
Chapter 14: Derivation and Inheritance

In life and in understanding a complex program. . .

A picture is worth a thousand words.

This chapter consists of one interactive game program that uses templates, derivation, a makefile, a stringstore,
a flexarray, and some C coding “tricks” that are worth knowing. The game output is presented first to familiarize
you with how the game works. Following that are the makefile, main program, and pairs of .hpp and .cpp files,
with notes on each. These are documented by several kinds of “pictures”, each of which illustrates a different
aspect of the application: a module dependency chart, a data structure diagram, UML class diagrams, and a
function call chart.

14.1 Playing

This program plays an interactive word-guessing game called hangman. In this game, the leader (the computer)
selects a secret word and displays a line of dashes with one dash for each letter. The player must guess letters,
one at a time, and try to figure out what the hidden word is. A sample game is included here, for those who
are unfamiliar with it. Suppose the computer chose “hippopotamus” as the secret word. The player would see:

---------Constructing Hangman ----------
Please enter name of vocabulary file (or ENTER to quit): vocab2.in

---------- Welcome to Hangman ----------
You win if you can guess the hidden word.
You lose if you guess 7 wrong letters.

Puzzle is: <[_ _ _ _ _ _ _ _ _ _ _ _]>

Letters left--> a b c d e f g h i j k l m n o p q r s t u v w x y z
Bad guesses---> _ _ _ _ _ _ _

Guess a letter:

After one wrong guess (e) and one correct guess (a), the board would look like this:
You guessed ’a’. You scored!

Puzzle is: <[_ _ _ _ _ _ _ _ a _ _ _]>

Letters left--> b c d f g h i j k l m n o p q r s t u v w x y z
Bad guesses---> e _ _ _ _ _ _

After several more guesses (i,o,y,u,t,p,m, and finally s), the game is won and you see:

Puzzle is: <[h i p p o p o t a m u s]>

Letters left--> b c d f g j k l n q r v w x z
Bad guesses---> e y _ _ _ _ _

Congratulations -- you win!

You won 1 time out of 1 try.

Type p to play another round, q to quit: q

----------- Have a good day! -----------

14.1.1 The Hangman Application

A makefile defines its application: it lists the required parts and describes the relationships among them. The
information in the makefile is presented graphically in Figure 14.1.

169

170 CHAPTER 14. DERIVATION AND INHERITANCE

The makefile.

1 # Rule for building a .o file from a .cpp source file -------
2 .SUFFIXES: .cpp
3 .cpp.o:
4 c++ -c $(CXXFLAGS) $<
5
6 # Compile with debug option and all warnings on. ------------
7 CXXFLAGS = -g -Wall
8
9 # Object modules comprising this application ----------------

10 OBJ = main.o game.o board.o sstore.o rstrings.o words_d.o tools.o
11
12 game: $(OBJ)
13 c++ -o game $(CXXFLAGS) $(OBJ)
14
15 # Delete .o and exe files and force recompilation. ----------
16 clean:
17 rm -f $(OBJ) game
18
19 # Use tools source file from grandparent directory ----------
20 tools.o: tools.cpp tools.hpp
21 c++ -c $(CXXFLAGS) tools.cpp -o tools.o
22
23 # Dependencies --
24 main.o: main.cpp game.hpp board.hpp flexT.hpp
25 game.o: game.cpp game.hpp board.hpp rstrings.hpp sstore.hpp flexT.hpp
26 board.o: board.cpp board.hpp words_d.hpp
27 words_d.o: words_d.cpp words_d.hpp words.hpp tools.hpp
28 rstrings.o: rstrings.cpp rstrings.hpp sstore.hpp flexT.hpp
29 sstore.o: sstore.cpp sstore.hpp tools.hpp

main.cpp

g++ -o game -Wall main.o game.o board.o words.o rstrings.o sstore.o tools.o

game

game.hpp

game.cpp board.cppSources

Objects

Executable

Linking

Compilation

#inclusion

#inclusion

tools.o

tools.hpp

tools.cpp

board.hpp baseWord.hppwords.hpp

words.cpp

main.o game.o board.o words.o

standard C and
C++ library .o

files

C & C++ .h files

rstrings.hpp sstore.hpp flexT.hpp

rstrings.cpp sstore.cpp

rstrings.o sstore.o

Figure 14.1: Makefile graph for Hangman: The files and their dependencies.

14.1.2 Hangman: The Main Program

The vocabulary file. This program is designed to construct a hangman game then play one or more rounds
of it. Line 46 asks whether the user has given the name of a vocabulary file as a command-line argument. If so,
that file name is sent to the Game constructor. If not, the NULL pointer signals the Game constructor to use
a default file.

A conditional operator is used appropriately in the argument list for the Game constructor. It tests a
condition and returns something (a pointer) in either case. C syntax requires that the same type of object must
be returned by both clauses of a conditional operator. In this program, the ? asks whether the user typed more
than one thing (the program name) on the command line. If so, the additional command field is returned (it

14.1. PLAYING 171

should be a file name). If not, a NULL is returned. The overall code is simplified considerably by using the
conditional operator instead of an if-else statement.

