Exam are the application-specific user objects.

I class Container is the abstract interface for all containers.

I class Linear is the common code for the containers.

In 18c-Virtual, Item and Exam are synonymous.

In 20a-Multiple and 20b-Multiple-template, Item is derived
from Exam and extends the comparison operators < and ==.

CPSC 427a, Lecture 21 6/29

Outline Linear STL & Poly

Template structure

20b-Multiple-template adds a template parameter class T to
represent the application-specific user object type.

In the sample application, main() instantiates the template as
List<Item> and PQueue<Item>.

As before, Item is derived from Exam, so to create containers for a
new user type MyData would require rewriting Item appropriately.

CPSC 427a, Lecture 21 7/29

Outline Linear STL & Poly

Further extensions

Can we make Item a template class, e.g.,

template <class T>
class Item : public T, public Ordered<KeyType> { ... };

Then the user with application-specific class MyData could just use
Item<MyData> wherever 20b-Multiple-template uses Item.

CPSC 427a, Lecture 21 8/29

Outline Linear STL & Poly

Two problems

Two problems must be overcome to make this approach work:

1. Type KeyType appropriate to MyData must be defined
somewhere.

2. Item contains an Exam-specific constructor
Item(const char* init, int sc) : Exam(init, sc){}
that would have to be eliminated in favor of something that
would work in general.

CPSC 427a, Lecture 21 9/29

Outline Linear STL & Poly

Defining KeyType

Problem 1 can be solved by putting a typedef for KeyType into
class MyClass. This type name can be used as follows:

template <class T>
class Item : public T, public Ordered<typename T::KeyType>
{ ... };

CPSC 427a, Lecture 21 10/29

Outline Linear STL & Poly

Constructing the data elements

Problem 2 is not so easily solved. Some possibilities:
I Have the user construct a MyData object, then have Item use

MyData’s copy constructor, e.g.,

Item(const T& data) : T(data) {}

This adds a time penalty and a requirement that T be
copyable.

I Instead of deriving Item<T> from T, compose a T* in
Item<T>, and initialize it with a generic Item constructor,
e.g.,

T* base;
Item(T* dt) : base(dt) {}

CPSC 427a, Lecture 21 11/29

Outline Linear STL & Poly

21a-Multiple-template

This second idea is implemented in example
21a-Multiple-template.

A consequence of this design is that main() now mentions only
the user type (Exam), not Item, effectively isolating the user
interface from the underlying implementation, e.g.,

List<Exam> L;
L.put(new Exam("Ned", 29));
L.put(new Exam("Leo", 37));
L.put(new Exam("Max", 18));

CPSC 427a, Lecture 21 12/29

Outline Linear STL & Poly

Storage management

A basic design question has to do with ownership of dynamic
storage.

In STL, the user retains ownership of arguments, and a container
such as vector manages copies of the elements.

In these linear container examples, ownership transfers to the
container.

I The user creates a element using new and passes a pointer to
the put() function.

I pop() returns ownership of the object to the user, who is
then responsible for its eventual deletion.

I The container is responsible for deleting any objects it still
contains when it goes away.

CPSC 427a, Lecture 21 13/29

Outline Linear STL & Poly

STL and Polymorphism

CPSC 427a, Lecture 21 14/29

Outline Linear STL & Poly

Derivation from STL containers

Common wisdom on the internet says not to inherit from STL
containers.

For example,
http://en.wikipedia.org/wiki/Standard Template Library says,

“STL containers are not intended to be used as base
classes (their destructors are deliberately non-virtual);
deriving from a container is a common mistake.”

This reflects Rule 35 of Sutter and Alexandrescu,

“Avoid inheriting from classes that were not designed to
be base classes.”

CPSC 427a, Lecture 21 15/29

http://en.wikipedia.org/wiki/Standard_Template_Library
http://proquest.safaribooksonline.com/0321113586

Outline Linear STL & Poly

Replacing authority with understanding

C++ is a complicated and powerful language.

Some constructs such as classes are used for several different
purposes.

What is appropriate in one context may not be in another.

Simple rules will not make you a good C++ programmer. Thought,
understanding, and experience will.

CPSC 427a, Lecture 21 16/29

Outline Linear STL & Poly

Two kinds of derivation

C++ supports two distinct kinds of derivation:

I Simple derivation.

I Polymorphic derivation.

class A { ... };
class B : public A { ... };

We say B is derived from A, and B inherits members from A.

Each B object has an A object embedded within it.

The derivation is simple if no members of A are virtual;
otherwise it is polymorphic.

CPSC 427a, Lecture 21 17/29

Outline Linear STL & Poly

How are they the same?
With both kinds of derivation, a function of the base class A can
be overridden by a function in B.

In both cases, one can create and delete objects of class B.

Both A’s and B’s destructor are called when a B object is deleted.

#include <iostream>
class A { public:
~A() { std::cout << "A’s destructor called" << std::endl; }

};
class B: public A { public:
~B() { std::cout << "B’s destructor called" << std::endl; }

};
int main() { B bobj; }

Output: B’s destructor called

A’s destructor called

CPSC 427a, Lecture 21 18/29

Outline Linear STL & Poly

What is simple derivation good for?

