
Outline Storage Management (continued) Bar Graph Demo

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 8
September 26, 2016

CPSC 427, Lecture 8 1/23

Outline Storage Management (continued) Bar Graph Demo

Storage Management (continued)

Bar Graph Demo

CPSC 427, Lecture 8 2/23

Outline Storage Management (continued) Bar Graph Demo

Storage Management (continued)

CPSC 427, Lecture 8 3/23

Outline Storage Management (continued) Bar Graph Demo

Static data members

A static data member belongs to the class itself rather than to
instantiations of the class. Thus, all instantiations share the static
member. Moreover, it exists even before the class has been
instantiated.

A static class data member must be declared and defined.

I It is declared by preceding the member declaration by the
qualifier static.

I It is defined by having it appear in global context with an
initializer but without the keyword static.

I It must be defined only once.

CPSC 427, Lecture 8 4/23

Outline Storage Management (continued) Bar Graph Demo

Example from brackets demo

In token.hpp, variable brackets is defined to be a static
constant string:

static const string brackets;

It is initialized in token.cpp:

const string Token::brackets = "[](){}<>";

CPSC 427, Lecture 8 5/23

Outline Storage Management (continued) Bar Graph Demo

Static data member example

Here’s a case where a non-const static data member is useful. In
debugging a program with many objects of the same type, it is
often useful to be able to distinguish the objects in diagnostic
printouts.

Using a static data member nextID, here’s how to give each new
object a unique ID:

1. Declare static int nextID; in the class.

2. Initialize it to 0 in the .cpp file.

3. Declare a non-static data member int uid = nextID++;

CPSC 427, Lecture 8 6/23

Outline Storage Management (continued) Bar Graph Demo

Class definition

class MyClass {
static int nextID;

int uid = nextID++;

public:

ostream& printID(ostream& out) const {
return out << uid << endl;

}
};

In the .cpp file, you would place the line:

int MyClass::nextID = 0;

CPSC 427, Lecture 8 7/23

Outline Storage Management (continued) Bar Graph Demo

Static function members

Function class members can also be declared static.

I As with static variables, the are declared inside the class by
prefixing static.

I They may be defined either inside the class (as inline
functions) or outside the class.

I If defined outside the class, the :: prefix must be used and
the word static omitted.

A static function can be called before the class has been
instantiated. Example: Suppose MyClass defines

static void instructions() { cout <<"To use..."; }

It can be called using MyClass::instructions();.

CPSC 427, Lecture 8 8/23

Outline Storage Management (continued) Bar Graph Demo

Static class functions are global

Ways in which static class functions are like global C-style
functions:

1. They do not take an implicit argument.

2. Their lifetime is the same as the lifetime of the entire program.

3. They may be called before the class has been instantiated.

Ways in which they differ:

1. The name visibility is not restricted to the file in which the
function is declared.

2. The name visibility is restricted by the privacy keywords
private, protected, public.

3. The name must be qualified when called from outside the
class (eg., MyClass::instructions()).

CPSC 427, Lecture 8 9/23

Outline Storage Management (continued) Bar Graph Demo

Debugging memory management errors

Memory management errors can be particularly difficult to debug
because they often lead to bizarre symptoms that mislead
debugging efforts.

Debugging tools such as gdb have their place, but be aware that a
program with memory management errors may behave differently
when run under a debugger than when run alone.

I’ll give a brief overview of several kinds of errors that can happen,
what causes them, and what to do about them. Read chapter 6 of
the textbook for a much fuller discussion.

CPSC 427, Lecture 8 10/23

Outline Storage Management (continued) Bar Graph Demo

Five common kinds of failures

1. Memory leak—Dynamic storage that is no longer accessible
but has not been deallocated.

2. Amnesia—Storage values that mysteriously disappear.

3. Bus error—Program crashes because of an attempt to access
non-existent memory.

4. Segmentation fault—Program crashes because of an
attempt to access memory not allocated to your process.

5. Waiting for eternity—Program is in a permanent wait state
or an infinite loop.

CPSC 427, Lecture 8 11/23

Outline Storage Management (continued) Bar Graph Demo

Memory leak

A memory leak is when storage that has been allocated to a
process becomes inaccessible.

Symptoms are that the process’s memory footprint becomes larger
and larger over time, eventually leading the process to become very
slow as useless data gets swapped in and out of physical memory.

The tool valgrind will catch many kinds of memory errors,
including memory leaks.

To use, type valgrind myapp arg1 arg2 This runs myapp

arg1 arg2 ... under its control.

CPSC 427, Lecture 8 12/23

Outline Storage Management (continued) Bar Graph Demo

Amnesia

“I stored 7 in x. Why did cout << x print 356991?”

Answer: “Somebody changed it between the time you stored into
x and when you printed it.” A few of many possible reasons:

I You no longer own the memory block x, and it is being reused
for something else.