30 // ==
31 // Hangman program: Let the user guess words from the vocabulary file.
32 // A. Fischer, May 13, 2001 file: main.cpp
33 #include "tools.hpp"
34 #include "game.hpp"
35 //---
36 int main(int argc, char* argv[])
37 {
38 char response; // For query, "Play again?"
39 int wins = 0, rounds = 0; // For keeping score.
40 const char* timeword; // For grammatical output: time, times.
41 const char* tryword; // For grammatical output: try, tries.
42
43 cout << "\n--------- Constructing Hangman ----------\n";
44 Game g(argc>1 ? argv[1] : NULL); // Get optional file name.
45
46 cout << "\n---------- Welcome to Hangman ----------\n"
47 "You win if you can guess the hidden word.\n"
48 "You lose if you guess " << HANG_MAX << " wrong letters.\n";
49 do {
50 wins += g.play(); // Play one round of game.
51 rounds++;
52 timeword = (wins == 1) ? "time" : "times";
53 tryword = (rounds == 1) ? "try" : "tries";
54 cout << "\nYou won " << wins << " " << timeword
55 << " out of " << rounds << " " << tryword
56 << ".\n\nType p to play another round, q to quit: ";
57 cin >> response;
58 } while (tolower(response) == ’p’);
59 cout << "\n----------- Have a good day! -----------\n\n";
60 }

Instructions. The instructions given on lines 46 through 48 will not be repeated before each round. The loop
on lines 49 through 58 plays one round and queries the user about whether to continue.

One round of the game. Line 50 plays one round of the game and returns the result: 1 for a win, 0 for a
loss. The wins and losses are tallied and displayed when user asks to quit. Lines 52 and 53 use string variables
and conditional operators to select singular or plural wording so that the final score message will be displayed
in correct English. This kind of care is not necessary in student projects but makes a difference in the perceived
quality of a commercial job.

14.1.3 Call Graphs

Different kinds of documentation lead to different insights into the structure of an application. An object
diagram shows us the way our actual storage is organized and used at run time. A class diagram tells us
what properties each kind of object has, and which ones can be used in other classes. A flow chart shows us
possible execution paths. An event trace (also called a sequence diagram is like a flow chart but also shows
how control passes back and forth between classes during execution. A fifth kind of graphical documentation
is the call graph—a static chart showing which functions can call which other functions at some point in the
program. Call graphs can be useful during debugging for tracking down all possible ways for control to get to
any particular function.

Figure 14.1.3 is a call graph for Hangman. To minimize the complexity of the diagram and focus on the
class functions, calls on fatal, new, delete, and iostream functions have been omitted from the chart. From this
chart, you can see that execution is divided into two major phases. First, a game is constructed, then played.
When one round is played, a random string is selected, a board is constructed, and finally, the board is played.

172 CHAPTER 14. DERIVATION AND INHERITANCE

Baseword
::set_all

BaseWord
::length

rand
stdlib.h

main

Game::Game Game::play

Randstring::
remove

RandString::
 randword

Board::
 play

tolower
ctype.h

Board::
 Board

Board
::print

Board
::move

Alphabet
::find

HangWord ::
try_letter

BaseWord::
 mask_slot

Board
::guess

Alphabet::
 Alphabet

HangWord::
HangWord

Baseword::
Baseword

strlen
string.h

BaseWord
::word

srand
stdlib.h

RandString::
 RandString

strcpy
string.h

FlexArray::
FlexArray

StringStore::
StringStore

StringStore
::put

Figure 14.2: A call graph for the Hangman game: How control can reach each function.

14.1.4 UML Diagrams: A View of the Class Relationships

A UML diagram gives another static view of the application; it illustrates the data types being used, the
protection level of each part of each class, and the possible ways that one class can access or use another.

The classes used in this application fall into two nearly separate subsystems: Game and Board, together
with the three Word classes implement the form and function of the game itself, while RandString, StringStore,
and FlexArray implement the database from which the game selects puzzle words. These two subsystems are
diagrammed separately – the association between Game and RandString is the only connection.

In Figure 14.1.4 we see that two classes are derived from BaseWord. BaseWord defines a data structure and
a set of functions that implement one basic behavior. From it, we derive two sub-classes that define variations
on the basic theme and have different initialization, search, and display rules.

From the UML, you can see that the BaseWord class is not associated with or aggregated by any other
classes and, in fact, is not instantiated by the program. It is used only as a basis for deriving Alphabet and
Hangword, which form the basis for the gameboard display. This follows a basic OO-design guideline:

Don’t instantiate a class that you also derive from.

The goal of this rule is to minimize the conflict between the requirements of a base class, which must be clean
and general, and a class that must serve the specific needs of an an application.

In Figure 14.1.4 we see an application-specific class, RandString, that is built out of two utility data-structure
classes: it is derived from FlexArray and it aggregates StringStore. The RandString class is a container for
words that randomly selects and returns one word at a time. The word is then removed from the container so it
cannot be reused. In one sense, the new class, RandString “wraps” the two familiar classes in a new behavior,
with only a fraction of the work that would be required to program the new class from scratch. It is a typical
demonstration of the potential power of class libraries.

The FlexArray class has been rewritten, finally, in its proper form: as a class template. In going from
FlexArray to RandString, we simultaneously bind the template parameter to char* and derive from the resulting
class. This combination of template instantiation and derivation is very common because you normally want to
write application-specific functions to handle the general data structures for which templates are used.

