
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 427: Object-Oriented Programming Handout #8
Professor M. J. Fischer November 28, 2016

Problem Set 8
Due before midnight on Monday, December 5, 2016.

1 Assignment Goals

1. Learn low-level bit representations of data.

2. Get greater insight into how standard I/O streams work.

3. Use non-polymorphic derivation to eliminate duplicate code.

2 Bit Strings

We are used to working with files that consist of a sequence of 8-bit bytes. The standard iostream
class and its cousins, ifstream and ofstream, allow for easy processing of byte sequences.

Some applications work instead with binary data – sequences of bits where the underlying
byte structure may have little semantic relevance. Binary files are generally uningelligable to a hu-
man just looking at them. Typical examples of binary files are executable machine code, encrypted
data, and compressed data, images, video, and sound files.

Abstractly, bitstrings consist of an arbitrary-lengh sequence of bits, just as ordinary text files
consist of an arbitrary-length sequence of bytes. However, modern computers are based on bytes,
and bitstrings are generally stored as sequences of bytes, where each 8-bit block of bits is packed
into a single byte. As a consequence, the only bitstrings that can be directly represented are those
whose length (in bits) is a multiple of eight.

Applications that need to store arbitrary length bitstrings must encode their data as bytes on
writing to a file and decode them back to the original bitstring on reading. Such encoding con-
siderations are generally orthogonal to the application and can greatly complicate the code. Good
object-oriented design dictates that independent modules should be in separate classes with clean
interfaces. The application that wants to use bit streams should invoke bit stream classes, and the
conversion between bit streams and byte streams should be relegated to separate classes.

3 Problem

In this assignment, you will implement the following three classes for handling bit stream files.

1. BStreamBase is the base class for both of the following classes.

2. BIFStream supports reading a file-encoded bit stream.

3. BOFStream supports writing a file-encoded bit stream.

Your classes will present interfaces to the client programs that is very similar to the standard
streams interfaces with which you are familiar. They will read and write files in a special file
format, described below, which I call packed bit stream files. By convention, packed bit stream files
will have names with a .pbs suffix.

2 Problem Set 8

3.1 Backed Bit Stream File Format

I now describe the format of a .pbs file. Let N be the length of the file in bytes. Assume N ≥ 2.
Then each of the first N − 2 bytes contain eight bits from the bit stream, packed left to right in the
byte. Thus, the first of those eight bits appears in the high-order bit position of the byte and the last
appears in the low-order bit position.

The next-to-last byte of the file contains the last k bits from the bit stream, where 1 ≤ k ≤ 8.
These bits are right-justified within the byte, and the remaining padding bits must all be 0’s. The
last byte of the file is called the count byte and contains the binary representation of the number k.

The case N = 1 contains only a count byte, which must be 0. It represents the empty bit stream,
that is, the bit stream consisting of no bits.

Every bit stream can be represented uniquely as a .pbs file. However, not every file is a valid
encoding of a bit stream. In particular, the file must not be empty itself, the count byte must be 0 if
the file length is 1 and between 1 and 8 otherwise. Moreover, if the next-to-last byte has only k < 8
bits, the leftmost 8− k padding bits must all be zero.

A few examples should help make this clear.

Bit Stream Byte Representation Notes
(empty) 0x00 special case – empty bit stream
101 0x05 0x03 three bits are right-justified
00101 0x05 0x05 five bits are right-justified
10100001 0xa1 0x08 last byte full; no padding
1111000011011 0xf0 0x1b 0x05 13-bits in two bytes
110 0xa6 0x03 illegal; padding bits are not 0
10100001 0xa1 0x00 0x00 illegal; count is 0 for non-empty bit stream
1101 0x0d 0x14 illegal; count is out of range

3.2 Bit Stream Base Class

Bit stream objects should look as much like ordinary I/O streams as possible. In particular, they
should support similar error states as the standard ios class. Namely, there are three error flags
packed into a single int variable state: badflag, eofflag, and failflag. Badflag is in bit position
0 (the low-order bit of state), eofflag is in position 1, and failflag is in position 2. Thus, state 6
means the eofflag and failflag are both set. State 0 is the good state.

To conveniently manipulate I/O states, you should define static int constants goodbit=0,
badbit=1, eofbit=2, and failbit=4. With these constants, one can use the bitwise “or”
operator ’|’ to form the state. Thus, state 6 is equal to eofbit|failbit. Similarly, to test if
the eofflag is set, one can test (state & eofbit)!=0.

BStreamBase supports those parts of the bit stream that are common to both input and output
bit streams. In particular, it contains state as a protected data member. Public functions are

• rdstate() returns the state as an int.
• clear(int s=goodbit) sets the state to s. Just like the standard clear() function, if

called with no arguments, it clears all state bits.
• setstate(int s) does a bitwise “or” of the current state with s and stores the re-

sult back in state. For example, setstate(eofbit) turns on the eofflag without
changing the other flags.

