e
Outline Functions and Methods Derivation Construction /Destruction

0000000000
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 5
September 14, 2016

CPSC 427, Lecture 5 1/35
00

Outline Functions and Methods Derivation Construction /Destruction
0000000000

Functions and Methods
Parameters
Choosing Parameter Types
The Implicit Argument

Derivation

Construction, Initialization, and Destruction

| |
CPSC 427, Lecture 5 2/35

e

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Functions and Methods

CPSC 427, Lecture 5 3/35
00

Outline Functions and Methods Derivation Construction/Destruction
©000000000

:
Parameters

Call by value (recall)
Like C, C++ passes explicit parameters by value.
void £f(int y) { ... y=4; ... };

int x=3;
f(x);

» x and y are independent variables.

v

y is created when f is called and destroyed when it returns.

v

At the call, the value of x (=3) is used to initialize y.

v

The assignment y=4; inside of £ has no effect on x.

|
CPSC 427, Lecture 5 4/35

Outline Functions and Methods Derivation Construction /Destruction

O@00000000
:

:
Parameters
:

Call by pointer (recall)

Like C, pointer values (which | call reference values) are the
things that can be stored in pointer variables.

Also like C, references values can be passed as arguments to
functions having corresponding pointer parameters.

void g(int*x p) { ... (xp)=4; ... };

int x=3;

g(&x);

> p is created when g is called and destroyed when it returns.

» At the call, the value of &x, a reference value, is used to
initialize p.

» The assignment (*p)=4; inside of g changes the value of x.

|
CPSC 427, Lecture 5 5/35

Outline Functions and Methods Derivation Construction/Destruction
00®0000000
: :
Parameters
: :

Call by reference

C++ has a new kind of parameter called a reference parameter.
void g(int& p) { ... p=4; ... };

int x=3;

g(x);

» This does same thing as previous example; namely, the
assignment p=4 changes the value of x.

» Within the body of g, p is a synonym for x.

> For example, &p and &x are identical reference values.

| |
CPSC 427, Lecture 5 6/35

Outline Functions and Methods Derivation Construction /Destruction
0008000000
: :
Parameters
: :

|/O uses reference parameters

» The first argument to << has type ostream&.
» cout << x << y; is same as (cout << x) << y;.

> << returns a reference to its first argument, so this is also the
same as
cout << x;
cout << y;

CPSC 427, Lecture 5 7/35
00

Outline Functions and Methods Derivation Construction /Destruction
0O00@00000
: :
Choosing Parameter Types
: :

How should one choose the parameter type?

Parameters are used for two main purposes:
» To send data to a function.

» To receive data from a function.

CPSC 427, Lecture 5 8/35
00

Outline Functions and Methods Derivation Construction /Destruction
0000080000
: :
Choosing Parameter Types
: :

Sending data to a function: call by value

For sending data to a function, call by value copies the data
whereas call by pointer or reference copies only an address.

» If the data object is large, call by value is expensive of both
time and space and should be avoided.

> If the data object is small (eg., an int or double), call by
value is cheaper since it avoids the indirection of a reference.

» Call by value protects the caller’'s data from being
inadvertantly changed.

| |
CPSC 427, Lecture 5 9/35
00

Outline Functions and Methods Derivation Construction /Destruction
0000008000
: :
Choosing Parameter Types
: :

Sending data to a function: call by reference or pointer

Call by reference or pointer allows the caller’s data to be changed.
Use const to protect the caller's data from inadvertane change.

Ex: int f£(const int& x) or int g(const int* xp).
Prefer call by reference to call by pointer for input parameters.
Ex: £(234) works but g(&234) does not.

Reason: 234 is not a variable and hence can not be the target of a
pointer.

(The reason £(234) does work is a bit subtle and will be
explained later.)

| |
CPSC 427, Lecture 5 10/35

Outline Functions and Methods Derivation Construction/Destruction
0000000800
: :
Choosing Parameter Types
: :

Receiving data from a function

An output parameter is expected to be changed by the function.
Both call by reference and call by pointer work.

Call by reference is generally preferred since it avoids the need for
the caller to place an ampersand in front of the output variable.

Declaration: int f(int& x) or int g(int* xp).