14.1. PLAYING 173

Board(char*, char*)
~Board()
play():
move():
guess(char):
print(ostream&):

 int
 void
 status
 ostream&

Errcnt:
Found:
Alpha:
Errors:
Puzzle:

+
+
+
+
+
+

Board

-
-
-
-
-

- enum status type definition

(lines 111 - 209)

int
int
Alphabet
Alphabet
HangWord

 Game(char*=NULL)
 ~Game()
 play(): int

HangWord(const char*)
try_letter(char): int
print(ostream&): ostream&

 ostream& operator<<
 (ostream&, HangWord&)

HangWord

+
+
+

(257-268, 289-308)

+

 Alphabet(const char*, bool)
 find(char): int
 print(ostream&): ostream&

Alphabet

ostream& operator<<
 (ostream&, Alphabet&)

(244-255, 275-287)

+
+
+

C

2

Game

 alphabet: char[80]
 vocab: RandString*

(lines 61 - 110)

-
-

+
+
+

main()
RandString

 (See next diagram)

+

 int
 bool &
 const char* const
 void

BaseWord
Len:
W:
Mask:

+
#
#

+
+
+
+
+
+

(lines 210 - 236)

const int
const char* const
bool* const

BaseWord(const char*)
~BaseWord()
length():
mask_slot(int):
word():
set_all(bool):

C
C
C

1

Figure 14.3: The game classes in Hangman: UML describes class relationships.

 + <<bind>>
<char*>

RandString(istream&, int=100)
~RandString()
randword()
operator[](int)
print(ostream&)
remove(int)

RandString

+
+
+
+
-
-

Game

 (Prior diagram)
:const char*
:const char*
:void
:char*

Store:# StringStore

C

(Lines 310--381)

-
-
-

+
+
+

Current:
Remain:
Next:

-
-

-
-

StringStore (int=MAXLETS)
~StringStore ()
put(char*, int) :char*

(Chapter 8)

(Chapter 8)

 Pool (Pool* = NULL)
 ~Pool ()

friend class StringStore

char[MAXLETS]
Pool*

*

1

StringStore
Pool*
int
int

Letters:
Prev:

Pool

FlexArray(int)
~FlexArray()
grow()
put(T)
operator[] (int)
flexlen()
extract()
print(ostream&)

FlexArray

Max:
N:
Data:

#
#
#

int
int
T*

+
+
-
+
+
+
+
+

C
C
C

(Chapter 13)
T

:void
:int
:T&
:int
:T*
:void

operator <<

Figure 14.4: The vocabulary classes in Hangman.

174 CHAPTER 14. DERIVATION AND INHERITANCE

14.1.5 The Hangman Data Structures

A data diagram illustrates the allocations, connections and contents that have been created by the program at
one specific moment at run time, given a specified sequence of inputs. This kind of picture is particularly helpful
when pointers are used to build a complex structure. It does not help us know how the program reached the
particular state that is illustrated, but it gives us an appreciation for the overall complexity of the application.
A data diagram can be a great help to a reader who is trying to understand how and why a program works (or
fails to work).

3

m

1 0 0 1 0

.Puzzle.

Mask

Len
W

5

.Errcnt

.Found

1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

2

.Alpha.

.Errors.
Len

Len

W

W

Mask

Mask

26

26

b

.Vocab

.Alphabet a z c f j l b e h k p g o q v i n s u w m r t x y 0 \
g

d

... m i c r o c o s 0 m \ e g y p t \ 0 a l u Letters
Prev

Store

Max

Data

N

.Current

.Next

 100
99

991.Remain
9

0

...

1 2 3 ... 99 98 97 96

e l e p h a n t \ 0
9 0

... Letters
Prev

i

0

...

Figure 14.5: Data structures for the Hangman program: A snapshot during execution.
Program notes throughout this section will refer to the data diagram in Figure 14.1.5. It illustrates the data

structures constructed for a representative game using a vocabulary file with 99 words, when the puzzle word
is “egypt”. The data structure, above, are shown after the fourth guess. (Two guesses were correct, two were
wrong). Here is the current gameboard:

Puzzle is: <[e _ _ _ t]>

Letters left--> a b c d f g h j k l m n o p q r u v w x y z
Bad guesses---> i s _ _ _ _ _

Guess a letter:

14.2 Hangman: The Game and Board Classes

The main program creates a Game (s 44) which, in turn, creates a Board. Game::play() calls Rand-
String::randword() to select a random string from the vocabulary, builds a gameboard around it and plays
one round of hangman. The Board class implements the gameboard with the help of Alphabet and HangWord,
both derived from BaseWord.

A new gameboard is created by Game::play() (lines 50, 108) for each round. Since the array members of
Board are built around the hidden word, each new word requires a new construction job. We could have done

14.2. HANGMAN: THE GAME AND BOARD CLASSES 175

the same thing by declaring a Board* as a member of Game, but there would be no advantage in doing it that
way because there is no need to use a board after returning from Game::play().