I Your program took a different path through your code than
you expected.

I Some other part of your code was using memory that didn’t
belong to it, and it just happened to overwrite x. This can be
caused by a buffer overrun error.

CPSC 427, Lecture 8 13/23

Outline Storage Management (continued) Bar Graph Demo

Segmentation fault

From the system’s perspective, a memory reference can be one of
three kinds:

1. The memory belongs to your process and you are permitted
access.

2. The reference is to memory that exists, but you are not
permitted to perform the requested operation on it.

3. A signal raised in response to various kinds of addressing
errors detected by the hardware.

Segmentation faults often result from attempting to dereference an
invalid pointer, as in the following:

int* xp = nullptr;

cout << *xp << endl;

CPSC 427, Lecture 8 14/23

Outline Storage Management (continued) Bar Graph Demo

Bus error

Bus errors are less common in modern operating systems.
Dereferencing 0 on older systems often caused bus errors.

They can still happen in various situations, and you may
occasionally still see them. The program mistakes that cause them
are pretty much the same as the ones that cause segmentation
faults.

CPSC 427, Lecture 8 15/23

Outline Storage Management (continued) Bar Graph Demo

Waiting for eternity

“I wrote cout << x; , but nothing prints. Why?

Some possibilities:

I Your output is in a buffer, waiting for a new line to be printed.

I Program control never reached your print statement.

I Your print statement was accidently commented out, perhaps
because of an earlier missing */.

I Your program is in an infinite loop. Maybe there is no
termination clause. Maybe you forgot to initialize a variable
needed for termination. Maybe the termination condition
simply never becomes true because of a logic error.

CPSC 427, Lecture 8 16/23

Outline Storage Management (continued) Bar Graph Demo

What kinds of program errors cause these problems?

I delete is never executed, or it’s executed twice.

I Dereferencing uninitialized pointer.

I Referencing a formerly valid pointer after its memory has been
deleted or deallocated.

I Failing to initialize variables that control program logic.

CPSC 427, Lecture 8 17/23

Outline Storage Management (continued) Bar Graph Demo

What makes these problems hard to diagnose?

The effects of memory management errors often are only observed
long after the original error, and often in an unrelated piece of
code.

References to unowned memory may return different values on
different runs of the system, leading to seemingly random behavior.

They may also return different values when run in a different
environment, such as under the control of gdb or valgrind.

Seemingly random behavior is almost always an indication of
memory errors in your program. Finding the cause of the error
requires methodical tracing of control flow through your program.

CPSC 427, Lecture 8 18/23

Outline Storage Management (continued) Bar Graph Demo

Bar Graph Demo

CPSC 427, Lecture 8 19/23

Outline Storage Management (continued) Bar Graph Demo

Overview of bar graph demo

These slides refer to demo 08-BarGraph.

This demo reads a file of student exam scores, groups them by
deciles, and then displays a bar graph for each decile.

The input file has one line per student containing a 3-letter
student code followed by a numeric score.

AWF 00

MJF 98

FDR 75

...

Scores should be in the range [0, 100]

CPSC 427, Lecture 8 20/23

http://zoo.cs.yale.edu/classes/cs427/2016s/lectures/08-BarGraph/

Outline Storage Management (continued) Bar Graph Demo

Overview (cont.)
The output consists of one line for each group listing all of the
students falling in that group. An 11th line is used for students
with invalid scores.

Sample output:

00..09: AWF 0

10..19:

20..29:

30..39: PLK 37

40..49:

50..59: ABA 56

60..69: PRD 68 RBW 69

70..79: HST 79 PDB 71 FDR 75

80..89: AEF 89 ABC 82 GLD 89

90..99: GBS 92 MJF 98

Errors: ALA 105 JBK -1

CPSC 427, Lecture 8 21/23

Outline Storage Management (continued) Bar Graph Demo

Method

Each student is represented by an Item object that consists of the
initials and a score.

The program maintains 11 linked lists of Item, one for each bar of
the graph. A bar is represented by a Row object.

For each line of input, an Item is constructed, classified, and
inserted into the appropriate Row.

When all student records have been read in, the bars are printed.

A Graph object contains the bar graph as well as the logic for
creating a bar graph from a file of scores as well as for printing it
out.

CPSC 427, Lecture 8 22/23

Outline Storage Management (continued) Bar Graph Demo

Analysis of 08-BarGraph demo

I main.cpp

I graph.hpp

I graph.cpp

I row.hpp

I row.cpp

I rowNest.hpp

I item.hpp

CPSC 427, Lecture 8 23/23

http://zoo.cs.yale.edu/classes/cs427/2016s/lectures/08-BarGraph/

	Storage Management (continued)
	Bar Graph Demo