Call: £(result) or g(&result).

| |
CPSC 427, Lecture 5 11/35

00

Outline Functions and Methods Derivation Construction /Destruction
0000000080
: :
The Implicit Argument
: :

The implicit argument

Every call to a class member function has an implicit argument,
which is the object written before the dot in the function call.

class MyExample {
private:

int count; // data member
public:

void advance(int n) { count += n; }

};

MyExample ex;
ex.advance(3);

Increments ex.count by 3.

CPSC 427, Lecture 5 12/35
00

Outline Functions and Methods Derivation Construction/Destruction
0000000000
: :
The Implicit Argument
: :

this

The implicit argument is passed by pointer.

In the call ex.advance(3), the implicit argument is ex, and a
pointer to ex is passed to advance().

The implicit argument can be referenced directly from within a
member function using the keyword this.

Within the definition of advance(), count and this->count are
synonymous.

| |
CPSC 427, Lecture 5 13/35
00

R

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Derivation

CPSC 427, Lecture 5 14/35
00

Outline Functions and Methods Derivation Construction /Destruction
0000000000

Class relationships

Classes can relate to and collaborate with other classes in many
ways.

We first explore derivation, where one class modifies and extends
another.

|
CPSC 427, Lecture 5 15/35
00

Outline Functions and Methods Derivation Construction /Destruction
0000000000

What is derivation?

One class can be derived from another.

Syntax:

class A {

public:
int x;

3

class B : public A {
int y;

I

A is the base class; B is the derived class.
B inherits the members from A.

| |
CPSC 427, Lecture 5 16/35
00

R

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Instances

A base class instance is contained in each derived class instance.
Similar to composition, except for inheritance.

Function members are also inherited.

Data and function members can be overridden in the derived class.

Derivation is a powerful tool for allowing variations to a design.

CPSC 427, Lecture 5 17/35

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Some uses of derivation

Derivation has several uses.

v

To allow a family of related classes to share common parts.

To describe abstract interfaces a la Java.

v

v

To allow generic methods with run-time dispatching.

v

To provide a clean interface between existing, non-modifiable
code and added user code.

| |
CPSC 427, Lecture 5 18/35

00

Outline Functions and Methods Derivation Construction /Destruction
0000000000

Example: Parallelogram

class Parallelogram {

protected: // allows access by children

double base; // length of base

double side; // length of side

double angle; // angle between base and side
public:

Parallelogram() {} // null default constructor

Parallelogram(double b, double s, double a);

double area() const; // computes area

double perimeter() const; // computes perimeter
ostream& print(ostream& out) const;

| |
CPSC 427, Lecture 5 19/35
00

Outline Functions and Methods Derivation Construction /Destruction
0000000000

Example: Rectangle

class Rectangle : public Parallelogram {

public:
Rectangle(double b, double s) {
base = b;
side = s;

angle = pi/2.0; // assumes pi is defined elsewhere
}
};

Derived class Rectangle inherits area(), perimeter (), and
print () functions from Parallelogram.

| |
CPSC 427, Lecture 5 20/35

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Example: Square

class Square : public Rectangle {
public:
Square(double b) : Rectangle(b, b) {} // uses ctor
bool inscribable(Square& s) const {
double diag = sqrt(2.0)*side; // this diagonal
return side <= s.side && diag >= s.side;
}
double area() const { return side*side; }
};
Derived class Square inherits the perimeter (), and print ()
methods from Parallelogram (via Rectangle).

It overrides the method area().

It adds the method inscribable() that determines whether this
square can be inscribed inside of its argument square s.

|
CPSC 427, Lecture 5 21/35

00

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Notes on Square

Features of Square.

» The ctor :Rectangle(b, b) allows parameters to be
supplied to the Rectangle constructor.

» The method inscribable() extends Rectangle, adding
new functionality.
It returns true if this square can be inscribed in square s.
» The function area overrides the less-efficient definition in
Parallelogram.

| |
CPSC 427, Lecture 5 22/35

e
Outline Functions and Methods Derivation Construction/Destruction

0000000000
: :

Construction, Initialization, and Destruction

CPSC 427, Lecture 5 23/35
00

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Structure of an object

A simple object is like a struct in C.
It consists of a block of storage large enough to contain all of its
data members.

An object of a derived class contains an instance of the base class
followed by the data members of the derived class.

