e
Outline Brackets Example
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 6
September 19, 2016

CPSC 427, Lecture 6 1/13
00

e
Outline Brackets Example
: :

Brackets Example

CPSC 427, Lecture 6 2/13
00

e
Outline Brackets Example
: :

Brackets Example

CPSC 427, Lecture 6 3/13
00

Outline Brackets Example
:

Code demo

The 06-BracketsCpp demo contains three interesting classes and
illustrates the use of constructors, destructors, and dynamic
memory management as well as a number of newer C++ features.

It is based on the example in section 4.5 of the textbook, but there
are several significant modifications to the code.

Many of the changes use features of c++14 and would not work
under the older standard. Others reflect different design
philosophies.

We briefly summarize below some of the features of the demo.

CPSC 427, Lecture 6 4/13

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/06-BracketsCpp/

Outline Brackets Example
: :

The problem

The problem is to check a file to see if the brackets match and are
properly nested.

For example, ([1()) is okay, but ([)] is not, noris (())) or [LL.

CPSC 427, Lecture 6 5/13
00

Outline Brackets Example
:

A bracket matching algorithm

Rules for bracket matching:
1. Each left bracket is pushed onto the stack.

2. An attempt is made to match each right bracket with the top
character on the stack.

3. The attempt fails if
» The stack is empty, or

» The top character is a different type of bracket (e.g., round
instead of square).
4. If the match fails, an error comment is printed, the
mismatched characters are discarded, and processing
continues with the next character.

5. At end-of-file, the stack should be empty, for any remaining
characters on the stack are unmatched left brackets.

|
CPSC 427, Lecture 6 6/13

Outline Brackets Example
: :

Program design

The program is organized into four modules.

1. Class Token wraps a single character. It contains functions for
determining which characters are brackets, and for each
bracket, its “sense” (left or right), and its “type” (round,
square, curly, or angle).

2. Class Stack implements a general-purpose growable stack of
objects of copyable type T. In this case, T is typedef'ed to
Token.

3. Class Brackets implements the matching algorithm. It reads
the file and carries out the matching algorithm.

4. main.cpp contains the main program. It processes the
command line, opens the file, and invokes the bracket checker.

| |
CPSC 427, Lecture 6 7/13
00

Outline Brackets Example

Token class

Major points:
1. enum is used to encode the bracket type (round, square, etc.)
and the sense of the bracket (left, right).

2. The two enum types are defined inside of class Token and are
private.

3. ch is the character representing the bracket, used for printing.
4. classify() is a private function.

5. The definitions of print () and operator<< follow our usual
paradigms.

CPSC 427, Lecture 6 8/13

Outline Brackets Example
:

Token class (cont.)

6. The Token constructor uses a ctor to initialize ch, and it calls
classify () to initialize the other data members.

7. In the ctor :ch(ch) , the first ch refers to the data member
and the second refers to the constructor argument.

8. In the textbook version of Token, the static variable
brackets is local to classify(). It is now a static class
variable, initialized in token. cpp.

CPSC 427, Lecture 6 9/13

00

Outline Brackets Example
: :

Token design questions

1. The textbook version of Token uses getters to return type
and sense. getType() was used to test if a newly-read
character was a bracket, and it was also used to see if a left
bracket and right bracket were the same type.

Why were they needed?

2. The new version of Token replaces getType () with boolean
functions isBracket () and sameTypeAs() functions.
Similarly, getSense () was replaced by boolean function
isLeft ().

With these changes, enum BracketType and TokenSense are
no longer needed outside of Token and hence are now private.

What are the pros and cons of this design decision?

| |
CPSC 427, Lecture 6 10/13

Outline Brackets Example
:

Token design questions (cont.)

3. Both the old and new versions of the program work whether
or not brackets is static.
» |s static a better choice here?

» Why or why not?
» Does your answer depend on whether the variable is local (old

code) or class (new code)?

:
11/13

CPSC 427, Lecture 6
e

Outline Brackets Example
: :

Stack class
Major points:

1. T is the element type of the stack. This code implements a
stack of Token. (See typedef declaration.)

2. Storage for stack is dynamically allocated in the constructor
using new[] and deleted in the destructor using delete[].

3. The square brackets are needed for both new and delete
since the stack is an array.

4. delete[] calls the destructor of each Token on the stack.
Okay here because the token destructor is null.

5. push() grows stack by creating a new stack of twice the size,
copying the old stack into the new, and deleting the old stack.
This results in linear time for the stack operations.

6. If push () only grew the stack one slot at a time, the time
would grow quadratically.

: :
CPSC 427, Lecture 6 12/13

Outline Brackets Example
: :

Stack design questions

Should pop () return a value?
Why does stack have a name field?

size() isn't used. Should it be eliminated?

el A

Stack: :print () formerly declared p and pend at the top.
Now they are declared just before the loop that uses them. Is
this better, and why?

5. Could they be declared in the loop? What difference would it
make?

| |
CPSC 427, Lecture 6 13/13

	Brackets Example

