
Outline Insertion Sort Example Classes

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 3
September 7, 2016

CPSC 427, Lecture 3 1/27

Outline Insertion Sort Example Classes

Insertion Sort Example
Program specification
Monolithic solution
Modular solution in C
Modular solution in C++

Classes
Header file
Implementation file
Main program
Building InsertionSortCpp

CPSC 427, Lecture 3 2/27

Outline Insertion Sort Example Classes

Insertion Sort Example

CPSC 427, Lecture 3 3/27

Outline Insertion Sort Example Classes

Program specification

Design process: Insertion Sort

Here’s a simple problem similar to what might be taught in a
second programming class.

Write a C++ program to sort a file of numbers.

This is hardly a specification. A few questions immediately come
to mind:

I What file?

I What kind of numbers?

I What sorting algorithm should be used?

I Where does the output go?

CPSC 427, Lecture 3 4/27

Outline Insertion Sort Example Classes

Program specification

A more refined specification

Here’s a more detailed specification. The program should:

1. Prompt the user for the name of a file containing numbers.

2. The numbers are assumed to be floating point, one per line.

3. The numbers should be sorted using insertion sort.

4. The output should be written to standard output.

CPSC 427, Lecture 3 5/27

Outline Insertion Sort Example Classes

Monolithic solution

A first solution

03-InsertionSortMonolith satisfies the requirements.

Characteristics:

I It’s monolithic – everything is in main().

I It defines BT to be the type of number to be sorted. The
definition uses a typedef statement.

I It uses dynamic storage to hold the list of numbers to be
sorted.

I The macro LENGTH gives the maximum size list that it can
handle. #define defines it to be 20.

I It proceeds in a logical step-by-step fashion through the entire
solution process.

CPSC 427, Lecture 3 6/27

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/03-InsertionSortMonolith

Outline Insertion Sort Example Classes

Monolithic solution

What is wrong with this?

This code violates many of the design principles I talked about in
the first two lectures:

I Lack of isolation between the parts of the code that interact
with the user, manage the dynamic storage, read the file,
perform the sort, and print the results.

I It is not modular.
I Variables used by the different parts are mixed together.
I The storage management is intertwined with the other

activities.
I I/O and computation are mixed together.

I Reuse of the sorting algorithm is surprisingly difficult because
of its entanglement with the other parts of the program.

CPSC 427, Lecture 3 7/27

Outline Insertion Sort Example Classes

Modular solution in C

A modular solution

03-InsertionC is a more modular solution that follows many
OO-design principles, even though it is written in C.

I main() sequences the steps of the solution but delegates the
implementation to functions defined in databack.h.

I datapack.h declares a stuct DataPack that brings together
the variables needed to adequately represent the data to be
processed.

CPSC 427, Lecture 3 8/27

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/03-InsertionSortC

Outline Insertion Sort Example Classes

Modular solution in C

A modular solution (cont.)

I datapack.h also declares three functions that make use of a
DataPack:

I setup() Prompts the user for a file name, creates a
DataPack, and initializes it with the data from the file.

I printData() writes a dataPack to an output stream.
I sortData sorts the data in a dataPack.

I datapack.c contains the implementations of these three
functions.

I It also contains a private function readData() that does the
actual user interaction for setup(). The static keyword in
C restricts visibility of readData() to this one file.

CPSC 427, Lecture 3 9/27

Outline Insertion Sort Example Classes

Modular solution in C++

C++ version

03-InsertionSortCpp is a solution written in C++ that uses many
C++ features to achieve greater modularity than was possible in C.

It mirrors the file structure of the C version with the three files
main.cpp, datapack.hpp, and datapack.cpp.

It achieves better modularity primarily by its use of classes. We
give a whirlwind tour of classes in C++, which we will be covering
in greater detail in the coming lectures.

CPSC 427, Lecture 3 10/27

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/03-InsertionSortCpp

Outline Insertion Sort Example Classes

Classes

CPSC 427, Lecture 3 11/27

Outline Insertion Sort Example Classes

Header file

Header file format

A class definition goes into a header file.

The file starts with include guards.

#ifndef DATAPACK_H

#define DATAPACK_H

// rest of header

#endif

or the more efficient but non-standard replacement:

#pragma once // rest of header

CPSC 427, Lecture 3 12/27

Outline Insertion Sort Example Classes

Header file

Class declaration
Form of a simple class declaration.

class DataPack {

private: // --

// data member declarations, like struct in C

...

// private function methods

...

public: // ---

// constructor and destructor for the class

DataPack() {...}

~DataPack() {...}

}

// ---

// public function methods

...

};

CPSC 427, Lecture 3 13/27

Outline Insertion Sort Example Classes

Header file

class DataPack

class DataPack {

...

};

defines a new class named DataPack.

By convention, class names are capitalized.

Note the required semicolon following the closing brace.

CPSC 427, Lecture 3 14/27

Outline Insertion Sort Example Classes

Header file

Class elements

I A class contains declarations for data members and function
members (or methods).

I int n; declares a data member of type int.

I int getN(){ return n; } is a complete member function
definition.