Example:
class B : A { ...};
B bObj;
Then "“inside” of bObj is an A-instance!

| |
CPSC 427, Lecture 5 24/35

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Example of object of a derived class

The declaration A a0bj creates a variable of type A and storage
size large enough to contain all of A's data members (plus perhaps
some padding).

albj: int x;

The declaration B b0bj creates a variable of type B and storage
size large enough to contain all of A's data members plus all of B's
data members.

b0bj: int x; int y;

The inner box denotes an A-instance.

| |
CPSC 427, Lecture 5 25/35

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Referencing a composed object

Contrast the previous example to
class B { A albj; ...};
B b0bj;

Here B composes A.

The embedded A object can be referenced using data member
name a0Obj, e.g., bObj.albj.

CPSC 427, Lecture 5 26/35
00

Outline Functions and Methods Derivation

Construction/Destruction
0000000000

Referencing a base object

How do we reference the base object embedded in a derived class?

Example:
class A { public: int x; int y; ...};
class B : A { int y; ...};
B b0bj;

» The data members of A can be referenced directly by name.
x refers to data member x in class A.
y refers to data member y in class B.
A: :y refers to data member y in class A.
> this points to the whole object.
Its type is Bx*.
It can be coerced to type Ax.

CPSC 427, Lecture 5 27/35

00

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Initializing an object

Whenever a class object is created, one of its constructors is called.

This applies not only to the “outer” object but also to all of its
embedded objects.

If not specified otherwise, the default constructor is called.
This is the one that takes no arguments.

If you do not define the default constructor, then the null
constructor (which does nothing) is used.

CPSC 427, Lecture 5 28/35

00

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Construction rules

The rule for constructing an object of a simple class is:

1. Call the constructor/initializer for each data member, in
sequence.

2. Call the constructor for the class.

The rule for constructing an object of a derived class is:

1. Call the constructor for the base class (which recursively calls
the constructors needed to completely initialize the base class
object.)

2. Call the constructor/initializer for each data member of the
derived class, in sequence.

3. Call the constructor for the derived class.

| |
CPSC 427, Lecture 5 29/35
00

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Destruction rules

When an object is deleted, the destructors are called in the
opposite order.

The rule for an object of a derived class is:
1. Call the destructor for the dervied class.

2. Call the destructor for each data member object of the
derived class in reverse sequence.

3. Call the destructor for the base class.

| |
CPSC 427, Lecture 5 30/35

00

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Constructor ctors

Ctors (short for constructor/initializors) allow one to supply
parameters to implicitly-called constructors.

Example:

class B : A {
B(int n) : A(n) {};
// Calls A constructor with argument n

};

| |
CPSC 427, Lecture 5 31/35

00

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Initialization ctors
Ctors also can be used to initialze primitive (non-class) variables.

Example:

class B {

int x;

const int y;

B(int n) : x(n), y(u+1) {}; // Initializes x and y
s

Multiple ctors are separated by commas.

Ctors present must be in the same order as the construction takes
place — base class ctor first, then data member ctors in the same
order as their declarations in the class.

| |
CPSC 427, Lecture 5 32/35

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Initialization not same as assignment

Previous example using ctors is not the same as writing
B(int n) { y=n+1; x=n; };
» The order of initialization differs.
> const variables can be initialized but not assgined to.
» Initialization uses the constructor (for class objects).

> Initialization from another instance of the same type uses the
copy constructor.

CPSC 427, Lecture 5 33/35

00

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Copy constructors

» A copy constructor is automatically defined for each new class
A and has prototype A(const A&). It initializes a newly
created A object by making a shallow copy of its argument.

» Copy constructors are used for call-by-value parameters.

» Assignment uses operator=(), which by default copies the
data members but does not call the copy constructor.

» The results of the implicitly-defined assignment and copy
constructors are the same, but they can be redefined to be
different.

CPSC 427, Lecture 5 34/35
00

Outline Functions and Methods Derivation Construction/Destruction
0000000000

Move constructors

C++ 11 introduced a move constructor. Its purpose is to allow an
object to be safely moved from one variable to another while
avoiding the “double delete” problem.

We'll return to this interesting topic later, after we've looked more
closely at dynamic extensions.

|
CPSC 427, Lecture 5 35/35
00

	Functions and Methods
	Parameters
	Choosing Parameter Types
	The Implicit Argument

	Derivation
	Construction, Initialization, and Destruction