Some uses for simple derivation.

I Code sharing. A common base can be extended in different
directions through derivation.

I Creating a new API to system resources (e.g., 14-StopWatch
demo).

I Increasing modularity through layering.

With simple derivation, the derived class is the public interface.

Often protected or private derivation is used to hide the base
class from the users of the derived class.

CPSC 427a, Lecture 21 19/29

Outline Linear STL & Poly

What are the problems with simple derivation?

I Several objects derived from the same base type have little in
common except for the embedded base type object in each.

I A base type pointer can only access the embedded base type
object. The rest of the derived object is present but invisible.
This is called slicing, where the derived part is conceptually
“sliced off”.

CPSC 427a, Lecture 21 20/29

Outline Linear STL & Poly

What is polymorphic derivation good for?

I Polymorphic derivation allows for variability among objects
with a common interface.

I The base class (possibly pure abstract) defines the interface.

I Each derived class defines a variant or implementation of the
interface.

Some uses for polymorphic derivation.

I Heterogeneous containers. Example: An array of different
kinds of employees.

I A mechanism whereby old code can call new code. By
deriving from a predefined interface, existing functions that
call virtual functions of the base class end up invoking new
user-provided code.

CPSC 427a, Lecture 21 21/29

Outline Linear STL & Poly

What are the problems of polymorphic derivation?

Every polymorphic base class (containing even one virtual
function) adds a runtime type tag to each instance.

This costs in both time and space.

I Time: Each call to a virtual function goes through a run-time
dispatch table (the vtable).

I Space: Each instance of a polymorphic object contains a type
tag, which takes extra space.

I Every polymorphic base class should have a virtual
destructor.

CPSC 427a, Lecture 21 22/29

Outline Linear STL & Poly

Contrasts between simple and polymorphic derivation

Simple derivation:

I Low cost.

I Extends the base class.

I Derived class is the public interface; base class is a helper.

I Slicing is generally avoided as being not useful.

Polymorphic derivation:

I Higher cost.

I Implements the base class (in possibly multiple ways).

I Base class is the public interface; derived classes are helpers.

I Slicing is encouraged; virtual functions provide access to
underlying derived class objects.

CPSC 427a, Lecture 21 23/29

Outline Linear STL & Poly

Containment as an alternative to simple derivation

Often the same class can be implemented using either containment
or derivation.

Derivation:

class A { ... f() ... };
class B: public A { ... g() { f() ... } };

A’s public member functions are inherited by B.

Containment:

class A { ... f() ... };
class B { private: A a; ... g() { a.f() ... }

public: f() { return a.f(); } };

Access to A’s public member functions requires a “pass-through”
function for delegation.

CPSC 427a, Lecture 21 24/29

Outline Linear STL & Poly

Argument for containment

Containment is a more distant relationship than derivation.

Less coupling between classes is safer and less error-prone.

Using containment, derived class is explicit about what is exported.

For more info, see http://www.gotw.ca/publications/mill06.htm.

CPSC 427a, Lecture 21 25/29

http://www.gotw.ca/publications/mill06.htm

Outline Linear STL & Poly

STL container as a base class

We apply these concepts to STL base classes.

Base classes are simple, not polymorphic (no virtual functions, no
virtual destructor).

This means that they should only be used with simple derivation.
They are not suitable as base classes for polymorphic derivation.

Often containment is preferable, but the large number of member
functions they support makes it cumbersome to get the same
degree of functionality in the derived class as comes “for free” with
derivation.

CPSC 427a, Lecture 21 26/29

Outline Linear STL & Poly

Can I turn an STL container into a polymorphic base class?
Yes, sort of. Here’s the idea.

#include <iostream>
#include <vector>
using namespace std;
class MyVectorInt : public vector<int> {
public:
MyVectorInt() : vector<int>() {}
virtual ~MyVectorInt() {

cout << "Base class destructor is called" << endl; }
};
class Derived : public MyVectorInt {
public:

~Derived() {
cout << "Derived destructor is called" << endl; }

};

CPSC 427a, Lecture 21 27/29

Outline Linear STL & Poly

A polymorphic base class

MyVectorInt is a polymorphic base class with virtual destructor
and can be used as such.

int main() {
MyVectorInt* p; // a polymorphic pointer
Derived* obj = new Derived(); // a derived object
p = obj; // ok to assign
delete p; // ok to delete; destructors called

}

CPSC 427a, Lecture 21 28/29

Outline Linear STL & Poly

Dynamic cast

It is always okay to cast a pointer to a derived class into a pointer
to the base class, as in the previous example.

The reverse is only semantically meaningful if the allocated type of
the object actually is the type to which it is being cast. In that
case, one can use a dynamic cast to effect the converstion.

MyVectorInt* p;
Derived* q;
...
q = dynamic_cast<Derived*>(p);

dynamic cast returns NULL if p is pointing to something that
does not have dynamic type Derived*.

CPSC 427a, Lecture 21 29/29

	Outline
	Linear Container Design
	STL and Polymorphism