14.2.1 The Game Class

61 // ==
62 // Build a board, play it, and return the score to main.
63 // A. Fischer, June 4, 2000 file: game.hpp
64 #ifndef GAME
65 #define GAME
66
67 #include "rstrings.hpp"
68 #include "board.hpp"
69 // ==
70 class Game {
71 private:
72 char Alphabet[80]; // Normally the English Alphabet.
73 RandString* Vocab; // The randomized vocabulary list.
74
75 public:
76 Game(cstring wordfile = NULL);
77 ~Game(){ delete Vocab; }
78 int play(); // Play hangman.
79 };
80 #endif

81 // ==
82 // Implementation of the Hangman game.
83 // A. Fischer, June 4, 2000 file: game.cpp
84
85 #include "game.hpp"
86 // ==
87 Game::Game(char* wordfile){
88 char file_name[80];
89 //cerr << "Constructing Game. "; // For debugging.
90 if (wordfile) strcpy(file_name, wordfile);
91 else strcpy(file_name, "vocab.in");
92
93 ifstream source(file_name);
94 if (!source) fatal("Could not open %s.\nEnding Hangman.\n", file_name);
95 //cerr << "File " <<file_name <<" is open for reading." <<endl;
96
97 source.getline(Alphabet, 80);
98 Vocab = new RandString(source); // Create vocabulary database.
99 source.close();

100 //Vocab->print(cerr); // For debugging.
101 }
102
103 //---
104 int Game::play() {
105 const char* puzzle_word = Vocab->randword(); // pick puzzle word.
106 //cerr << puzzle_word;
107
108 Board b(Alphabet, puzzle_word); // construct game board
109 return b.play(); // play the round
110 }

Notes on the Game code. The Game constructor’s first task is to find and open the vocabulary file. If no
name was typed on the command line, wordfile will be NULL, otherwise it will point to the selected filename.
A filename must be supplied, one way or another. If it was not given on the command line, the program uses a
default file, vocab.in. In either case, a copy of the file name is copied into the local array and used to open an
input stream.

176 CHAPTER 14. DERIVATION AND INHERITANCE

Once the stream is open, the first line of the file is read (line 97) and used to initialize the class member
named Alphabet. This permits the program to be used with vocabulary from any language. The remainder of
the file is used (line 98) to build the vocabulary array (a new RandString structure). the result is shown at the
top of Figure 14.1.5: g.Vocab points to a RandString object consisting of a FlexArray and a StringStore with
two Pools.

The Game::play() function is the heart of the program: it selects a mystery word (line 105), uses it to
construct a board (line 108), plays the board (line 109), and returns the score (1 win or 0 wins) to main().
Details of how to play the board and how to calculate the score are delegated to the Board class.

14.2.2 The Board Class

111 // ==
112 // Choose a word, use it to create a playing board.
113 // A. Fischer, June 4, 2000 file: board.hpp
114 #ifndef BOARD
115 #define BOARD
116
117 #include "words_d.hpp"
118 #define HANG_MAX 7
119 // ==
120 class Board {
121 enum status {GOOD_GUESS, BAD_GUESS, NOT_IN_ALPHA, USED_ALREADY};
122 int Errcnt; // Wrong guesses so far,
123 int Found; // Number of Letters correctly filled in.
124 Alphabet Alpha; // Masked alphabet.
125 Alphabet Errors; // Masked alphabet for error list.
126 HangWord Puzzle; // Masked mystery word.
127
128 public:
129 Board(const char* a, const char* puz); // Alphabet and puzzle word.
130 ~Board(){}
131 int play(); // play a board
132 void move(); // user interaction for one move
133 status guess(char c); // process a guess
134 ostream& print(ostream&); // print a board
135 };
136 #endif

137 // ==
138 // board.cpp: Implementation for hangman board
139 // A. Fischer, June 4, 2000 file: board.cpp
140
141 #include "board.hpp"
142 // ==
143 Board::Board(const char* a, const char* puz) :
144 Errcnt(0), Found(0), Alpha(a, true), Errors(a, false), Puzzle(puz){
145 //cerr << "\nConstructing Board. ";
146 }
147
148 //--- display the board
149 ostream&
150 Board::print(ostream& out) {
151 out << "\n\nPuzzle is: " << Puzzle << "\n\n";
152 out << " Letters left-->" << Alpha << "\n";
153 out << " Bad guesses--->" << Errors;
154
155 for (int k = Errcnt; k < HANG_MAX; k++) out << " _";
156 return out << endl;
157 }
158
159 //--- process a guess

14.2. HANGMAN: THE GAME AND BOARD CLASSES 177

160 Board::status
161 Board::guess(char c) {
162 int where = Alpha.find(c);
163 if (where == -1) return NOT_IN_ALPHA;
164 if (!Alpha.mask_slot(where)) return USED_ALREADY;
165 Alpha.mask_slot(where) = false;
166
167 int matches = Puzzle.try_letter(c);
168 if (matches <= 0) {
169 Errors.mask_slot(where) = true;
170 Errcnt++;
171 return BAD_GUESS;
172 }
173 Found += matches;
174 return GOOD_GUESS;
175 }
176
177 //--- user interaction for one move
178 void
179 Board::move() {
180 char ch;
181 cout << "Guess a letter: ";
182 cin >> ch;
183 cout << "You guessed ’" << ch << "’";
184 switch (guess(ch)) {
185 case NOT_IN_ALPHA:
186 cout << " -- but it’s not in the alphabet." << endl; break;
187 case USED_ALREADY:
188 cout << " -- but you guessed it once before." << endl; break;
189 case BAD_GUESS:
190 cout << " -- too bad." << endl; break;
191 case GOOD_GUESS:
192 cout << ". You scored!" << endl; break;
193 }
194 print(cout);
195 }
196
197 //-- play a board
198 int
199 Board::play() {
200 print(cout);
201 while (Errcnt < HANG_MAX && Found < Puzzle.length()) move();
202 if (Found == Puzzle.length()) {
203 cout << "Congratulations -- you win!" << endl;
204 return 1;
205 }
206 cout << "Sorry, you lose!" << "\nThe answer is: "
207 << Puzzle.word() << endl;
208 return 0;
209 }

To play a round of hangman, we need a hidden word and an alphabet. To make a good interface, we also
need a list of wrong guesses. These three arrays of characters (Puzzle, Alpha, and Errors) are updated and
displayed after every guess to help the player make skillful guesses. Thus, our gameboard displays three arrays
of letters:

• Puzzle, the mystery-word consisting of underscores and correctly guessed letters.
• Errors, a list of incorrect guesses.
• Alpha, the list of letters that have not yet been guessed.

