
Outline Design Patterns

CPSC 427a: Object-Oriented Programming

Michael J. Fischer

Lecture 22a
November 17, 2011

CPSC 427a, Lecture 22a 1/20

Outline Design Patterns

Design Patterns

CPSC 427a, Lecture 22a 2/20

Outline Design Patterns

Design Patterns

CPSC 427a, Lecture 22a 3/20

Outline Design Patterns

General OO principles

1. Encapsulation Data members should be private. Public
accessing functions should be defined only when absolutely
necessary. This minimizes the ways in which one class can
depend on the representation of another.

2. Narrow interface Keep the interface (set of public functions)
as simple as possible; include only those functions that are of
direct interest to client classes. Utility functions that are used
only to implement the interface should be kept private. This
minimizes the chance for information to leak out of the class
or for a function to be used inappropriately.

3. Delegation A class that is called upon to perform a task
often delegates that task (or part of it) to one of its members
who is an expert.

CPSC 427a, Lecture 22a 4/20

Outline Design Patterns

What is a design pattern?

A pattern has four essential elements.1

1. A pattern name.

2. The problem, which describes when to apply the pattern.

3. The solution, which describes the elements, relations, and
responsibilities.

4. The consequences, which are the results and tradeoffs.

1Erich Gamma et al., Design Patterns, Addison-Wesley, 1995.)

CPSC 427a, Lecture 22a 5/20

Outline Design Patterns

Adaptor pattern

Sometimes a toolkit class is not reusable because its interface does
not match the domain-specific interface an application requires.

Solution: Define an adapter class that can add, subtract, or
override functionality, where necessary.

CPSC 427a, Lecture 22a 6/20

Outline Design Patterns

Adaptor diagram

There are two ways to do this; on the left is a class adapter, on the
right an object adapter.

Target

ClassAdaptor

request()

request()

Adaptee

rightAction_wrongName()

ClassAdaptor::request() {
 rightAction_wrongName();
}

Client

ObjectAdaptor::request() {
 a->rightAction_wrongName();
}

Target

ObjectAdaptor

Adaptee

rightAction_wrongName()

request()

request()

Client

Adaptee* a

CPSC 427a, Lecture 22a 7/20

Outline Design Patterns

Indirection

This pattern is used to decouple the application from the
implementation where an implementation depends on the interface
of some low-level device.

Goal is to make the application stable, even if the device changes.

AirlineSeat

if_seat()
reserve_seat()
free_seat()
...

Modem

dial();
receive();
send()
...

System API calls:
 open_port(int);
 dial(phonenumber);

Modem::dial(phonenumber)
{
 :: open_port(1);
 :: dial(2039821234);
}

calls calls

CPSC 427a, Lecture 22a 8/20

Outline Design Patterns

Proxy pattern

This pattern is like Indirection, and is used when direct access to a
component is not desired or possible.

Solution: Provide a placeholder that represents the inaccessible
component to control access to it and interact with it. The
placeholder is a local software class. Give it responsibility for
communicating with the real component.

Special cases: Device proxy, remote proxy. In Remote Proxy, the
system must communicate with an object in another address space.

CPSC 427a, Lecture 22a 9/20

Outline Design Patterns

Polymorphism pattern

In an application where the abstraction has more than one
implementation, define an abstract base class and one or more
subclasses.

Let the subclasses implement the abstract operations.

This decouples the implementation from the abstraction and allows
multiple implementations to be introduced, as needed.

CPSC 427a, Lecture 22a 10/20

Outline Design Patterns

Polymorphism diagram

UndergradStudent

register(course) { ... }

Student

register(course) =0

Alumnus

register(course) { ... }register(course) { ... }

GradStudent

CPSC 427a, Lecture 22a 11/20

Outline Design Patterns

Controller

A controller class takes responsibility for handling a system event.

The controller should coordinate the work that needs to be done
and keep track of the state of the interaction. It should delegate
all other work to other classes.

CPSC 427a, Lecture 22a 12/20

Outline Design Patterns

Three kinds of controllers

A controller class represents one of the following choices:

I The overall application, business, or organization (facade
controller).