I void sort(); declares a member function that must be
defined elsewhere.

I By convention, member names begin with lower case letters
and are written in camelCase.

CPSC 427, Lecture 3 15/27

Outline Insertion Sort Example Classes

Header file

Inline functions

I Methods defined inside a class are inline (e.g., getN()).

I Inline functions are recompiled for every call.

I Inline avoids function call overhead but results in larger code
size.

I inline keyword makes following function definition inline.

I Inline functions must be defined in the header (.hpp) file.
Why?

CPSC 427, Lecture 3 16/27

Outline Insertion Sort Example Classes

Header file

Visibility

I The visibility of declared names can be controlled.

I public: declares that following names are visible outside of
the class.

I private: restricts name visibility to this class.

I Public names define the interface to the class.

I Private names are for internal use, like local names in
functions.

CPSC 427, Lecture 3 17/27

Outline Insertion Sort Example Classes

Header file

Constructor

A constructor is a special kind of method.

It is automatically called whenever a new class instance is created.

Its job is to initialize the raw data storage of the instance to
become a valid representation of an initial data object.

In DataPack example, store must point to storage of max bytes,
n of which are currently in use.

CPSC 427, Lecture 3 18/27

Outline Insertion Sort Example Classes

Header file

Constructor

DataPack(){

n = 0;

max = LENGTH;

store = new BT[max]; cout << "Store allocated.\n";

read();

}

new does the job of malloc() in C.

cout is name of standard output stream (like stdout in C).

<< is output operator.

read() is private function to read data set from user.

Design question: Why is this a good idea?

CPSC 427, Lecture 3 19/27

Outline Insertion Sort Example Classes

Header file

Destructor

A destructor is a special kind of method.

Automatically called whenever a class instance about to be
deallocated.

Job is to perform any final processing of the data object and to
return any previously-allocated storage to the system.

In DataPack example, the storage block pointed to by store must
be deallocated.

CPSC 427, Lecture 3 20/27

Outline Insertion Sort Example Classes

Header file

Destructor

~DataPack(){

delete[] store;

cout << "Store deallocated.\n";

}

Name of the destructor is class name prefixed with ~.

delete does the job of free() in C.

Empty square brackets [] are for deleting an array.

CPSC 427, Lecture 3 21/27

Outline Insertion Sort Example Classes

Implementation file

dataPack.cpp

Ordinary (non-inline) functions are defined in a separate
implementation file.

Function name must be prefixed with class name followed by :: to
identify which class’s member function is being defined.

Example: DataPack::read() is the member function read()

declared in class DataPack.

CPSC 427, Lecture 3 22/27

Outline Insertion Sort Example Classes

Implementation file

File I/O

C++ file I/O is described in Chapter 3 of textbook. Please read it.

ifstream infile(filename); creates and opens an input
stream infile.

The Boolean expression !infile is true if the file failed to open.

This works because of a built-in coercion from type ifstream to
type bool. (More later on coercions.)

read() has access to the private parts of class DataPack and is
responsible for maintaining their consistency.

CPSC 427, Lecture 3 23/27

Outline Insertion Sort Example Classes

Main program

main.cpp

As usual, the header file is included in each file that needs it:
#include "datapack.hpp"

banner(); should be the first line of every program you write for
this course. It helps debugging and identifies your output.
(Remember to modify tools.hpp with your name as explained in
Chapter 1 of textbook.)

Similarly, bye(); should be the last line of your program before
the return statement (if any).

The real work is done by the statements DataPack theData; and
theData.sort();. Everything else is just printout.

CPSC 427, Lecture 3 24/27

Outline Insertion Sort Example Classes

Building InsertionSortCpp

Manual compiling and linking

One-line version
g++ -o isort main.cpp datapack.cpp tools.cpp

Separate compilation
g++ -c -o datapack.o datapack.cpp

g++ -c -o main.o main.cpp

g++ -c -o tools.o tools.cpp

g++ -o isort main.o datapack.o tools.o

CPSC 427, Lecture 3 25/27

Outline Insertion Sort Example Classes

Building InsertionSortCpp

Compiling and linking using make

The sample Makefile given in lecture 02 slide 24 is easily adapted
for this project.

Compare it with the Makefile on the next slide.

CPSC 427, Lecture 3 26/27

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/ln02.pdf

Outline Insertion Sort Example Classes

Building InsertionSortCpp

#---

Macro definitions

CXXFLAGS = -O1 -g -Wall -std=c++14

OBJ = main.o datapack.o tools.o

TARGET = isort

#---

Rules

all: $(TARGET)

$(TARGET): $(OBJ)

$(CXX) -o $@ $(OBJ)

clean:

rm -f $(OBJ) $(TARGET)

#---

Dependencies

datapack.o: datapack.cpp datapack.hpp tools.hpp

main.o: main.cpp datapack.hpp tools.hpp

tools.o: tools.cpp tools.hpp

CPSC 427, Lecture 3 27/27

	Insertion Sort Example
	Program specification
	Monolithic solution
	Modular solution in C
	Modular solution in C++

	Classes
	Header file
	Implementation file
	Main program
	Building blue InsertionSortCpp