In addition, the Board object must keep score and end the round when the number of correct guesses
(Found) equals the length of the puzzle word, or when the number of bad guesses (Errcnt) reaches the limit,
HANG_MAX. In Figure 14.1.5, you see the Board, b, and its five components in the lower part of the diagram.

178 CHAPTER 14. DERIVATION AND INHERITANCE

It is much easier to believe in the correctness of a function when its return values have meaningful names
than when integer codes are used. For this reason, we define a private enumerated type to describe the possible
outcomes of a guess. A value of this type is returned by guess() and used by move() to select a response message
for the player. We use this device to clarify, simplify, and modularize the code. The resulting two functions are
much clearer that the alternatives: one very long function and/or cryptic integer codes for the outcomes.

Constructing a playing board. The parameters to the constructor are an alphabet and a word that was
randomly selected from the vocabulary. This code uses ctors (line 144) to initialize all of the data members,
although they are only necessary for the last three. The body of the constructor contains only a debugging
message, currently commented out. To return to a debugging phase, one would remove the // marks.

The last three ctors convey arguments from the parameter list of the Board constructor to the constructors
of the aggregated class objects. The mystery word is sent to the Puzzle constructor where it becomes the basis
for a new playing board. Class members Alpha and Errors are both constructed from the alphabet. Initially,
all letters of the Alpha alphabet are set to “true”, meaning that they are available, and all letters in the Errors
alphabet are set to false, meaning that no errors have yet been made. These initializations will be discussed
more fully in the relevant classes.

One round of play. Board::play() is called by Game::play() to play one round of hangman on a newly
constructed Board. This function calls Board::move() in a loop (line 201), until the round has been won (all
letters have been guessed, lines 202–204) or lost (seven errors have been made, lines 206–207). In both cases,
the function announces the result to the player and returns the score to Game::play(). The details of how a
move is made are handled by the move() function.

One move. Board::move() prompts for and reads a guess from the user, (line 181–183) calls Board::guess()
to analyze the guess (line 184), and displays a message about the result and the new board position. The
switch statement illustrates how well-chosen enumeration constants can make code much clearer. A reasonable
question is, “why don’t we combine the code from Board::move() and Board::guess() into one function and get
rid of both the switch and the enumeration. There are two answers. First, the combined function would be very
long. Second, it is very helpful to keep high-level logic separate from low-level logic. The switch implements the
high-level logic and provides a road map for the other function. In contrast, Board::guess() is filled with many
detailed comparisons and counters. The enumeration constants guide the reader and help clarify the purpose
of the operations.

Is the guess correct? Given a puzzle, an alphabet, and a guess, there are four possible outcomes. We do a
case analysis and use four return statements to simplify the logic by keeping the cases maximally separate from
each other.

If the guess is not in the game-alphabet or it has been guessed previously, the player will not be “charged”
for the bad guess. To find out, we call Alphabet::find() (line 162) to search for the guess among the legal letters.
The return value is the subscript of the guess in the alphabet, if it is a legal letter, otherwise -1. For example,
when ‘e’ is guessed, the subscript 4 will be returned because ‘e’ is the fifth letter in the alphabet.

If the letter is valid, we then check (line 164) whether it was previously guessed. To do this, we use the
subscript returned by Alphabet::find() to index the mask array that parallels the alphabet array. (A result of
false means the letter has been used, true means it is still available.)

If the letter is legal and still possible, we set the appropriate position in the mask array (line 165) to “false”
to indicate that the letter is now used. Since ‘e’ has been guessed, we see that Alpha.Mask[4] is false and ‘e’
has disappeared from the display.

Next, on line 167, we determine whether the guess is correct or wrong by calling Hangword::try_letter() .
The result will be the number of letters in the puzzle that match the guess (zero or more). If the answer is
zero, we set the corresponding position of the error array to “true”, increment the error-counter, and return
with an error code (lines 168–171). This will cause the letter to “appear” (in alphabetical order) in the error
array the next time it is displayed. In Figure 14.1.5, the letter ‘s’ has been guessed and it is wrong. In response,
Alpha.Mask[18] was set to false and Errors.Mask[18] to true. If the guess is correct, we reach line 173, where we

14.3. THE WORD CLASSES 179

add the number of new matches to the match-counter (Found) and return a success code. Play for this board
will end when the Found total equals the length of the mystery word.

The return type must be given here as “Board::status”, even though it is written simply as “status” on line
121. This is necessary because the status type is defined inside the Board class and this function definition is
outside the class declaration.

14.3 The Word Classes

A mask marks a subset. A masked data structure is the simplest way to denote a subset of the data that
is to be used (or not used) for a particular purpose. One or several masks might be used to mark one or several
different subsets. The mask field or fields might be members of the structure or might exist in a parallel data
structure. The mask fields might be type bool (to denote a simple yes/no choice) or any other enumerated type.
Masks are most useful if the condition that they represent is not simple to test for, and if the status of an object
changes over time or is checked frequently.

