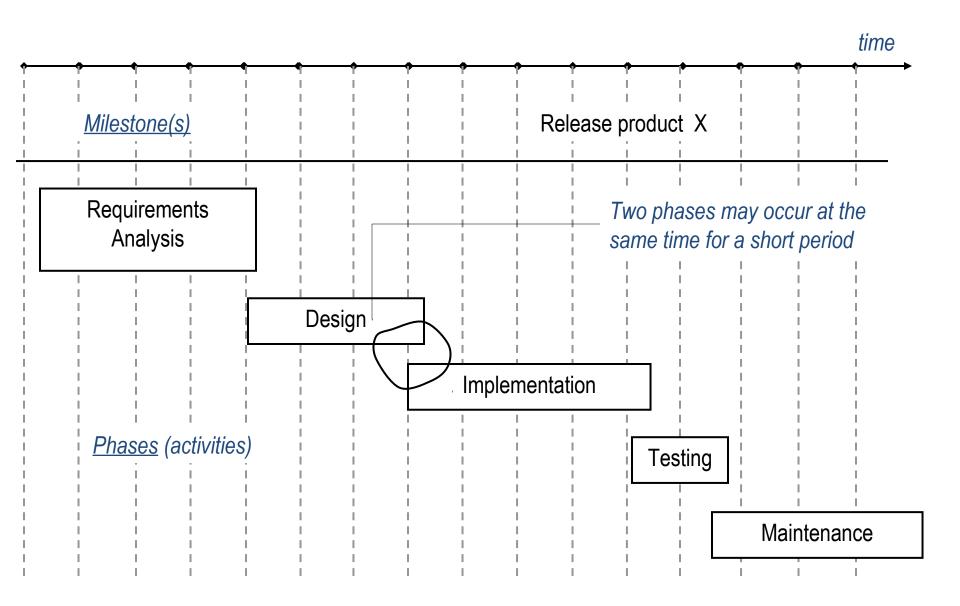
CS427a: Object-Oriented Programming Design Patterns for Flexible and Reusable design


Michael J. Fischer (from slides by Y. Richard Yang)

Lecture 22b November 17, 2011

Reusability, Flexibility, and Maintainability

- One thing constant in software development is CHANGE
- For software that is used over a period of years, the cost of keeping it current in the face of changing needs often exceeds the cost of originally developing it.
- A key need in software design is the ability for maintenance and modification to keep abreast of changes.

The Waterfall Software Process

Why a Pure Waterfall Process is Usually Not Practical

- Don't know up front everything wanted and needed
 - Usually hard to visualize every detail in advance
- To gain confidence in an estimate, we need to design and actually implement parts, especially the riskiest ones, this may probably lead to modify requirements as a result
- We often need to execute intermediate builds
 - Stakeholders need to gain confidence
 - Designers and developers need confirmation they're building what's needed and wanted
- Team members can't be idle while the requirements are being completed

Advantage of OO Design

OO systems exhibit recurring structures that promote

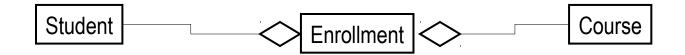
- Abstraction
- Modularity
- Flexibility
- Extensibility
- Elegance

Aspect of Reusability

- Classes in source code form
 - Thus, we write *generic code* whenever possible
- Assemblies of related classes
 - A toolkit is a library of reusable classes designed to provide useful, general-purpose functionality.
 - E.g., C++ standard library, Boost
 - An application framework is a specific set of classes that cooperate closely with each other and together embody a reusable design for a category of problems.
 - E.g., Java APIs (Applet, Thread, etc), gtkmm
- Design pattern

Making a Class Re-usable

- ☐ Define a useful abstraction
 - attain broad applicability
- ☐ Reduce dependencies on other classes


• • •

Reducing Dependency Among Classes

Replace ...

with ...

Aspect of Flexibility

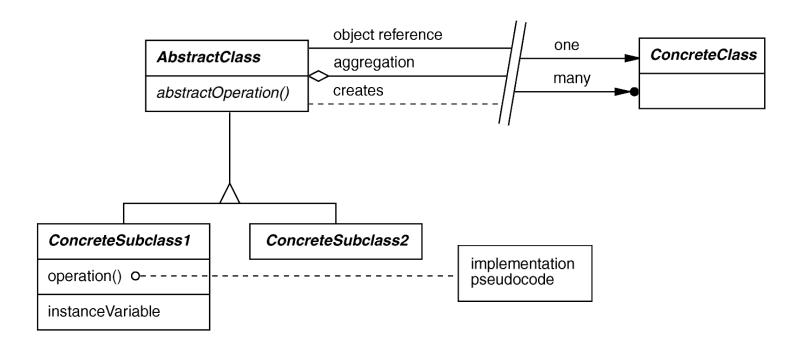
Making small variation to existing functionality

Adding new kinds of functionality

Changing functionality

Some Techniques to Achieve Flexibility

Flexibility Aspect: ability to	Some techniques
create objects in variable configurations determined at runtime	"Creational" design patterns
create variable trees of objects or other structures at runtime	"Structural" design patterns
change, recombine, or otherwise capture the mutual behavior of a set of objects	"Behavioral" design patterns
create and store a possibly complex object of a class.	Component
configure objects of predefined complex classes – or sets of classes – so as to interact in many ways	Component


Roadmap

- We will focus on flexibility and reusability
 - It is important to remember that real systems also need to consider efficiency and robustness
- We will start with design patterns, and then look into the design of some OO libraries/toolkit/framework
- We will learn by examples:
 - Example is not another way to teach, it is the only way to teach. -- Albert Einstein

What is a Design Pattern

- Abstracts a recurring design structure
- Comprises class and/or object
 - dependencies
 - structures
 - interactions
 - conventions
- Distills design experience
- Names & specifies the design structure explicitly
- Language- & implementation-independent
 - A "micro-architecture"

UML/OMT Notation

