
Outline References

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 11
October 5, 2016

CPSC 427, Lecture 11 1/16

Outline References

References

CPSC 427, Lecture 11 2/16

Outline References

References

CPSC 427, Lecture 11 3/16

Outline References

Reference types

Recall: Given int x, two types are associated with x: an L-value
(the reference to x) and an R-value (the type of its values).

C++ exposes this distinction through reference types and
declarators.

A reference type is any type T followed by &, i.e., T&.

A reference type is the internal type of an L-value.

Example: Given int x, the name x is bound to an L-value of type
int&, whereas the values stored in x have type int

This generalizes to arbitrary types T: If an L-value stores values of
type T, then the type of the L-value is T&.

CPSC 427, Lecture 11 4/16

Outline References

Reference declarators

The syntax T& can be used to declare names, but its meaning is
not what one might expect.

int x = 3; // Ordinary int variable
int& y = x; // y is an alias for x
y = 4; // Now x == 4.

The declaration must include an initializer.

The meaning of int& y = x; is that y becomes a name for the
L-value x.

Since x is simply the name of an L-value, the effect is to make y

an alias for x.

For this to work, the L-value type (int&) of x must match the
type declarator (int&) for y, as above.

CPSC 427, Lecture 11 5/16

Outline References

Use of named references

Named references can be used just like any other variable.

One application is to give names to otherwise unnamed objects.

int axis[101]; // values along a graph axis

int& first = axis[0] ; // give name to first element

int& last = axis[100]; // give name to last element

first = -50;

last = 50;

// use p to scan through the array

int* p;

for (p=&first; p!=&last; p++) {...}

CPSC 427, Lecture 11 6/16

Outline References

Reference parameters

References are mainly useful for function parameters and return
values.

When used to declare a function parameter, they provide
call-by-reference semantics.

int f(int& x){...}
Within the body of f, x is an alias for the actual parameter, which
must be the L-value of an int location.

CPSC 427, Lecture 11 7/16

Outline References

Reference return values

Functions can also return references.

int& g(bool flag, int& x, int& y) {

if (flag) return x;

return y;

}

...

g(x<y, x, y) = x + y;

This code returns a reference to the smaller of x and y and then
sets that variable to their sum.

CPSC 427, Lecture 11 8/16

Outline References

Custom subscripting

Suppose you would like to use 1-based arrays instead of C++’s
0-based arrays.

We can define our own subscript function so that sub(a, k)

returns the L-value of array element a[k-1].

sub(a,k) can be used on either the left or right side of an
assignment statement, just like the built-in subscript operator.

int& sub(int a[], int k) { return a[k-1]; }

...

int mytab[20];

for (k=1; k<=20; k++)

sub(mytab, k) = k;

CPSC 427, Lecture 11 9/16

Outline References

Constant references

Constant reference types allow the naming of pure R-values.
const double& pi = 3.1415926535897932384626433832795;

Actually, this is little different from
const double pi = 3.1415926535897932384626433832795;

In both cases, the pure R-value is placed in a read-only object, and
pi is bound to its L-value.

CPSC 427, Lecture 11 10/16

Outline References

Comparison of reference and pointer

I A reference (L-value) is the result of following a pointer.

I A pointer is only followed when explicitly requested
(by * or ->).

I A reference name is bound when it is created. Pointer objects
can be initialized at any time (unless declared to be read-only
using const).

I Once a reference is bound to an object, it cannot be changed
to refer to another object. Pointer objects can be changed to
point to another object at any time using assignment (unless
declared to be read-only).

I You cannot have NULL references. You must always be able
to assume that a reference is connected to a legitimate piece
of storage.

CPSC 427, Lecture 11 11/16

Outline References

Concept summary

Concept Meaning

Object A block of memory and its contents.

L-value The machine address of an object.

R-value The value stored in an object.

Pointer value An R-value consisting of a machine address.

Pointer object An object into which a pointer value can be stored.

Identifier A name in a program which is bound to an L-value.

CPSC 427, Lecture 11 12/16

Outline References

Type summary

Let T be any type.

Concept Type Meaning

Object T L-value has type T&, R-value has type T.

L-value T& The object at its address has type T.

R-value T The type of the data value is T.

Pointer object T* L-value has type T*&, R-value has type T*.

L-value of ptr obj T*& The object at its address has type T*.

Pointer R-value T* The type of the data value is T*.

CPSC 427, Lecture 11 13/16

Outline References

Declaration syntax

T x; Binds x to the L-value of a new object of type T.

T& x=y; Binds x to the L-value of y which has type T&.

T* x = new T; Binds x to the L-value of a new object of type T*

and initializes its value with a pointer to a new
dynamically-allocated object of type T.

T* y; Binds y to a new uninitialized object of type T*.

CPSC 427, Lecture 11 14/16

Outline References

Storing a list of objects in a data member

A common problem is to store a list of objects of some type T as a
data member li in a class MyClass.

Here are six ways it can be done:
1. T li[100]; li is composed in MyClass.
2. T* li[100]; li is composed in MyClass. Constructor does

loop to store new T in each array slot.
3. T* li; Constructor does li = new T[100];.
4. T** li; Constructor does li = new T*[100]; then

does loop to store new T in each array slot.
5. vector<T> li; Uses Standard vector class. T must be copi-

able.
6. vector<T*> li; Constructor does loop to store new T into each

vector slot.

CPSC 427, Lecture 11 15/16

Outline References

How to access

Here’s how to acces element 3 in each case:

1. T li[100]; li[3].
2. T* li[100]; *li[3].
3. T* li; li[3].
4. T** li; *li[3].
5. vector<T> li; li[3].
6. vector<T*> li; *li[3].

CPSC 427, Lecture 11 16/16

	References