A masked structure lets us sort or process data efficiently and easily. For example, suppose a club mem-
bership database has one record for each member. At least two sets of masks might be helpful: one for age
(juvenile, teenager, adult, senior) and another for dues status (guest, lifetime, paid-up, due, lapsed). Masks can
be useful here because age is messy to categorize and dues status is based on the member’s history.

14.3.1 The BaseWord Declaration

The class BaseWord creates a basic masked string, that is, a string with a corresponding array of bools to indicate
whether each letter in the string is currently valid or not. If a letter is valid, it is searched and displayed. If
not, it is hidden both from sight and from the computations. You could say that the mask controls access to
the individual letters in the array. This is an easy and fast way to select a subset of the data stored in an array.
To add an element or remove it, simply change the bit from true to false, or vice versa.

210 // ==
211 // Maskable word base class.
212 // A. Fischer, June 4, 2000 file: words.hpp
213 #ifndef WORDS
214 #define WORDS
215 #include "tools.hpp"
216 // ==
217 class BaseWord {
218 protected:
219 const int Len; // length of word, excluding terminator.
220 const char* const W; // partially concealed word
221 bool* const Mask; // concealment mask
222
223 public:
224 BaseWord(const char* st) : Len(strlen(st)), W(st), Mask(new bool[Len+1]){
225 //cerr << "\nConstructing BaseWord. ";
226 }
227 ~BaseWord() { delete [] Mask; }
228 int length() const { return Len; }
229 bool& mask_slot(int k) const { return Mask[k]; }
230 const char* const word() const { return W; }
231
232 void set_all(bool on_off){ // set false to hide letter, true to expose.
233 for (int k=0; k<Len; k++) Mask[k] = on_off;
234 }
235 };
236 #endif

The BaseWord class. In this class, everything is based on a particular string (the argument to the BaseWord
constructor) and its length. The members named Len and Mask are constants, so they must be initialized using
ctors, after the length of the argument string is known. The first ctor that must be executed is the one that
measures the string and stores its length in Len; the mask cannot be constructed until that is done. For this
reason, we declare Len first in the class.

180 CHAPTER 14. DERIVATION AND INHERITANCE

The class member named W is a constant pointer to a constant string, either the alphabet or a word that
was selected randomly from the vocabulary and is still stored there. No copy is made of this string because we
do not need to modify it. The word, itself, is constant. The mask array is modified during the play, and those
modifications determine which letters are displayed.

14.3.2 The Derived Word Classes

237 // ==
238 // Derived Word classes.
239 // A. Fischer, June 4, 2000 file: words_d.hpp
240 #ifndef WORDSDERIVED
241 #define WORDSDERIVED
242
243 #include "words.hpp"
244 // ==
245 class Alphabet : public BaseWord {
246 public:
247 Alphabet(const char* st, bool on_off) : BaseWord(st) {
248 set_all(on_off);
249 //cerr << "Constructing Alphabet.";
250 }
251 int find(char c) const; // return index of first c in word
252 ostream& print (ostream&); // print an alphabet
253 };
254
255 inline ostream& operator<<(ostream& out, Alphabet& x){ return x.print(out); }
256
257 // ==
258 class HangWord : public BaseWord {
259 public:
260 HangWord(const char* st) : BaseWord(st) {
261 set_all(false);
262 //cerr << "Constructing HangWord. " <<st;
263 }
264 int try_letter(char);
265 ostream& print (ostream&); // print a hang word
266 };
267
268 inline ostream& operator<<(ostream& out, HangWord& x){ return x.print(out); }
269 #endif

270 // ==
271 // Implementation for maskable words.
272 // A. Fischer, June 4, 2000 file: words_d.cpp
273
274 #include "tools.hpp"
275 #include "words_d.hpp"
276 // === Alphabet class functions
277 int // Return index of first occurrence of c in W
278 Alphabet::find(char c) const {
279 int k;
280 for (k=0; k<Len && c != W[k]; k++); // Loop body is empty.
281 return (k==Len) ? -1 : k;
282 }
283 //---
284 ostream&
285 Alphabet::print (ostream& out) {
286 for (int k=0; k < Len; k++) if (Mask[k]) out << " " << W[k];
287 return out;
288 }
289
290 // === Hangword class functions
291 int // Count the number of times letter c occurs in puzzle; unmask each

14.3. THE WORD CLASSES 181

292 HangWord::try_letter(char c) {
293 int count = 0;
294 for (int k=0; k<Len; k++) {
295 if (c == W[k]) {
296 count++;
297 Mask[k] = true;
298 }
299 }
300 return count;
301 }
302 //---
303 ostream&
304 HangWord::print (ostream& out) {
305 out << "<[" ;
306 for (int k=0; k < Len; k++) out << ’ ’ << (Mask[k] ? W[k] : ’_’) ;
307 out << "]>";
308 return out;
309 }

The Alphabet and HangWord classes. Baseword is a polymorphic class that defines a basic data structure
and some of its functions. Alphabet and HangWord are variations of BaseWord. They are derived from
BaseWord, so they inherit functions and data from BaseWord. In addition, each has its own set of functions
for initialization, use, and display. The first line of a class declaration declares the derivation relationships, if
any. In Hangman, Alphabet and HangWord are both derived from BaseWord by public derivation:

class Alphabet : public BaseWord { ... };
class HangWord : public BaseWord { ... };

From this relationship we know that:

1. The two new classes are derived from BaseWord so that we can have the same structure but different print
functions.

2. The first part of an Alphabet or HangWord object is a BaseWord object.

3. The constructors for Alphabet and HangWord use ctor initializers to provide arguments for the BaseWord
constructor.

4. The public/protected/private status of all the inherited members in Alphabet and HangWord is the same
as in class BaseWord.