I Something in the real world that is active that might be
involved in the task (role controller).
Example: A menu handler.

I An artificial handler of all system events involved in a given
use case (use-case controller).
Example: A retail system might have separate controllers for
BuyItem and ReturnItem.

Choose among these according to the number of events to be
handled, cohesion and coupling, and to decide how many
controllers there should be.

CPSC 427a, Lecture 22a 13/20

Outline Design Patterns

Bridge pattern

Bridge generalizes the Indirection pattern.

It is used when both the application class and the implementation
class are (or might be) polymorphic.

Bridge decouples the application from the polymorphic
implementation, greatly reducing the amount of code that must be
written, and making the application much easier to port to
different implementation environments.

CPSC 427a, Lecture 22a 14/20

Outline Design Patterns

Bridge diagram

In the diagram below, we show that there might be several kinds of
windows, and the application might be implemented on two
operating systems. The bridge provides a uniform pattern for doing
the job.

ImageWindow

Window

DialogWindow

draw_box()

draw_text()
draw_rectangle()

draw_border()

WIP : WindowImp*

XWindowImp WindowNTImp

WindowImplementation

imp_draw_text()
imp_draw_rectangle()

=0
=0

imp_draw_text();
imp_draw_rectangle();

imp_draw_text();
imp_draw_rectangle();

DialogWindow::draw_box() {
 draw_rectangle();
 draw_text();
}

ImageWindow::draw_border() {
 draw_rectangle();
}

Window::draw_text() {
 WIP->draw_text();
}

CPSC 427a, Lecture 22a 15/20

Outline Design Patterns

Subject-Observer or Publish-Subscribe: problem

Problem: Your application program has many classes and many
objects of some of those classes. You need to maintain consistency
among the objects so that when the state of one changes, its
dependents are automatically notified. You do not want to
maintain this consistency by using tight coupling among the
classes.

Example: An OO spreadsheet application contains a data object,
several presentation “views” of the data, and some graphs based
on the data. These are separate objects. But when the data
changes, the other objects should automatically change.

CPSC 427a, Lecture 22a 16/20

Outline Design Patterns

Subject-Observer or Publish-Subscribe: pattern

Call the SpreadsheetData class the subject; the views and graphs
are the observers.

The basic Spreadsheet class composes an observer list and provides
an interface for attaching and detaching Observer objects.

Observer objects may be added to this list, as needed, and all will
be notified when the subject (SpreadsheetData) changes.

We derive a concrete subject class (SpreadsheetData) from the
Spreadsheet class. It will communicate with the observers through
a get state() function, that returns a copy of its state.

CPSC 427a, Lecture 22a 17/20

Outline Design Patterns

Subject-Observer or Publish-Subscribe: diagram

Observer::update() {
 observer_state =
 SS->get_state();
}

Spreadsheet::notify() {
 OL.updateall()
}

ObserverList::updateall() {
 for all x in the list,
 x->update()
}

FullDataView

AnnualReport

BarGraph

update();

observer_state
SpreadsheetData*

attach(observer)
detach(observer)
notify()
...

ObserverList

updateall()

SpreadsheetData

+ get_state()
- subject_state

OL: Observer List
Observer

update() =0

*Spreadsheet
SS: Spreadsheet*

See textbook for more details.

CPSC 427a, Lecture 22a 18/20

Outline Design Patterns

Singleton pattern

Suppose you need exactly one instance of a class, and objects in all
parts of the application need a single point of access to that
instance.

Solution: A single object may be made available to all objects of
class C by making the singleton a static member of class C.

A class method can be defined that returns a reference to the
singleton if access is needed outside its defining class.

CPSC 427a, Lecture 22a 19/20

Outline Design Patterns

StringStore example

static member StringStore& StringStore::getStore(){
 if (instance==NULL) instance = new StringStore;
 return instance;
}static method

StringStore
-$ instance *
- other members...
+$ getStore() : StringStore&

Example: Suppose several parts of a program need to use a
StringStore. We might define StringStore as a singleton class.

The StringStore::put() function is made static and becomes
a global access point to the class, while maintaining full protection
for the class members.

CPSC 427a, Lecture 22a 20/20

	Outline
	Design Patterns