• The Boolean state functions good(), eof(), fail(), and bad() are defined exactly the
same as for standard streams. For example, fail() returns true if either badflag or failflag
are set.

Handout #8—November 28, 2016 3

3.3 Bit Stream Derived Classes

BIFStream is publicly derived from BStreamBase. It’s constructor takes a const string
parameter that gives the name of the .pbs file to open for reading when BIFStream is instan-
tiated. It’s destructor calls the bit stream’s close() function. Other public functions are bool
is open(), void close(), and unsigned char getBit().

getBit() returns the next bit from the bit stream, where bit 0 is represented by the byte 0x00
and bit 1 is represented by 0x01. It should set badflag if the underlying file violates the file format
described above. It should set eofflag and failflag if it is unable to return a bit because there are no
more bits remaining in the bit stream.

BOFStream is publicly derived from BStreamBase. It’s constructor takes a const
string parameter that gives the name of the .pbs file to open for writing when BOFStream
is instantiated. The constructor also takes an optional parameter of type ios::openmode
that gives the mode in which to open the underlying output stream. It defaults to ios::out.
The destructor calls the bit stream’s close() function. Other public functions it supports
are bool is open(), void close(), void putBit(int b) and void putByte(
unsigned char newChar).

The argument to putBit() should be the integer 0 or 1, which it appends to the output bit
stream. The argument to putByte() should be an unsigned character newChar. It writes all 8
bits of newChar to the output bit stream. While it could simply extract the 8 bits one at a time and
call putBit() on each, it can be implemented more efficiently with shifting and masking. In both
cases, badflag and failflag should be set if there is any error writing to the underlying output stream.

4 Testing

In order to test your program, you should write two commands packer and unpacker that
convert between bit streams as described above and strings of ’0’ and ’1’ characters. Both
commands take two filename arguments.

The command

> packer in.txt out.pbs

reads a file in.txt consisting of ’0’ and ’1’ characters, interprets them as bits 0 and 1 respec-
tively, and writes them to the bit stream file out.pbs. The command should ignore whitespace on
input but otherwise check that the only non-whitespace characters present are ’0’ and ’1’.

The command

> unpacker in.pbs out.txt

does the opposite. It reads the packed bit stream file in.pbs and writes the corresponding char-
acters ’0’ and ’1’ to file out.txt. For readability, a newline character should be inserted after
every eight digits of output. Also, make sure that the last line is also terminated by a newline, even
if it is shorter than 8.

packer and unpacker should use the public functions good(), fail(), etc., to check for
errors and end-of-file as appropriate after each bit stream and text stream operation.

5 Programming Hints

Both input and output bit streams should maintain a single byte buffer along with a length variable
that says how many unread bits are in the buffer (for input), or how many bits are in the buffer

4 Problem Set 8

waiting to be written out (for output).
The tricky part of this assignment is in properly handling end of file. For input, one needs to

keep a 2-byte lookahead buffer in order to determine whether a newly-read byte is a data byte or the
count byte, and also to know how many bits in that byte are valid.

In general, byte k of the input file will be in the byte buffer, and bytes k + 1 and k + 2 will be
in the lookahead buffer. When the byte buffer becomes empty, the first lookahead byte is move into
the byte buffer, the second lookahead byte becomes the first, and you attempt to read a new byte
into the second slot of the lookahead buffer.

If you fail to read a new byte because of end-of-file, you know that the first byte in the lookahead
buffer is the count byte. You continue processing until the byte buffer becomes empty, at which time
your function eof() reports end-of-file on the bit stream.

For bit stream output, the bit stream close() function must write the byte buffer to the output
stream (if non-empty), followed by the count. In case the byte buffer is empty, the count should be 8
to reflect the fact that the previously-written byte was full. However, the empty file must be treated
as a special case since then the byte buffer is empty but no previous byte was written. In this one
case, the count byte should be 0, not 8.

6 Grading Rubric

Your assignment will be graded according to the scale given in Figure 1.

Pts. Item
1. 1 A well-formed Makefile or makefile is submitted that specifies compiler

options -O1 -g -Wall -std=c++11. Running make successfully com-
piles and links the project and results in two executable files, packer and
unpacker.

2. 6 packer successfully packs all of the furnished .txt files or correctly detects
and reports error conditions.

3. 6 unpacker successfully unpacks all of the furnished .pbs files or correctly
detects and reports error conditions.

4. 6 All of the instructions in sections 3, 4, and 5 are followed.

5. 1 All relevant standards from previous problem sets are followed regarding good
coding style, submission, identification of authorship on all files, and so forth.

20 Total points.

Figure 1: Grading rubric.

	Assignment Goals
	Bit Strings
	Problem
	Backed Bit Stream File Format
	Bit Stream Base Class
	Bit Stream Derived Classes

	Testing
	Programming Hints
	Grading Rubric