5. The functions of the two derived classes can freely use the protected members of the base class: Len, W,
and Mask.

Initializing the masks. A gameboard contains three Words (Puzzle, Alpha, and Errors); each consisting of
a char array with a parallel mask array. When a word is displayed, its mask array is checked; a letter in the
word is displayed if its mask bit is on (true), and ignored if the bit is off.

During Board construction, the function BaseWord::set_all() is called to initialize the three Word members
of the Board. It will set all of the bits of a mask to either true or false, depending on how the instance will
be used: bits for the game alphabet are set to true, for the errors to false, and for the mystery word to false.
The bool parameter for set_all() comes from a call in the HangWord constructor (line 261) or from the ctor for
Alphabet in the Board constructor (line 144). As the game progresses, two mask bits are changed each time
a legal guess (correct or incorrect) is made. The alphabet that is displayed grows shorter (as letters are used)
and the error list grows longer (as letters are added to it). The mystery word stays the same length, but dashes
in the display are replaced by letters each time a correct guess is made.

Printing through a mask. The polymorphic class lets us create different means of displaying the same data
structure.When a word is displayed, its mask array is checked, and each letter in the word is displayed if its mask
bit is on (true). For Alphabet objects, nothing is displayed if the bit is false, but for the puzzle (a HangWord),
dashes are shown.

182 CHAPTER 14. DERIVATION AND INHERITANCE

Searching and updating the masks. When the player guesses a letter, Board::guess() searches the alphabet
(line 162) to find out whether the letter is legal and saves the index of the letter for later use. If the letter is
not in the alphabet or if it has already been used, the function returns immediately with an error code (lines
163–164). Otherwise, it turns off the mask bit (line 165) corresponding to the letter to indicate that the letter
has been used. (This removes the letter from the display.)

Then try_letter() is called (line 167) to compare the guessed letter to the letters in the puzzle word (lines
294–299). This function turns on the mask bit corresponding to each matching letter in Puzzle (line 297) and
returns the number of matches (0 or more) that were found. If no matches were found, 0 is returned and the
mask field in Error that corresponds to the bad guess is turned on (line 169). This causes the letter to appear
on the error list. Finally, lines 173–174 add the number of matches to the score and return a success code. In
Figure 14.1.5, Puzzle.Mask[0] and Puzzle.Mask[4] have been set to true in response to the two correct guesses,
‘e’ and ‘t’. The same two letters have been marked as false in Alpha.Mask[4] and Alpha.Mask[19].The board
will display “e _ _ _ t” and show the alphabet with these two letters missing.

Coding techniques. Two code segments are worth mentioning here. First, note the Alphabet::find() function
on lines 277–282. Line 280 is a complete sequential search written in one line, as a for loop with no body. It
positions k, the index for both Alpha and Errors, on the letter that was guessed. The conditional operator in
line 281 returns this position or -1, an error code. This is very compact code, but is well within the bounds of
readability.

HangWord::print() also uses a one-line loop and a conditional operator to check the mask and print either
a puzzle letter or a dash. In contrast, an if statement is used to test the mask in Alphabet::print() and
HangWord::try_letter(). The difference is that the last two functions are using a one-sided conditional; they do
something if the condition is true, nothing otherwise. The conditional operator can only be used in symmetric
situations where some value is returned whether the condition is true or false.

14.4 RandString Adapts a Reusable Data Structure

The RandString class is an adapter. It is derived from a general-purpose container class template, FlexArray,
and changes the interface provided by the reusable class to one that is appropriate for this application. One new
public function, randword(), is added and one existing function is removed from the interface by an override.
This is a typical pattern that is repeated over and over when you use class libraries. The library seldom provides
exactly the classes you want, but if you can find something close to your needs, you can add to, modify, or
restrict its interface to meet you needs. In this application, the interface must be changed to prevent ordinary
sequential access and to provide random word selection.

The class RandString is a vocabulary list from which strings may be randomly selected and removed. The
letters that form the words are stored in a StringStore. The StringStore class that was presented in Chapter 8 is
reused here with a few corrections. StringStore will “take care of itself” and construct as many Pools as needed
to hold the characters in the vocabulary words. To store the string pointers, we use a flexible array (vector)
because we need both random access and flexibility. Random access is not available with linked lists, so we
must use some sort of an array. We don’t use a simple array because the number of words in the vocabulary
file is not known at compile time.

14.4.1 The RandString Declaration

We create the RandString class by deriving it from an instantiation of the FlexArray template:

class RandString : public FlexArray<char*> {...}

We aggregate the StringStore in the resulting derived class, and complete the package by adding functions to
do random selection and removal of the puzzle words. By this means, we achieve a flexible, sophisticated data
structure with very little new code.

The RandString constructor. A few small things deserve notice here:

• Because this is a derived class, we need a ctor to construct the base class (line 338).

14.4. RANDSTRING ADAPTS A REUSABLE DATA STRUCTURE 183

• By default, the RandString constructor creates an initial FlexArray that can hold 100 words. This
constructor is called from the Game constructor without an integer argument, so the default size is
actually used.

• The default FlexArray size is specified in the .hpp file (line 326) but not in the function definition (line
338). This is correct usage.

• There is one restriction on vocabulary words: they must be shorter than 80 characters, since that is the
length of the input buffer in the RandStrings constructor (lines 340, 345).

• On line 347, StringStore::put() is called to store the letters; it returns a pointer to the first letter in the
new word. This pointer is sent to FlexArray::put(), to be stored in the word array. Very concise, very
efficient. Perhaps difficult to understand.

• This is a typical eof-controlled input loop. The break on line 346 will happen if either a read error or and
end-of-file occurs. In a game program like this, it is good enough to end input if a read error occurs. They
are rare and we can play the game even of some of the words in the file remain unread.

310 // ==
311 // Declaration for a string array with random selection
312 // A. Fischer, May 13, 2001 file: rstrings.hpp
313
314 #include "flexT.hpp"
315 #include "sstore.hpp"
316 // ==
317 class RandString : public FlexArray<char*> {
318 protected:
319 StringStore Store; // Storage behind string array.
320
321 private:
322 inline cstring remove(int r);
323 void print(ostream& outs) const; // For debugging, make this public.
324
325 public:
326 RandString(istream& vocin, int sz = 100);
327 ~RandString(){}
328 const char* randword();
329 const char* operator[] (int index);
330 };

The functions randword() and remove(). Random selection and removal of a string is implemented by
the randword() function, as follows:

• The RandString constructor, primes the standard C random number generator by calling
srand(time(NULL)). This uses the current time of day as an initial value for the randomizing compu-
tation, ensuring that different games will start with different puzzle words.

• Game::play() calls RandString::randword() before constructing a new playing board (line 105).

• To select a random word from the N unused words in the vocabulary, randword() generates a random
number R in the range 0 . . . N − 1, then calls remove() to remove the selected word from the vocabulary.

• Inside remove(), the string pointer in the Rth position is copied into a local temporary and later returned.
Then it is replaced in the FlexArray by a copy of the last string pointer in the array. Finally, N , the
number of words in the vocabulary is decreased by 1. No actual words change position; only pointers are
copied. This is a standard algorithm for “shuffling” a deck of cards or randomizing the order of the objects
in any array. The strategy is simple, fast, and theoretically sound. It does leave a meaningless copy of
a string pointer at the end of the vocabulary array each time a word is used and the array is shortened.
Thus, the number of items remaining in the vocabulary, not its original size, must be used to select the
next random word.

331 // ==
332 // Implementation for a string array with random selection
333 // A. Fischer, June 4, Nov 14, 2000 file: rstrings.cpp
334
335 #include "tools.hpp"

184 CHAPTER 14. DERIVATION AND INHERITANCE

336 #include "rstrings.hpp"
337 // ==
338 RandString::RandString(istream& vocin, int sz) : FlexArray<char*>(sz) {
339 //cerr << "\nConstructing RandString ";
340 char line[80]; // input buffer
341 srand(time(NULL)); // start up random number generator.
342
343 for(;;) {
344 vocin >> ws;
345 vocin.getline(line, 80);
346 if (!vocin.good()) break;
347 put(Store.put(line, vocin.gcount())); // Add to SStore & FlexArray.
348 }
349 //cerr << "\nRead " <<Many <<" Data from vocabulary file " << endl;
350 if (!vocin.eof()) fatal("Read error on vocabulary file");
351 }
352 // ---
353 void
354 RandString::print(ostream& outs) const {
355 outs << "The vocabulary: \n";
356 for (int k=0; k<N; k++) outs << Data[k] << endl;
357 }
358
359 // ---
360 const char*
361 RandString::randword() {
362 if (N < 1) fatal("Sorry, out of Data!");
363 int r = rand();
364 return remove(r % N);
365 }
366
367 //---
368 inline cstring
369 RandString::remove(int r) {
370 cstring ret = Data[r]; // Grab the word that was selected.
371 Data[r] = Data[--N]; // Replace by last word in array.
372 return ret; // Return word and decrease word count.
373 }
374
375 // ---
376 const char* // Override; block access to function in base class.
377 RandString::operator[] (int index)
378 {
379 cerr <<"No random access to vocabulary list";
380 return "";
381 }

Overriding FlexArray::operator[]. When using class derivation, all properties of the base class are inher-
ited by the derived class. Sometimes this is undesirable or destructive in the new context. For example, the
FlexArray class provides a general subscript operator. However, the RandString class has a very special access
and removal rule, and random-access subscripting would defeat its purpose of restrincting access. This problem
is handled by overriding the inherited definition by a new definition with exactly the same parameters as the
inherited method. We cannot eliminate the subscript operator altogether, but we can write it as a trap. In this
class, we use a nonfatal trap: it prints an error message but does not abort the run. Clearly, this will never
happen in a fully debugged program. However, during construction and debugging, traps like this can be very
useful.

	14 Derivation and Inheritance
	14.1 Playing
	14.1.1 The Hangman Application
	14.1.2 Hangman: The Main Program
	14.1.3 Call Graphs
	14.1.4 UML Diagrams: A View of the Class Relationships
	14.1.5 The Hangman Data Structures

	14.2 Hangman: The Game and Board Classes
	14.2.1 The Game Class
	14.2.2 The Board Class

	14.3 The Word Classes
	14.3.1 The BaseWord Declaration
	14.3.2 The Derived Word Classes

	14.4 RandString Adapts a Reusable Data Structure
	14.4.1 The RandString Declaration

